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ARTICLE

Differential and shared genetic effects on kidney
function between diabetic and non-diabetic
individuals

Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include

genetics and diabetes mellitus (DM), but little is known about their interaction. We con-

ducted genome-wide association meta-analyses for estimated GFR based on serum

creatinine (eGFR), separately for individuals with or without DM (nDM= 178,691, nnoDM=
1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/

noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further

novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM

individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease.

Gene prioritization highlighted 18 genes that may inform reno-protective drug development.

We highlight the existence of DM-only and noDM-only effects, which can inform about the

target group, if respective genes are advanced as drug targets. Largely shared effects suggest

that most drug interventions to alter eGFR should be effective in DM and noDM.

https://doi.org/10.1038/s42003-022-03448-z OPEN

A full list of authors and their affiliations appears at the end of the paper.
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Impaired kidney function can progress to kidney failure
requiring dialysis or transplantation, which implicates high
early mortality1 and public health burden2. The most common

kidney function measure is the glomerular filtration rate (GFR).
Chronic kidney disease (CKD) can be defined as GFR < 60 ml/
min per 1.73 m2, and has a prevalence of ~10% in the
population3. In large-scale epidemiological studies, GFR can be
estimated from serum creatinine (eGFR) using the CKD-Epi
formula4.

Diabetes mellitus (DM) is a major risk factor for impaired
kidney function5 and is present in 30% of individuals starting
dialysis in Europe6. Most current pharmacotherapy in DM has
substantial side effects7–10. Recent work showed that SGLT2
inhibitors and GLP1R are reno-protective for individuals with
DM11,12 and early evidence indicates that this might be also true
for individuals without DM (noDM)13. The biological processes
related to lower kidney function might differ between individuals
with DM and individuals without DM. Understanding the
mechanisms of kidney function variability within and between
these groups is pivotal for understanding pathogenesis. Genome-
wide association studies (GWAS) have pinpointed hundreds of
loci for eGFR14–16. These loci help understand kidney function
variability in the overall population. However, commonalities and
differences in genetic kidney function effects between DM and
noDM individuals are not well understood.

Genes underneath GWAS loci have been shown to double the
success rate in drug development pipelines17,18. This renders each
gene in eGFR loci a drug target to alter kidney function, parti-
cularly when the gene maps to association-driving variants that
are relevant for the protein or for the gene’s expression in kidney
tissue19. This opens up a clinically important question in the
context of differential or shared genetic kidney function effects
between DM and noDM individuals: when a locus identified for
eGFR in the overall population turns out to have no effect in DM
individuals, the underlying causal gene might not be informative
for reno-protection in DM individuals. This is not an unlikely
scenario, since only 10% of individuals in previous population-
based GWAS on eGFR overall had DM16,20.

Previous DM-/noDM-stratified searches for genetic eGFR-
effects have been limited21 and without identification of a sig-
nificant DM/noDM-difference. It is unclear whether this was due
to limited power or lack of such differential effects. GWAS for
eGFR-based kidney function outcomes in DM, used as one
approach to identify the genetics of Diabetic Kidney Disease
(DKD), identified four loci in ~40,000 type 1 or type 2 DM
patients22 and four other loci in ~19,500 type 1 DM patients23.
When genetic effects on eGFR in DM versus noDM have little
overlap, such focused searches will remain the best option. For
shared genetics, GWAS on eGFR overall will have much
better power.

The quest for understanding commonalities and differences of
genetic eGFR-effects between DM and noDM has two aspects: a
search for eGFR-associated loci with DM/noDM-difference will
help understand whether such differential effects exist and a
search for SNP-association on eGFR allowing for DM/noDM-
difference may detect novel eGFR loci. Statistically, DM/noDM-
difference in eGFR association and genetics-by-DM-status
interaction on eGFR association are equivalent. There are var-
ious approaches to do so24. These approaches have been applied
successfully for other phenotypes25–29, but not yet for GWAS
interaction analyses for kidney function.

We thus set out to search for eGFR loci with DM/noDM-
difference and for novel eGFR loci allowing for difference. For
this, we gathered GWAS data on eGFR separately for 178,691 DM
and 1,296,113 noDM individuals. We prioritized genes under-
neath identified loci using in-silico functional evidence. We also

evaluated the impact of DM-/noDM-specific weights on the
genetic risk score (GRS) for eGFR in data independent from the
variant- and weight-identifying step30.

Results
Overview of the GWAS meta-analyses. We first analyzed GWAS
data on 7,046,926 single nucleotide polymorphisms (SNPs) and
their association with logarithm-transformed eGFR separately for
109,993 DM (type 2 or type 1) and 1,070,999 noDM individuals
(stage 1, including 72 studies from CKDGen Consortium31 and
UK Biobank, UKB32; mostly European-ancestry; Supplementary
Data 1, Methods, Fig. 1a). These DM-/noDM-stratified GWAS
summary statistics allowed us to apply the difference test, the
joint test and the stratified tests (Methods). Based on these tests,
we searched for eGFR-associated loci with DM/noDM-difference
and for novel eGFR-associated loci allowing for DM/noDM-
difference.

We sought replication of identified loci in independent DM-/
noDM-stratified data (stage 2, nDM= 68,698, nnoDM= 225,114;
Million Veterans Program, MVP33, Michigan Genomics Initiative,
MGI34, Trøndelag health study, HUNT35; all European-ancestry;
Supplementary Data 1, Methods). While the discovery+replica-
tion design augments confidence in identified loci, this comes
at the cost of lower power36. We also conducted GWAS searches
in a combined stage design (stage 1+ 2: nDM= 178,691,
nnoDM= 1,296,113), to yield significant loci exploiting the full
sample size, yet without independent replication.

The two stages of data were also used to separate the variant
identification and weight quantification for the GRS (stage 1 data)
from the GRS association analyses (stage 2 data). The analysis
workflow is shown in Fig. 1.

Seven eGFR loci identified with DM-/noDM-differential
effects. To search for eGFR loci with DM/noDM-difference, we
applied two approaches24,37 (Fig. 1b): (i) a genome-wide difference
test (PDiff < 5 × 10−8, difference test approach), and (ii) a search for
genome-wide significant association with overall eGFR followed by
a difference test in the same data (POverall < 5 × 10−8 and PDiff <
0.05/k, k= number of followed SNPs, overall+difference test
approach, Methods).

