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Abstract: Reinforced concrete piles installed by impact hammers have been used as a common
solution for deep foundations because they are cost effective and require less time for construction.
Driven piles are often used in large volumes for infrastructure and industrial projects in rural
areas. Unlike other installation methods, installing piles using impact hammers can generate tensile
stress during construction, which can result in pile failures. Induced tensile stress occurs when
piles are being driven through a hard soil layer to a softer soil layer, and transverse cracks happen
when induced tensile stress exceeds the pile tensile strength. This issue is not explicitly stated
in most standards; the rare code that mentions this issue is AASHTO 2014. AASHTO 2014 uses
correlations between the concrete tensile and compressive strengths to obtain the pile tensile strength.
However, data collected from more than 1300 tests on the correlations between the concrete tensile
and compressive strengths show that the concrete pile tensile strengths obtained using AASHTO
2014 are significantly conservative. This paper provides an adjustment in the correlation for the
tensile strength based on previous data, and it proposes an approach to estimate the tensile strength
for concrete-driven piles. A case study of the effects of pile failures on the tensile strength is also
presented to verify the approach. The obtained tensile strength from the proposed approach agrees
well with the measured field data. For the case study, the pile tensile strength obtained using the
proposed approach is 38% and 59% higher than the tensile strength obtained using AASHTO 2014.
These quantities are significant but may vary, depending on the compression strength of the concrete
used and the pile configurations. The proposed approach better predicts the tensile strength of
concrete piles and can lead to cost savings.

Keywords: pile driving analyzer (PDA); tensile stress; concrete piles; driven-pile installation

1. Introduction

Precast-concrete-driven piles are an effective foundation solution with low costs and
less time-consuming construction [1]. However, pile driving can affect the integrity of
the pile segments, with common problems including axial cracks, pile top cracks, and
transverse cracks [2–4]. Transverse cracks caused by induced stress during pile driving can
cause pile damage and affect the pile integrity. Induced tensile stress occurs when piles are
being driven through a hard soil layer to a softer soil layer, and transverse cracks happen
when the induced tensile stress exceeds the pile tensile strength. Induced stress in a pile
while being driven can be measured using high-strain dynamic tests with a pile driving
analyzer (PDA), but this is not often carried out in practice or thoroughly investigated [5].
To resist the induced tensile stress during the construction stage of pile driving, the pile
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mobilizes tensile strength from both of its material components: steel reinforcement (with
or without prestressing) and concrete. When determining the tensile strength of prestressed
concrete piles, some standards and guidelines take into account the tensile strength of the
concrete component, such as AASHTO [5] and FHWA [6]. However, other standards do
not [7–21]; in most cases, in practice, the concrete tensile strength is not taken into account.
Neglecting concrete’s tensile strength when determining the pile’s tensile strength is safer,
but not economical. Likins and Rausche [1] suggest that it is necessary to include at least
part of the concrete tensile strength in the calculation of the tensile strength of the pile.

Different standards have different approaches for determining the concrete tensile
strength, based on different testing methods, including direct tension, modulus of rupture,
and split cylinder testing [6–20]. Of these three standardized testing methods, modulus
of rupture and split cylinder are more common, whereas the direct tensile test is only
used in a few standards. ACI 543R-12 [21] states that the less commonly used direct
tensile test is due to the difficulty of pure tensile loading on a plain concrete specimen. In
practice, tensile-strength tests are not carried out as often as compressive-strength tests.
Standards often allow for the conversion of the compressive strength to the tensile strength.
The correlations between the modulus of rupture and the compressive strength of pile
concrete in the standards are summarized in Table 1, where ft, fr, fc, and fc′ are the tensile
strength, flexural tensile strength, cube compressive strength, and cylinder compressive
strength, respectively, of concrete at 28 days. As in Table 1, significant variation exists in
the estimation of the tensile strength through the correlations, which not only affects the
prediction of the tensile strength for prestressed driven piles, but also the overall cost of the
piling work. This paper provides an adjustment in the correlation for the tensile strength
based on previous data, and it proposes an approach to estimate the tensile strength
for driven piles that agrees well with the measured data and can lead to cost savings.
A case study of the effects of reinforced-concrete-pile failures on the tensile strength is also
presented to verify the approach. Relative comparisons between different approaches are
also provided.

Table 1. Tensile Strength and Compressive Strength Empirical Correlations in Standards.