In the discovery search (stage 1, nDM= 109,993; nnoDM=
1,070,999), we identified four eGFR loci with significant DM/
noDM-difference (Supplementary Fig. 1): (i) two by the
difference test approach (rs77924615 near UMOD-PDILT,
rs12233328 near PDE9A; PDiff < 5 × 10−8, Supplementary Data 2),
and (ii) two further loci by the overall+difference test
approach (near TPPP and MED1-NEUROD2; POverall < 5 × 10−8

and PDiff < 0.05/610= 8.2 × 10−5; corrected for 610 followed
variants16, Supplementary Data 2). Details of the overall
+difference test results are provided in Supplementary Note 1
and Supplementary Data 3, conditional difference analyses on
known POverall < 5 × 10−8 variants in UMOD-PDILT in Supple-
mentary Fig. 2. In stage 2 data (nDM= 68,698, nnoDM= 225,114),
three of the four loci replicated (near UMOD-PDILT, MED1-
NEUROD2, and TPPP; one-sided PDiff < 0.05/4= 0.0125; Table 1,
Supplementary Data 2), while the PDE9A locus variant did not
(PDiff= 0.30).

In the combined stage design (stage 1+ 2: nDM= 178,691;
nnoDM= 1,296,113), we identified seven eGFR loci with signifi-
cant DM/noDM-difference (Table 1, Fig. 2a, Supplementary
Fig. 3): (i) six loci by the difference test approach (PDiff < 5 × 10−8,
Supplementary Data 2) including the three loci already found by
the discovery+replication approach now all with PDiff < 5 × 10−8

(near UMOD-PDILT, TPPP, and MED1-NEUROD2;), and three
additional loci (near CSRNP, DCDC5, and NRIP1), (ii) one locus
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from the overall+difference test approach (near SLC22A2;
POverall < 5 × 10−8 and PDiff < 0.05/610= 8.2 × 10−5; 610 followed
variants as described above, Supplementary Data 2).

Approximate conditional analyses using the difference test
(combined stage 1+ 2, European only, Methods) did not identify
any further independent variants within the 7 identified
difference loci (regional difference plots in Supplementary Fig. 4).
Interestingly, there was also no further independent variant with
DM/noDM-difference in the UMOD-PDILT locus besides
rs77924715, despite the multiple independent variants known
for eGFR association overall16,20 (Supplementary Fig. 4a, b).
Sensitivity analyses confirmed that DM/noDM-difference was
also observed without log-transformation of eGFR and also after
adjusting for interaction with age or other eGFR risk factors
(Supplementary Note 2, Supplementary Data 4, Supplementary
Table 1).

With respect to DM-/noDM specificity and magnitude of
effects, we found the following (Fig. 2b): (i) six of the seven
variants identified with differential eGFR-effects showed more
pronounced effects in DM versus noDM (near UMOD-PDILT,
TPPP, DCDC5, NRIP1, and SLC22A2) or a DM-only effect on
eGFR (near CSRNP1) and (ii) one variant showed a noDM-only
effect (near MED1-NEUROD2). These patterns were consistent in
stage 1 and stage 2 separately (Supplementary Fig. 5). Of note,
with the combined stage 1+ 2 sample size, the difference
detectable for a common variant of 30% minor allele frequency
at 80% power was 0.0050 or 0.0037 log(ml/min/1.73 m²) for a
DM-only or noDM-only effect, respectively (Supplementary
Note 3, Supplementary Fig. 6).

In summary, we established seven eGFR loci with DM/noDM-
difference (near UMOD-PDILT, TPPP, MED1-NEUROD2,
CSRNP1, DCDC5, NRIP1, and SLC22A2) including one with
DM-only (CSRNP1) and one with noDM-only effect (MED1-
NEUROD2). While all seven difference loci were known loci for
eGFR16, these are the first eGFR loci reported with significant
DM/noDM-difference from a genome-wide search for the
difference to the best of our knowledge.

Allowing for difference identifies 32 novel eGFR-associated
loci including CUBN. To search for novel eGFR-associated
loci allowing for the difference between DM and noDM, we
applied two approaches (Fig. 1c, Methods): (i) a genome-wide
joint test38, which considers the main SNP effect on eGFR and
the SNP-by-DM-status interaction effect jointly (joint-test
approach) and (ii) GWAS separately in DM or noDM (stratified
tests approach).

In the discovery (stage 1; nDM= 109,993, nnoDM= 1,070,999),
we identified 25 novel eGFR loci after excluding previously
identified GWAS eGFR loci16,20 (PJoint or PnoDM < 5 × 10−8, none
by PDM < 5 × 10−8, Supplementary Data 5, Supplementary
Fig. 7a). In stage 2 data (nDM= 68,698, nnoDM= 225,114;), three
of the 25 loci replicated (PJoint or PnoDM < 0.05/25; near ATP12A,
SERTAD2, and ABCC2, Table 2).

In the combined stage design (stage 1+ 2: nDM= 178,691,
nnoDM= 1,296,113), we identified 32 novel eGFR loci (PJoint or
PDM or PnoDM < 5 × 10−8, Fig. 3a, Table 2, Supplementary Data 5,
Supplementary Fig. 7b): (i) 30 novel loci by the joint test; (ii) two
additional loci by the noDM-only search (near FAT4, SLC2A4).
While no locus was additionally identified by the DM-only
search, two of the 32 novel loci were genome-wide significant in
DM (PDM < 5 × 10−8; near SH3BP4, LOXL4; also identified by
joint test).

These 32 novel loci included the three replicated novel loci from
the discovery+replication approach (near ATP12A, SERTAD2,
and ABCC2) (Table 2). The 29 additional novel loci included the
CUBN locus, which is well-known for urinary albumin-to-
creatinine ratio (UACR)39 and microalbuminuria40 (Fig. 4). The
identified CUBN locus eGFR lead variant, rs11254238, showed (i)
no correlation with the known signals for UACR (r² < 0.001,
D’ > 0.24 to any of the known independent signal variants for
UACR, rs141493439, rs45551835, rs557338857, rs562661763,
rs74375025), (ii) no effect on UACR41 (P= 0.57, Supplementary
Data 6), and (iii) a twice as large effect on eGFR in DM compared
to noDM, but the difference was not significant (bDM= 0.0048,
bnoDM= 0.0021, PDiff= 0.07).

Fig. 1 Data and analysis workflow. a Overview on datasets and meta-analyses. b Approaches to identify DM/noDM-differences. c Approaches to identify
novel eGFR loci and suggestive DM/noDM-differences. d Genetic risk score (GRS) analyses in HUNT.
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Approximate conditional analyses (combined stage, European
only, Methods) identified two additional variants independently
associated with eGFR at two joint-test loci (near SERTAD2 and
PIK3CG, PJoint_cond < 5 × 10−8, Supplementary Table 2). This
raised the total number of newly identified eGFR-associated
variants to 34.

Among the 34 novel eGFR variants, four showed a suggestive
DM/noDM-difference for eGFR (PDiff < 0.0015= 0.05/34, Table 2,
Fig. 3b): one was a DM-only effect (near SH3BP4) and three
showed more pronounced effects in DM (near LOXL4, ALPL, and
PIK3CG). These patterns were consistent also in stage 1 and stage
2 separately (Supplementary Fig. 5). Of note, the difference test is
mathematically dependent on the joint test and the stratified tests,
but not on the overall test24. Therefore, the observed difference in
the overall+difference test approach applied to the same data is
an established significant difference, while the observed difference
in loci established by the joint or stratified tests is termed here as
suggestive difference.

In summary, the joint test and stratified tests identified 34
genome-wide significant independent eGFR variants across 32
novel eGFR loci. These included four loci with suggestive DM/
noDM-difference, which yielded a total of 11 eGFR loci with
established or suggestive DM/noDM-difference.

Interaction with Hba1C and overlap with associations for DM
risk, glycemic and other traits. We explored the lead variants of
the 11 eGFR loci identified with DM/noDM-difference (i.e.,
established/suggestive SNP-by-DM interaction) for SNP-by-
HbA1c interaction in UK Biobank (n= 368,005), making full
use of the continuous variable HbA1c instead of binary DM
status. For all 11 variants, the SNP main effects and SNP-by-
HbA1c interaction effect sizes were directionally consistent with
main and interaction effects sizes in the SNP-by-DM interaction
analysis (Supplementary Data 7, Methods). This underscored
again the negative interaction effect for the 10 of the 11 variants
with larger effects in DM or DM-only effects, while the one
variant (near MED1/NEUROD2) showed a negative interaction
effect for the SNP-by-DM as well as the SNP-by-HbA1c
interaction.

We were also interested in whether any of the 11 loci with DM/
noDM-difference overlapped with known genome-wide significant
loci for type 1 DM42, type 2 DM19, or glycemic traits43. None of the
11 loci overlapped with type 1 DM, type 2 DM, or glycemic traits
loci (all 11 lead variants P > 5.0 × 10−8 in published GWAS for DM
risk, glucose, or insulin levels, Supplementary Data 8). None of the
11 variants was associated with type 1 DM judged at Bonferroni-
corrected significance (P > 0.05/11= 4.5 × 10−3). Three of the 11
variants were associated with type 2 DM (P < 0.05/11= 4.5 × 10−3,
rs77924615 near UMOD-PDILT, rs55722796 near MED1-NEU-
ROD2) or fasting glucose (rs963837 near DCDC5). For all three
variants, the eGFR-lowering allele was associated with decreased
type 2 DM risk or fasting glucose. Thus, the SNP effect on eGFR
cannot be fully explained by DM status, which would have yielded a
DM risk increasing or glucose-increasing effect by the eGFR-
lowering allele. The observation is in line with a pleiotropic effect on
DM and eGFR, but with adverse effects for one of the two (eGFR or
DM/glucose) and a beneficial effect for the other, which should be
considered in drug design when applicable. When taking-into-
account the DM/noDM-stratum where the eGFR effect was more
pronounced, the three variants consisted of (i) two variants with
stronger eGFR-effects in DM (still significant eGFR effect in noDM,
near UMOD/PDILT and DCDC5) and (ii) one variant with a
noDM-only effect on eGFR (near MED1-NEUROD2).

We also queried the Open Targets Genetics database44 for
associations of the 11 variants with other traits. We found 126T
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genome-wide significant associations (P < 5 × 10−8, Supplemen-
tary Data 9), particularly for hypertension and blood counts: for 3
of the 11 variants, the eGFR-decreasing alleles were associated
with increased risk of hypertension (near UMOD/PDILT,
DCDC5, and PIK3CG). The variant rs55722796 near MED1/
NEUROD2, solely associated with eGFR in noDM individuals,
was not associated with hypertension, but the eGFR-decreasing
allele (in noDM) was associated with decreased blood counts (i.e.,
decreased red blood cells, hemoglobin, and hematocrit).

GWAS for eGFR in individuals with DM identified 29 genome-
wide significant loci. Previous searches for SNP-effects on eGFR-
based kidney function outcome in DM patients had identified
eight genome-wide significant loci (i.e., eGFR-based DKD loci;
four identified in type 1 DM patients23, four other in type 1 or
type 2 DM patients22). We wanted to understand the overlap of
these with the genome-wide significant loci in our DM-only
GWAS on eGFR (nDM= 178,691, combined stage, Methods): we
observed 29 genome-wide significant eGFR loci in DM
(PDM < 5 × 10−8, Fig. 5, Supplementary Data 10). These included:
(i) 27 novel eGFR loci in DM, and (ii) two of the four previously

identified DKD loci among type 1 or type 2 DM patients22 (near
UMOD/PDILT and PRKAG2; r2= 0.60 and 0.94, respectively,
between eGFR and DKD lead variants). None of the previously
identified DKD loci among type 1 DM patients23 were identified.
Two of the 27 novel eGFR loci in DM were detected here as
completely novel eGFR loci (near SH3BP4 and LOXL4; also
detected by the joint test). The 29 identified eGFR loci in DM
included 6 of our 11 difference loci (near UMOD/PDILT, TPPP,
DCDC5, SH3BP4, NRIP1, and LOXL4).

In silico evidence prioritized 18 genes by protein- or
expression-altering variants or as human kidney disease
monogene. Genes at GWAS loci for eGFR might pinpoint rele-
vant drug targets for kidney function18. Dissecting eGFR loci as
DM-only, noDM-only, or shared will help define the target
population for potential therapy. Gene PrioritiSation (GPS) was
conducted previously16 for all genes underneath the 424 eGFR-
associated loci in a meta-analysis of CKDGen and UKB (i.e., our
stage 1 studies) focused on European-ancestry. Since all 7 dif-
ference loci were among these 424 loci, we used this established
GPS tool to extract in-silico functional evidence for the 159 genes

Fig. 2 Seven eGFR loci with differential effects by diabetes status. We searched for DM/noDM-differential genetic associations on eGFR using the
difference test approach and the overall+difference approach in combined stage 1+ 2 (CKDGen, UKB, MVP, MGI, and HUNT; nDM= 178,691; total
nnoDM= 1,296,113). Seven difference loci were identified. a Shown are difference test P-values over chromosomal base position (Manhattan plot)
highlighting the six loci identified by the difference test approach (red, PDiff < 5 × 10−8) and the one locus identified by the overall+difference test approach
(orange, 610 variants16 with stage 1 POverall < 5 × 10−8, PDiff < 0.05/610= 8.2 × 10−5). Loci are annotated by the name(s) of the nearest gene(s); asterix
indicates loci that were also identified by the discovery+replication design (Table 1, Supplementary Fig. 1). b Shown is a comparison of DM-/noDM-specific
eGFR-effect sizes for the seven identified difference lead variants based on combined stage 1+ 2 data. Effect sizes are aligned to the eGFR-decreasing
alleles in noDM except for CSRNP1 (aligned to eGFR-decreasing allele in DM). Error bars reflect 95% confidence intervals of the estimated genetic effect.
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Fig. 3 Accounting for potential DM-/noDM-differences identified 32 novel eGFR loci. We searched for novel loci associated with eGFR allowing for
DM-/noDM-difference using the joint test or DM-/noDM-stratified tests approaches in combined stage 1+ 2 (nDM= 178,691; total nnoDM= 1,296,113).
We found 32 novel genome-wide significant eGFR loci (P < 5 × 10−8, >500 kB distant of known eGFR loci compared to previous work16,20): 30 by joint, 17
by noDM-only and 2 by DM-only test. a Shown are P-values for eGFR based on joint, noDM-only, and DM-only test over chromosomal position.
Highlighted in red are loci with suggestive DM/noDM-difference (PDiff < 0.05/34; corrected for 34 independent variants across 32 loci), blue for loci
identified by joint and noDM-only test (15 loci), and purple for loci that were only identified by joint test (upper panel) or noDM-only test (middle panel).
Loci were annotated by nearest genes if PDiff < 0.10 or if they were also identified by the discovery+replication design (the latter also indicated by asterix,
Table 2). b Shown is a comparison of DM-/noDM-specific eGFR-effect sizes for the 32 novel eGFR locus lead variants. Highlighted in red are the locus
names of loci with suggestive DM/noDM-difference (PDiff < 0.05/34; corrected for 34 independent variants across 32 loci). Effect sizes are aligned to the
eGFR-decreasing alleles in noDM. Error bars reflect 95% confidence intervals of the estimated genetic effect.