Standards
(or Codes) Correlations in MPa Tensile Strength

Testing Methods
Type of Compressive

Samples

ACI 318-2002 [7] fr = 0.62
√

f ′ci
Modulus of Rupture Cylinder

BS 8007 [8] ft = 0.12 fc
0.7 Split Cylinder Cube

CEN (2002) [9] fr = 0.342 f ′c
2/3 Modulus of Rupture Cylinder

JCI 2016 [10] ft = 0.13 f ′c0.85 Split Cylinder Cylinder

JSCE 2002 [11] ft = 0.44 f ′c0.5 Split Cylinder Cylinder

AIJ 2008 [12] ft = 0.18 f ′c0.75 Split Cylinder Cylinder

CAN/CSA A23.3-04 (2007) [13] fr = 0.6 f ′c0.5 Modulus of Rupture Cylinder

NZS-3101 [14] fr = 0.6 f ′c0.5 Modulus of Rupture Cylinder

IS 456-2000 [15] fr = 0.626 f ′c0.5 Modulus of Rupture Cylinder

CEB-FIB 2010 [16] fr = 0.3 f ′c0.5

(For concrete grades ≤ C50)
Axial tension Cylinder

2. Tensile Strength of Reinforced-Concrete-Driven Piles

The AASHTO [5] Standard and FHWA [6] guidelines prescribed the tensile strength
of concrete as:

σdr = ϕda

(
0.25

√
f ′c + fpe

)
(1)

where σdr is the driving tensile-stress limit or tensile strength (MPa); ϕda is the resistance
factor during driving (1.0 for concrete piles); f ′c is the concrete compression strength
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at 28 days, unless otherwise specified (MPa); fpe is the effective prestressing stress in
concrete (MPa).

Figure 1 presents the modulus of rupture data from the 1330 tests from research over
the past 80 years [22–25]. These data can be used to evaluate Equation (1). The observations
from the data are: (1) when the compressive strength of concrete is greater than 50 MPa,
the correlation of the compressive and tensile strengths of concrete, according to ACI
363R-10 [24], which is

fr = 0.623
√

f ′c (2)

corresponds to the lower boundary of the data points, and (2) when the compressive
strength of concrete is less than 50 MPa, the data lower bound is the fr curve, which is

fr = 0.415
√

f ′c (3)
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As in Equation (1), AASHTO [5] recommends using the tensile strength of concrete at
0.25

√
f ′c . Compared with the observations from Figure 1, it can be seen that the AASHTO [5]

approach is significantly conservative, and especially when the compressive strength is
greater than 50 MPa. It is proposed that the equation for the tensile strength should be
adjusted to:

σdr = ϕda

(
k×

√
f ′c + fpe

)
(4)

where k = 0.415 for f ′c < 50 MPa and k = 0.623 for f ′c ≥ 50 MPa. Equation (4) predicts the
tensile strength of the piles more accurately. It should be noted that the compressive strength
itself is a parameter that already includes a factor of safety; therefore, the tensile strength,
when determined through the compressive strength, does not require an additional factor
of safety. Therefore, Equation (4) also provides the maximum allowed induced tensile stress
during pile driving.
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3. A Case Study: Verification of the Proposed Approach

This case study is from a thermal-power-plant project in Soc Trang, Vietnam, in 2016.
Figure 2 shows Borehole BH6, with a soil profile of the study area; this profile is relatively
typical and similar to other boreholes within the footage of the plan. Soil Layer 1 is a
loose–medium-dense sand, which is followed by Layers 2 and 3, which are soft–firm-clay
weaker soils with much lower SPT numbers.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 12 
 

 

Figure 2. Boring Log BH6 (typical for the study area). 

  

Figure 2. Boring Log BH6 (typical for the study area).



Appl. Sci. 2022, 12, 7112 5 of 11

The foundations consist of prestressed-reinforcement-concrete square piles with a com-
pressive strength f ′c of 50 MPa (cylindrical samples). The pile cross-section of 0.5 m × 0.5 m,
with the details on the pile head and tip, are presented in Figure 3. The pile lengths are
52 m (consisting of three segments: 18 m, 18 m, and 16 m) and 53 m (18 m, 18 m, and 17 m).
The hammer used to drive the piles weighs 7.2 tons, with a drop height of 1.8 m; other
specifications on the hammer are presented in Table 2.
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Table 2. Specifications of the Hammer (Model HD 72).