Fig. 4 The variants associated with eGFR in the CUBN locus differ from those associated with urinary albumin-to-creatinine ratio. Shown are P-values
for associations at the wider (top) and more narrow (bottom) CUBN locus region for a eGFR (joint test P-values, nDM= 178,691 and nnoDM= 1,296,113) and
b urinary albumin-to-creatinine ratio (UACR; P-values from ref. 39, n= 564,257). Lead variant for eGFR is rs11254238; color codes variants’ correlation r2 to
rs11254238 in all panels.
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at the 7 difference loci: here, we prioritized a gene when it
mapped to an association-driving variant (i.e., 99% credible set
variant with posterior probability of association ≥5%, Methods)
that was relevant (i) for the protein (with high predicted
deleteriousness45, i.e., CADD score ≥15) or (ii) for expression in
kidney tissue (eQTL, false-discovery rate ≥5%)46,47 or (iii) when
the gene was a known kidney disease monogene in human
(Methods). We found 6 prioritized genes (Fig. 6, Supplementary
Fig. 8): (i) PGAP3 mapping to the locus with noDM-only effect
on eGFR (near MED1/NEUROD2) and (ii) five genes in loci with
more pronounced eGFR-effects in DM but direction-consistent
effects in noDM (TPPP, UMOD, SLC6A19, NRIP1, and
SLC22A2).

We also used the same approach as in the previous GPS tool16

to prioritize the genes underneath the 32 novel eGFR loci (34
independent signals, Supplementary Data 11–15, Supplementary

Table 3, Supplementary Fig. 9): (i) among the 40 genes in the four
novel loci with suggestive DM/noDM-difference, 2 genes were
human kidney disease monogenes (HPS1 and HPSE2, Fig. 7a); (ii)
for the 341 genes in the other 28 novel eGFR loci (i.e., noDM/
noDM-difference), 10 genes were prioritized (Fig. 7b): 6 genes
contained an association-driving variant that was protein-
deleterious (AUTS2, CUBN, DVL2, RASSF6, SLC2A4, and
ZFP36L1), one gene mapped to an eQTL in glomerular tissue
(TNIK), and 3 additional genes were human kidney disease
monogenes (SLC2A2, SLC30A9, and SLC7A7). Particularly
interesting was an association-driving variant, rs1801232, in
CUBN that was a missense variant (r²= 0.73 to eGFR lead variant
rs11254238). The missense variant rs17804499 in RASSF6 had a
particularly high probability of being the association-driving
variant (posterior probability of association= 86%), which
rendered this variant and gene a compelling candidate for

Fig. 5 DM-only eGFR GWAS identified 29 loci, including 27 novel for eGFR in DM. Shown are eGFR association P-values in individuals with DM over
chromosomal position in combined stage (nDM= 178,691). This DM-specific analysis identified 29 independent eGFR-associated loci in DM. Compared to
known DKD loci22,23 (i.e., association with eGFR or CKD in type 1 and/or type 2 DM individuals) and known overall eGFR loci16,20, 2 loci are novel for eGFR
overall and novel for DKD (red), 24 are novel for DKD but known for eGFR (orange), and 3 are known DKD and known eGFR loci (purple).

Fig. 6 Gene prioritization highlights six genes at loci with established DM/noDM-difference. Shown are gene prioritization results for the seven loci with
established difference (Table 1, Supplementary Fig. 8). We highlighted six genes based on association-driving variants (PPA > 5%) that were deleteriously
protein-relevant or expression-modulating, genes that were known as human kidney monogenes (OMIM or ref. 78 with subsequent manual curation) and
in addition SLC22A2 due to its known link to metformin response.
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functional follow-up. Two genes, SLC2A2 and SLC2A4, encode
the glucose transporters GLUT2 and GLUT4 and reside in two
novel eGFR loci.

In summary, across the identified seven loci identified with
established or suggestive DM-/noDM-difference in eGFR-effects
and the 32 novel eGFR loci, we prioritized 18 genes with evidence
of protein-deleterious or expression-modulating variants or being
human kidney disease monogenes. These genes are compelling
candidates for functional follow-up and drug development
pipelines.

DM/noDM-stratified weights for GRS show similar explained
variance as overall weights. We assessed whether the GRS for
eGFR, computed as an effect size weighted sum of eGFR-lowering
alleles, could be improved by using DM/noDM-specific eGFR-

effects as weights rather than overall eGFR-effects. We built the
GRS based on the previously identified 634 eGFR variants16 (i.e.,
identified in stage 1 studies) or based on the seven variants with
established DM/noDM-difference using different weighting
schemes (overall effects, DM-/noDM-specific effects, or a com-
bination; all weights from stage 1 data). We computed the GRS
for each individual in the stage 2 study HUNT (unrelated, Eur-
opean-ancestry; nDM= 3023, nnoDM= 25,484, Fig. 1d, Methods).

Across all weighting schemes, we found no significant DM/
noDM-difference in the 634-variant GRS association with eGFR
(PDiff > 0.05, Table 3). The 634-variant GRS explained more of the
eGFR variance in noDM compared to DM (e.g., R2= 6.0% vs.
4.0% using overall-effect weights). Since the absolute 634-variant
GRS effect was similar in DM and noDM (e.g., beta per
sdGRS=−2.54 versus −2.84 ml/min/1.73 m2 using overall-effect
weights), this larger relative GRS effect in noDM can be attributed

Fig. 7 Gene prioritization highlights 12 genes at novel eGFR loci. Shown are gene prioritization results for the 32 novel eGFR loci (Table 2, Supplementary
Fig. 9): a for the four novel eGFR loci with suggestive difference, and b for the 28 other novel eGFR loci. We highlighted 12 genes based on association-
driving variants (PPA > 5%) that were deleteriously protein-relevant or expression-modulating or genes that were known as human kidney monogenes
(OMIM or ref. 78 with subsequent manual curation).
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—at least in part—to the smaller eGFR variance in noDM versus
DM (HUNT standard deviation= 11.8 versus 13.4 ml/min/
1.73 m2, respectively). Yet, the 7-variant GRS explained more of
the eGFR variance in DM compared to noDM (e.g., R2= 0.98%
vs. 0.62% using overall-effect weights). The reason for this is that
six of the seven variants had larger eGFR-effects in DM than in
noDM, which accumulated to a larger absolute GRS effect in DM
(e.g., beta per sdGRS=−1.02 in DM compared to −0.68 in noDM
using overall-effect weights).

When comparing different weighting schemes, we found no
notable improvement in R2 values by using DM-/noDM-specific
weights compared to overall weights (Table 3). In the 634-variant
GRS, using DM-specific weights even reduced R2 in DM
individuals (R²= 3.1% versus 4.0%). This may be attributable to
the larger uncertainty in DM-specific weights estimated from the
meta-analysis restricted to DM individuals. For the 7-variant
GRS, DM-specific weights slightly increased R2 in DM indivi-
duals, but not markedly (R2= 1.0% versus 0.98%). These findings
underscore a similar performance of overall weights and DM-/
noDM-specific weights when building a GRS for eGFR. The
comparison of the 634-variant with the 7-variant GRS suggests
that more differential effect loci and higher precision in DM-
specific weights might substantially improve the genetically
explained variance also in DM individuals.

Discussion
In this GWAS on eGFR in ~180,000 individuals with DM and
~1.3 million individuals without DM, we established seven loci
with significant DM/noDM-differential effects on eGFR near
UMOD/PDILT, TPPP, MED1/NEUROD2, CSRNP1, DCDC5,
NRIP1, and SLC22A2. We also identified 32 novel eGFR-
associated loci when allowing for potential difference, including
four loci with a suggestive difference near SH3BP4, LOXL4, ALPL,
and PIK3CG. The 11 loci with established or suggestive difference
included two loci with DM-only effects on eGFR (near CSRNP1,
SH3BP4), one with noDM-only effect (near MED1/NEUROD2),
and all others showed more pronounced effects in DM compared
to noDM. Our GWAS focused on DM individuals confirmed two
known DKD loci, but also identified 27 novel loci for eGFR in

DM, which make these potential new DKD loci. The DM-/
noDM-stratified GRS analyses showed no improvement in
explained trait variance when using DM-/noDM-stratified
weights, but the seven identified DM/noDM-differential eGFR-
effects explained more of the eGFR variance in DM individuals
than in noDM individuals.

Our gene prioritization at the 11 loci with DM/noDM-dif-
ference and at the 28 other novel eGFR loci highlighted 18
genes: 10 genes mapped to eGFR-association-driving variants
that were deleteriously protein-relevant or eQTLs in kidney
tissue, which suggests them as potential drug targets to alter
eGFR. Further eight genes were prioritized because they were
known as human kidney disease monogenes, which made them
plausible causal genes for these common variant findings.
Particularly interesting was CUBN in a novel eGFR locus. The
CUBN locus is the GWAS locus with the strongest effect on
UACR39 and microalbuminuria40 and identified here for eGFR
at genome-wide significance, but respective lead variants for
eGFR and UACR are uncorrelated. The lead variant for eGFR,
rs11254238, is highly correlated with a variant that alters the
encoded protein, cubilin (rs1801232, r2= 0.91). We observed a
twice as large effect on eGFR in DM compared to noDM in
both discovery and replication data, but not statistically sig-
nificantly different. This is in line with previously observed
larger CUBN variants’ effects on microalbuminuria40 and
UACR41,48 in DM, which provides further evidence for an
interaction of CUBN with DM status on kidney function. In
fact, our previous sequencing of the CUBN gene found rare
variants in CUBN that were associated with higher UACR and
with better eGFR49. Our study now reports such a parallel
association between UACR and eGFR now also for a common
variant at the genome-wide significance levels. Together, our
results provide further support for the importance to assess the
physiological role of CUBN by functional studies not only for
microalbuminuria, but also for finding pathophysiological
explanations related to impaired filtration rate.

The RASSF6 gene has been studied in relation to the kidney as
well: RASSF6 mediates apoptosis in various cells50. It is shown to
be expressed in the slit diaphragm in glomeruli and the apical
membranes in proximal renal tubular epithelial cells of rat

Table 3 Genetic risk score (GRS) association with eGFR and explained variance of eGFR separately for DM and noDM
individuals.

DM sdY= 13.4ml/min per 1.73m2, n= 3023 noDM sdY= 11.8 ml/min per 1.73m2,
n= 25,484

GRS beta per
sdgrs

se per
sdgrs

P R2 beta per
sdgrs

se per
sdgrs

P R2 Pdiff

GRS based on 634 overall eGFR variants
Weighted by overall effects −2.54 0.240 1.1E-25 4.0% −2.84 0.072 7.6E-331 6.0% 0.23
Weighted by DM-specific effects −2.21 0.241 1.2E-19 3.1% −2.38 0.073 1.6E-231 4.4% 0.49
Weighted by noDM-specific effects −2.50 0.240 5.8E-25 3.9% −2.85 0.072 3.5E-355 6.0% 0.16
Weighted by overall or DM/noDM-

specific effectsa
−2.58 0.240 1.6E-26 4.1% −2.84 0.072 7.6E-331 6.0% 0.31

GRS based on 7 difference eGFR variants
Weighted by overall effects −1.02 0.244 2.7E-05 0.98% −0.68 0.074 6.9E-20 0.62% 0.17
Weighted by DM-specific effects −1.04 0.244 2.2E-05 1.00% −0.53 0.074 1.1E-12 0.49% 0.045
Weighted by noDM-specific effects −1.02 0.244 3.2E-05 0.97% −0.68 0.074 4.1E-20 0.62% 0.19

Shown are results from GRS analyses separately for DM and noDM individuals. The GRS’s were based on the previously established 634 independent eGFR index variants16 (stage 1 studies) or on the 7
variants with established difference and computed in unrelated individuals of the HUNT study (nDM= 3023, nnoDM= 25,484, one of the stage 2 studies). Three versions of each GRS were computed for
each individual: GRS’s weighted by overall genetic eGFR-effects, weighted by DM-specific effects or weighted by noDM-specific genetic eGFR-effects. For the GRS based on the 634 variants, a further
GRS was computed that was weighted by overall effects for variants without observed DM/noDM-difference and weighted by DM-/noDM-specific effects for variants with observed difference. The
association of the GRS on eGFR and the variance explained (R²) were derived for DM and noDM separately via linear regression with the respective GRS as covariate and eGFR as outcome (not log-
transformed, adjusted for age, sex, and principal components, Methods). Also shown is a P-value testing the GRS effect on eGFR for difference between DM compared to noDM.
sd standard deviation, se standard error, beta change in eGFR [ml/min/1.73m2] per standard deviation of the GRSFIGURES.
aUsing overall weights for loci without observed difference and DM- or noDM-specific weights for loci with significant difference for DM or noDM individuals, respectively.
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kidney. The same animal study suggests the involvement of the
RASSF6 pathway in contrast-induced nephropathy. Thus, the
novel detection of the RASSF6 locus for eGFR here and the lead
variant, rs17804499, being protein-altering and with 86% prob-
ability causal render RASSF6 a compelling candidate for the
functional follow-up to help understand its role in kidney func-
tion that is elusive so far.