Descriptions Units Values

Power stroke Nm 244 − 122
Number of stroke 1/min 35 − 50
Max. blow of impact mm 4518
Impact weight Ton 7.2
Dimensions (L ×W × H) mm 5990 × 1130 × 980

For the initial approved design, the reinforcement used for each pile was 15.24 mm-
diameter prestressed cables with a tensile strength (fpu) of 1860 MPa, the value of the
prestressing force was fpi = 0.7fpu = 1302 MPa, and there were four cables for each pile.

During pile driving, horizontal cracks were observed on a number of piles. Figure 4
shows the cracks on Pile 12HA415 and Pile 12HA174. The pile design, fabrication, and
installation processes were revisited and analyzed. It was confirmed that the cause of the
damages was not from the quality of the concrete, pile transportation, pile lifting by crane,
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or buckling. Moreover, the impact caused by a clamp used to reduce the effects of pile
slenderness during installation was eliminated as a reason for the cracks. The cracks were
mainly transverse, which shows that the damages must have come from tensile stress and
not from compressive stress [3].
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Based on the analysis, the pile design was changed by increasing the number of
reinforced cables from four to eight for each pile. The type of cable was unchanged,
with a diameter of 15.24 mm, and a prestressing force of 19,200 kg (188.3 kN). The pile
tensile strength was calculated using three approaches: (1) not accounting for the concrete
tensile strength (k = 0) as in most standards; (2) accounting for the concrete tensile strength
following AASHTO [5] (k = 0.250; (3) accounting for the concrete tensile strength following
the proposed Equation (4) (k = 0.622). The compressive strength of the concrete used is
50 MPa. The results in Table 3 show that the pile tensile strength is significantly increased
when accounting for the tensile strength of the concrete, and the proposed equation gives a
tensile strength at least 38% higher than that of AASHTO [5].

Table 3. Pile Tensile Strength.

Design No. of Cables

Pile Tensile Strength (MPa)

Not Accounting
for Concrete

Tensile Strength
(Most Standards)

Accounting for
Concrete Tensile

Strength
AASHTO [5]

Accounting for
Concrete Tensile

Strength
(Equation (4))

Difference between
Equation (4)

and AASHTO [5]

Initial 4 2.68 4.44 7.06 +59%
Revised 8 5.12 6.89 9.5 +38%
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4. Pile Tensile-Stress Measurement

With the new pile design, PDA tests were conducted, and the tensile stresses in the
piles while driving were recorded. The results on Pile 12HA 474 and Pile 12HA 451 were
analyzed using CAPWAP software, which is an effective tool for stress calculation in PDA
experiments [26]. Research by Zhou et al. [27] on the PDA results of wave measurements
in piles shows that the largest tensile stress waves are usually near the pile heads, where
the PDA gauges are typically mounted. Thus, the tensile stress measured in the PDA test is
expected to be the maximum tensile stress of the pile. Figures 5 and 6 show the results of
the measured tensile stress generated in the piles during pile driving. The Borehole-BH6
geology column is imposed in the figures for visualization.
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As in Figures 5 and 6, the changes in the measured tensile-stress profile, in general,
are relatively consistent with the changes in the SPT-value profile and the types of soils.
However, the induced tensile stress in the piles increased when the pile tip penetrated
through the boundary of hard soil (Layer 1) to softer soil layers (Layers 2 and 3) (Figure 5).
Note that a few data points were missing for Pile 12HA 474, but this does not affect the
analysis. Moreover, amongst the measured data, there is an outlier at the first blow on
Pile 12HA 474 (Figure 5) at a depth of 1m; the measured stress is 11.9 MPa, which is two
times more than the expected value. This outlier was eliminated from the dataset used for
analysis as in Figures 5 and 6, the changes in the measured tensile-stress profile, in general,
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are relatively consistent with the changes in the SPT-value profile and the types of soils.
However, the induced tensile stress in the piles increased when the pile tip penetrated
through the boundary of hard soil (Layer 1) to softer soil layers (Layers 2 and 3) (Figure 5).
Note that a few data points were missing for Pile 12HA 474, but this does not affect the
analysis. Moreover, amongst the measured data, there is an outlier at the first blow on
Pile 12HA 474 (Figure 5) at a depth of 1m; the measured stress is 11.9 MPa, which is two
times more than the expected value. This outlier was eliminated from the dataset used for
analysisAs in Figures 5 and 6, the changes in the measured tensile-stress profile, in general,
are relatively consistent with the changes in the SPT-value profile and the types of soils.
However, the induced tensile stress in the piles increased when the pile tip penetrated
through the boundary of hard soil (Layer 1) to softer soil layers (Layers 2 and 3) (Figure 5).
Note that a few data points were missing for Pile 12HA 474, but this does not affect the
analysis. Moreover, amongst the measured data, there is an outlier at the first blow on
Pile 12HA 474 (Figure 5) at a depth of 1m; the measured stress is 11.9 MPa, which is two
times more than the expected value. This outlier was eliminated from the dataset used
for analysis.