Another interesting gene was PGAP3 in the MED1-NEUROD2
locus, which mapped to an expression-modulating variant that
was associated with eGFR in noDM, but not in DM individuals.
PGAP3 is a known gene for CKD and eGFR: eQTL analyses
showed colocalization of the association signal with PGAP3
expression51. PGAP3 knockout mice developed larger glomeruli
with deposition of immunoglobulins52, although we acknowledge
that this does not provide a mechanistic explanation for its
association with eGFR. Eventually, if causal genes at eGFR loci
with significant differences by DM status will be advanced as drug
targets for reno-protective therapies, the knowledge about DM-
or noDM specificity of the eGFR association can help define the
target group for potential subsequent therapy, as DM-only,
noDM-only, or both.

The difference in SNP effects between DM and noDM can be
interpreted as SNP-by-DM-status interaction effect. To our
knowledge, our study is the first genome-wide search for SNP-by-
DM-status interaction effects for eGFR. Sensitivity analyses
indicated that the observed differences were neither biased from
the stratified modeling, nor from log-transformed eGFR, and the
SNP-by-DM-status interaction was not explained by SNP-
interaction with age, sex, hypertension, or body-mass-index53.
The seven loci with an established difference are known loci for
eGFR16,20. To our knowledge, the significant DM/noDM-differ-
ential effects for eGFR or eGFR-based CKD were identified here
for the first time, except for the UMOD-PDILT locus21. At
UMOD-PDILT, a well-known kidney function locus16,20, the two-
fold higher eGFR effect in DM compared to noDM confirmed
previous observations for eGFR21,54 and CKD55. Very interesting
was the TPPP locus, where the three-fold higher eGFR effect in
DM now draws attention to a locus that was just one of the
hundreds of small effects eGFR loci. The lead variant for the
difference, rs434215, modulates TPPP expression in tubulo-
interstitial tissue46, but the role of TPPP in diabetes and kidney
disease is yet unknown. Previous studies on TPPP focused on the
nervous system: TPPP is highly expressed in the brain and shown
to affect neural microtubules56.

Our GWAS on eGFR in DM provides a link to the genetics of
DKD. Previous GWAS for DKD analyzed eGFR or eGFR-based
CKD in type 1 and/or type 2 DM individuals22,23. Our GWAS in
>178,000 DM individuals was 4- to 7-fold larger. These DM indi-
viduals were mostly from population-based studies of adult indi-
viduals. As such, the proportion of type 1 DM among DM
individuals analyzed here reflects the proportion of type 1 DM of
5–10% among adult DM individuals57. Due to the substantially
larger number of type 2 DM individuals, the identified DM/noDM-
differential effects on eGFR may mostly reflect differences between
type 2 DM versus noDM. A better distinction by type of DM would
require more granular data focusing on the distinction between
these two major diabetes groups and substantially larger data on
type 1 DM. While the use of self-reports or one-time measurements
of glucose or HbA1c to define DM here is typical also for GWAS on
DM19,58, this implies heterogeneity in the DM definition and may
include some individuals without clinically manifest DM.

Yet, our 29 loci with genome-wide significant association with
eGFR in DM confirmed two of eight previously identified DKD
loci22,23 and the 27 other are compelling new candidate loci for
further analyses in studies specialized on DKD patients. A large
sample size eGFR GWAS with a more heterogeneous spectrum of

DM can be a powerful complementary approach to focused
searches in DKD patients22,23. Several prioritized genes mapped
to these novel eGFR loci in DM: TPPP already mentioned above
and SLC6A19, NRIP1, HPS1 as well as HPSE2 with strong
monogenic impact on kidney. All these genes reside in loci with
more pronounced eGFR-effects in DM compared to noDM, but
none of these effects was DM-only.

Our GWAS allowing for DM/noDM-differential effects iden-
tified 32 novel eGFR-associated loci compared to previous
GWAS16,20. Some of our novel loci might be identified due to
increased power by ~20% increased sample size or due to chance
by using alternative statistical tests. However, four of the novel
loci showed suggestive DM/noDM-difference, suggesting that
their identification was facilitated by using tests allowing for
differential effects59. The four suggestive difference loci included
one locus, near SH3BP4, with eGFR effect only in DM.

In contrast to hundreds of loci found in GWAS for eGFR, the
eGFR loci with significant DM/noDM-difference were few. This
suggests a largely shared genetics of kidney function between DM
and noDM individuals, which has an important implication for
drug development: most drug interventions aimed at altering
eGFR should thus be effective among persons with and without
DM. This is mirroring what is observed for SGLT2 inhibitors—a
medication originally developed for individuals with DM that is
now also being tested for reno-protection among individuals
without DM13. While our GWAS here is, to date, the largest for
eGFR in DM individuals, we still might have missed loci with
effects in DM-only. Power for interaction effects is generally
smaller than for overall effects60, and particularly reduced when
one subgroup, like DM, is substantially smaller (~10%) than the
other28. Future work with an increased sample size might detect
more eGFR loci with differences by DM status, especially those
with effects in DM-only. This GWAS included mostly European
individuals and our findings require replication in non-European
ancestries61, particularly because of the large differences in DM
prevalence across ancestries62.

In summary, our results highlight the existence of DM- and
noDM-specific genetic effects on kidney function, but emphasize
that the majority of eGFR locus associations do not differ between
individuals with and without DM. Larger DM-/noDM-stratified
data on eGFR in the future will improve the detectability of dif-
ferential effect loci and the precision of DM-specific weights. This
might also improve DM-/noDM-stratified GRS prediction of
eGFR. The identified eGFR loci with difference between DM- and
noDM individuals include loci with effects only in DM as well as
loci with effects in noDM. This has highly relevant implications, if
the respective genes are advanced as a drug target: the specificity
of the association might help sharpen the target group for such
potentially arising drug therapies.

Methods
Definition of the outcome eGFR and study-specific participant information.
GFR was estimated in all study participants in all studies using serum creatinine
measurements via the Chronic Kidney Disease Epidemiology Collaboration (CKD-
EPI) formula20. Study-specific information on the utilized assay and year of
measurement is given in Supplementary Data 1. We used the R package nephro63,
winsorized at 15 and 200 ml min–1per 1.73 m2, and logarithmized using a natural
logarithm. For a better interpretation of effect size, we there used eGFR on the
original scale in GRS analyses. Study-specific information on study design, sample
size, sex and age, utilized serum creatinine assay, year of measurement, and average
eGFR is given in Supplementary Data 1.

Each study is conducted according to the declaration of Helsinki; local ethics
committees approved research protocols and participants provided written
informed consent.

Definition of DM status. DM of each study participant at the time point of the
serum creatinine measurement was defined either (i) as fasting plasma glucose
≥126 mg/dl (7.0 mmol/L) or diabetes therapy, or (ii) (fasting glucose unavailable)
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as non-fasting plasma glucose ≥200 mg/dl (11.0 mmol/L) or diabetes therapy, or
(iii) (glucose unavailable) as self-reported diabetes. For UKB, DM was defined as
HbA1c≥48 mmol/mol (≥6.5%) or diabetes therapy (i.e., A10 ATC codes obtained
from64).

Study-specific GWAS analyses stratified by DM status. We distributed an
analysis plan to the 72 participating studies of the CKDGen consortium. Each
study conducted analyses separately for individuals with DM and individuals
without DM. All studies imputed genotypes to the Haplotype Reference Con-
sortium v1.1 (HRC) or 1000 Genomes Project phase 3 v5 (1000Gp3v5) ALL or
phase 1 v3 (1000Gp1v3) ALL panel. Each study conducted linear regression GWAS
on log(eGFR) using natural logarithm, an additive genotype model as well as
adjusted for sex, age, and other study-specific covariates. Details on study-specific
genotyping, imputation, and GWAS were described previously for CKDGen20. For
UKB, we utilized the fastGWA tool65 to conduct GWAS for log(eGFR) based on
linear mixed models while accounting for sex, age, age × sex, age2, age2 × sex, and
20 genetic principal components and assuming an additive genetic model, which
allowed to include related individuals in the GWAS65. For stage 2 studies, MVP,
MGI, and HUNT, the same analysis plan was distributed. Details on genotyping,
imputation, and GWAS in UKB as well as for stage 2 studies are shown in Sup-
plementary Data 1. For quality control, we excluded variants with low imputation
quality, Info < 0.6, or rare variants with minor allele frequency, MAF < 0.1%. We
utilized the software packages GWAtoolbox66 and EasyQC67 for the quality control
of study-specific GWAS results. We conducted a correction for genomic control
lambda of the results stratified by diabetes status.

DM/noDM-stratified GWAS meta-analyses. In stage 1 of our analysis, sepa-
rately in DM (nDM= 88,829) and noDM (nnoDM= 620,665) strata, we conducted
fixed-effect inverse-variance weighted meta-analyses of 72 GWAS of log(eGFR)
using metal68, and then meta-analyzed these results with DM/noDM-stratified
GWAS from UKB (nDM= 21,040; nnoDM = 414,628; European only). To adjust for
population stratification within studies, we applied genomic control (GC)
correction69 to each study prior to the meta-analysis. We applied a second GC
correction to the DM- and noDM stage 1 meta-analysis results (GC lambda= 1.02
and 1.20, respectively). We excluded variants that were present only in ≤36 stage
1 studies (≤50%) and variants with a cumulative minor allele count of <400 in the
stage 1 meta-analyses. In summary, 109,869 individuals with DM and 1,035,190
with noDM were included in stage 1. We followed variants identified at stage 1 in
independent stage 2 meta-analyses. For stage 2, we included DM/noDM-stratified
GWAS on log(eGFR) from MVP (nDM= 57,430, nnoDM= 122,966, hospital-
based), MGI (nDM= 7469, nnoDM= 36,558, hospital-based) and HUNT
(nDM= 3799, nnoDM= 65,590, population-based), totalling 68,698 individuals with
DM and 225,114 with noDM, all of European-ancestry. Again, we applied study-
specific GC correction prior to the meta-analysis and a second GC correction69 to
the stage 2 meta-analysis results (GC lambdas= 1.00 and 1.02 for DM- and noDM,
respectively). To maximize power for locus identification, we combined the double
GC-corrected stage 1 and 2 meta-analysis separately by DM status via fixed-effect
inverse-variance weighted meta-analyses of the two sources using metal68. The GC
lambda in this final meta-analysis was comparable to previous GWAS16,70 (GC
lambdas= 1.03 and 1.15, respectively). The DM-/noDM-specific summary statis-
tics (stratified GWAS) for each variant genome-wide served to investigate potential
DM-/noDM-differential genetic effects on log(eGFR) without making any
assumptions on the DM association with any other covariate71. These DM-/noDM-
specific summary statistics on genetic variants associated with log(eGFR) enabled
the implementation of all the following statistical tests to search for DM/noDM-
difference loci or novel loci allowing for difference as described below.

Approaches to search for DM/noDM-difference in genetic effects on eGFR.
We used the meta-analyzed SNP-specific summary statistics, to test for difference
in eGFR-effects between DM and noDM. For this, we applied a difference test for
each variant using

Zdiff ¼
β̂DM � β̂noDM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

se2DM þ se2noDM � 2rdiabseDMsenoDM
p ð1Þ

where β̂DM and β̂noDM are the genetic effect estimates for eGFR in DM or noDM
from the stratified GWAS meta-analysis, respectively, and corresponding standard
errors seDM and senoDM. The term rdiab reflects the correlation between β̂DM and

β̂noDM across all variants (Spearman correlation coefficient, rdiab ¼ 0:14).
To search genome-wide for eGFR loci with DM-/noDM-differential effects, we

applied two approaches24,37: (i) a genome-wide difference test (PDiff < 5 × 10−8,
difference test approach), and (ii) a search for genome-wide significant association
with overall eGFR followed by a difference test in the same data (POverall < 5 × 10−8

and PDiff < 0.05/k, k= number of followed SNPs, overall+difference test approach).
The two approaches complement each other in terms of power to detect difference
loci that depend on the magnitude and DM-/noDM specificity24,37. We
implemented the approaches in two designs: first, we applied a discovery
+replication design, where we searched for significant differences in the stage 1
meta-analysis and moved the selected SNPs to a replication stage using the stage 2

meta-analysis (applying a Bonferroni-corrected alpha-level accounting for the
SNPs tested). Second, to make full use of stage 1 and stage 2 data, we searched for
differences in stage 1+ 2 meta-analysis combined (combined stage design). We
utilized the R package EasyStrata72 to apply the difference test approaches to the
DM/noDM-stratified meta-analysis results.