5. Analysis of Pile-Induced Tensile Stress and Strength

For the original pile design with four cables that showed cracks during construction,
the tensile strengths were calculated using the AASHTO equation (Equation (1)) and the
proposed equation (Equation (4)) for comparison. The results are imposed in Figures 5 and 6,
where the red lines represent the tensile strength obtained using the AASHTO equation
(Equation (1)), which produced the value of 4.44 MPa; the orange lines represent the tensile
strength using the proposed equation, which produced the value of 7.06 MPa. This value of
7.06 MPa is within the higher range of the measured tensile stress (6.3 MPa to 8.1 MPa) and,
as a result, a large number of the piles of this initial design were damaged. Compared with
the measured data and the observed cracks, the AASHTO equation underestimated the
tensile strength of the piles because the equation predicted a tensile strength of 4.44 Mpa,
which is smaller than the measured tensile stress along the length of the pile segments,
which means that the cracks would have been along most of the length of the pile segments.
The proposed approach predicts a tensile strength of 7.06 MPa, which is actually more
accurate because the cracks appeared at locations where the measured induced stresses
were larger than the predicted strength.

For the revised design of the piles with eight cables, the tensile strength obtained by
using the AASHTO equation is 6.89 MPa, which is smaller than the maximum induced
tensile stress of 8.1 Mpa, and cracks would have occurred. However, with this revised
design of eight cables, there were no cracks observed on the piles. The proposed approach’s
calculated tensile strength for the eight-cable piles is 9.5 MPa, shown by the green lines in
Figures 5 and 6. This value is larger than the induced tensile stress in the piles, predicting no
cracks. The calculated factor of safety is 1.17, and these piles were successfully constructed
without tensile cracks. For eight-cable piles, if a design did not account for the tensile
strength of the concrete component as recommended by most standards, then the pile
tensile strength would be 5.12 MPa, which is smaller than the induced tensile stress during
driving, and cracks would have occurred.

For this case study, the proposed approach predicts the pile tensile strength (and, therefore,
the cracks) more accurately, with the calculated tensile strength about 38% to 59% higher than
the values from AASHTO [5] for designs of four and eight cables, respectively (Table 3). These
quantities are significant but may vary, depending on the used compression strength of the
concrete and the pile configurations; however, based on the analysis using measured data and
field observations, the proposed approach is reliable to use for estimating the tensile strength
of prestressed concrete piles. This approach can provide a better design for the prestressed
concrete pile at the construction stage, resulting in cost savings.



Appl. Sci. 2022, 12, 7112 10 of 11

6. Conclusions

For concrete-driven-pile design, checks must be performed to ensure that the pile
tensile strength is greater than the possible induced tensile stress during pile driving to
avoid pile damage in the construction stage. Generally, empirical correlations are used
to estimate the tensile strength of concrete, which show significant variations among the
different standards. This paper examines the relationship between the modulus of rupture
and the compressive strength of concrete (based on previous data). The current AASHTO
2014 underpredicted the tensile strength in the prestressed driven piles, which led to
overdesign. A modified approach (Equation (4)) is proposed for predicting the tensile
strength in the prestressed driven pile. A case study is presented in which PDA tests were
conducted to measure the pile-induced stress during pile driving. The data show that the
tensile stress in the piles increases when the pile tip penetrates from a firmer soil layer to
a softer soil layer, which can cause pile cracks. The recorded tensile stresses during pile
driving are compared with the pile tensile strengths obtained from the AASHTO approach
(Equation (1)) and the proposed approach. For the case study, the predicted tensile strength
of prestressed driven piles using the proposed approach agrees well with the PDA results
and is about 38% to 59% higher than the value obtained from AASHTO. These quantities
are significant but may vary, depending on the compression strength of the concrete used
and the pile configurations. However, adjustments using the proposed approach can lead
to more economical designs.
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