Approaches to search for eGFR loci allowing for DM/noDM-differences. By
allowing for differences between DM and noDM in SNP-effects on eGFR, one can
possibly detect novel loci that have been masked in analyses on overall eGFR
(without DM-status stratification). Again, we used the meta-analyzed SNP-specific
summary statistics to apply two approaches to search for novel eGFR loci allowing
for difference: (i) a screen using a two degrees of freedom joint test
(Pjoint < 5 × 10−8, joint-test approach)38 derived from a χ2-test using38

Cjoint ¼
β̂DM
seDM

 !2

þ β̂noDM
senoDM

 !2

ð2Þ

where β̂DM and β̂noDM are the genetic effect estimates for eGFR in DM or noDM
from the stratified GWAS meta-analysis, respectively, and corresponding standard
errors seDM and senoDM; and (ii) a on eGFR association in individuals with or
without DM separately (stratified tests approach, PDM < 5 × 10−8 or
PnoDM < 5 × 10−8). Analogously to the search for difference loci, we applied two-
stage designs, the discovery+replication, and the combined stage designs. We
utilized the R package EasyStrata72 to apply the joint and stratified test approaches
to the DM/noDM-stratified meta-analysis results.

Variant selection and region definition. In order to derive non-overlapping locus
regions and locus lead variants, we clumped genome-wide significant variants from
the respective test results (PDiff < 5 × 10−8, PJoint < 5 × 10−8, PDM < 5 × 10−8, or
PnoDM < 5 × 10−8) as done previously16: the most significant variant was selected
genome-wide (first locus lead variant) and the corresponding locus was defined as
the smallest physical interval on the corresponding chromosome containing this
variant such that there were no genome-wide significant variants within 500 kb
outside the two borders. Omitting the identified locus, we repeated the procedure
until no further genome-wide significant variants were detected. By this, a locus
region is defined by adding ±250 kb to the first and last genome-wide significant
variant of an identified locus. This procedure also ensured non-overlapping loci. A
locus was considered to be known for eGFR from previous GWAS, if it overlapped
with one of the 427 known eGFR loci (424 from ref. 16, 3 additional from ref. 20). If
a locus is not known, we call it a novel eGFR locus. For the identified variants, we
assessed between-study heterogeneity based on the CKDGen meta-analysis using a
Chi-Squared test and an I2 statistic73 and verified the association statistics with
regards to abnormal or unusually large effect sizes.

GCTA analyses to identify independent secondary signals within loci. To
evaluate whether there were multiple independent signals within locus, we con-
ducted approximate conditional analyses with GCTA74 for each identified locus.
These analyses were based on European-ancestry individuals, since appropriate
trans-ethnic linkage disequilibrium (LD) reference panels were limited. As LD
reference panel, we used a random subset of 20,000 unrelated individuals of
European-ancestry from UKB, as done previously16. To obtain independent signals
for associations derived by the difference test, the joint test, or DM- or noDM-
specific association tests, we applied a stepwise approach: we conditioned via
GCTA analysis on the, respectively, observed lead variant in DM and noDM
separately and, second, derived DM/noDM-specific conditioned results for the
locus. Separately for DM and noDM, we ensured whether any of the conditioned
DM- or noDM-specific associations in the locus showed genome-wide significant
association at PDM_Cond < 5 × 10−8 or PnoDM_Cond < 5 × 10−8. For loci derived by
the difference test or the joint test, we applied the difference test or joint test,
respectively, to the conditioned DM/noDM estimates to infer whether additional
signals showed significant differences or joint effects (PDiff_Cond < 5 × 10−8 or
PJoint_Cond < 5 × 10−8).

Prioritization of variants and genes. For each variant within each identified
signal, we derived the variants that were the most likely to drive the association. For
this, we calculated approximate Bayes factor and posterior probabilities of asso-
ciation (PPA) based on Z-scores using the Kichaev method75. We calculated PPAs
based on unconditioned or conditioned summary statistics depending on whether
the locus showed only one or multiple independent signals, respectively. Then, we
obtained 99% credible sets of variants by sorting the variants within each signal by
descending PPA and then summing up PPAs until a cumulative PPA of 99% was
reached. To prioritize genes, we used the results from the Gene PrioritiSation
(GPS) published previously16 for known eGFR loci and generated the GPS de novo
for novel eGFR loci accordingly: we queried each gene underneath identified loci
and prioritized the gene when it mapped to a 99% credible set variant that was
protein-relevant with high predicted deleteriousness (CADD45 PHRED-Score ≥ 15)
or expression-relevant in kidney tissue (eQTL, NEPTUNE46, or GTEx v776, false-
discovery rate, FDR < 5% for the eQTL) and for splice quantitative trait loci in
kidney tissue (sQTL)76 (FDR < 5% for the sQTL). We also prioritized genes that
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were known as human kidney disease monogene: for this, we queried each gene at
identified loci for a documented kidney phenotype in human as done previously16

(Online Mendelian Inheritance in Man® database, OMIM77 or Groopman et al.78)
with additional manual curation by expert review to focus on kidney disease
monogenes.

GRS analyses. GRS analyses based on the previously identified 634 eGFR
variants16 and based on the variants identified for DM-/noDM-difference on eGFR
were conducted in unrelated European-ancestry individuals from HUNT
(nDM= 3023, nnoDM= 25,484, stage 2 study). For each individual, the GRS was
computed as the weighted sum of eGFR-lowering alleles across the 634 variants
applying three different weighting schemes: (i) weighted by the respective overall
per-variant effect as derived previously (i.e., estimated in CKDGen and UK Bio-
bank, our stage 1 data16) (ii) weighted by the variant’s DM-/noDM-specific effects
as derived here in stage 1 depending on whether the individual in HUNT had DM
or noDM, respectively (and vice versa), (iii) weighted by the variant’s DM-/noDM-
specific effect from stage 1 for HUNT individuals with DM/noDM, respectively,
when the variant was among the seven with an identified significant difference, and
weighted by the overall-effect size otherwise. By this, the GRS association analyses
conducted in a stage 2 study were independent of the variant identification and
weight estimation, which were based on stage 1 studies. Separately for individuals
with and without DM, we estimated the association of the GRS on eGFR by linear
regression (original scale; adjusted by sex, age, and genetic principal components).
We judged the GRS effect per standard deviation of the GRS and the eGFR var-
iance explained by the GRS separately in DM and noDM separately.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Summary genetic association results for the DM-status-specific meta-analyses for
log(eGFRcrea) can be downloaded from https://ckdgen.imbi.uni-freiburg.de/. All other
data are available from the corresponding author on reasonable request.

Code availability
The analysis plan can be downloaded from https://ckdgen.eurac.edu/mediawiki/index.
php/CKDGen_Round_4_EPACTS_analysis_plan and the phenotype command line
script from https://github.com/genepi-freiburg/ckdgen-pheno. All other code is available
from the corresponding author on reasonable request.
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