
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Economics and Finance Faculty Publications 
and Presentations 

Robert C. Vackar College of Business & 
Entrepreneurship 

6-2021 

Bundling in advance sales: Theory and evidence from round-trip Bundling in advance sales: Theory and evidence from round-trip 

vs two one-way tickets vs two one-way tickets 

Diego Escobari 

Paan Jindapon 

Nicholas G. Rupp 

Follow this and additional works at: https://scholarworks.utrgv.edu/ef_fac 

 Part of the Finance Commons 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/ef_fac
https://scholarworks.utrgv.edu/ef_fac
https://scholarworks.utrgv.edu/rcvcbe
https://scholarworks.utrgv.edu/rcvcbe
https://scholarworks.utrgv.edu/ef_fac?utm_source=scholarworks.utrgv.edu%2Fef_fac%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/345?utm_source=scholarworks.utrgv.edu%2Fef_fac%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
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round-trip vs two one-way tickets∗
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Abstract

We develop a model to derive an optimal price for a bundle of two goods when

buyers are risk averse and uncertain about the valuation of each good. In theory, the

optimal bundle price depends not only on the probability of a positive valuation of each

good, but also on the correlation between the two valuations. We analyze a unique

airlines dataset in which we directly observe the prices of both bundled (round trip

ticket) and unbundled items (two one-way tickets) for identical itineraries. We find that

airlines offer bundle discounts, and that these discounts increase when the correlation

between outbound and inbound demands is higher. Moreover, higher certainty about

demand decreases bundling discounts. We also find that bundling discounts decrease

with competition.
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1 Introduction

The offering of multiple goods in a bundle is common in a variety of industries. Fast food

restaurants routinely offer combo meals (sandwich, fries, and drink), and communications

companies offer discounts for bundling cable television, internet, and home phone services.

In the travel industry, online travel agencies (Expedia, Orbitz, Travelocity) encourage con-

sumers searching for airfares to purchase a travel package of both a flight and hotel room.1

Online travel agencies provide consumers with incentives to purchase travel packages by of-

fering significant monetary savings for consumers who purchase a hotel/airline ticket bundle

with larger savings occurring at higher quality hotels (Kim et al., 2009).

Studying bundles empirically is challenging as researchers need to observe the prices

of bundled and unbundled items simultaneously. Moreover, it is likely that costs to the

seller vary significantly depending on whether the items are offered in a bundle or not.

In this paper we take advantage of an interesting feature of online travel agencies. We

simultaneously record the prices of the unbundled outbound and inbound flights—as if

they were purchased separately—and the price of the round-trip bundle for the identical

itinerary. The empirical strategy allows us to control for unobserved costs so that we can

capture the bundling discount. Our unique dataset was collected using an automated spider

that, in addition, has exogenous variation in variables that are aimed at capturing demand

correlations between unbundled items, certainty about travel plans, and different levels of

market competition.

Our theoretical model is set to explain bundling in advance purchases. We have risk-

averse consumers who buy tickets in advance, and for them buying a round-trip bundle

is riskier than buying the outbound and the inbound tickets separately. Travelers will

be willing to take more risk from buying the round-trip bundle, however, if the bundle

discount is large enough. The theory presents three main empirical implications. First,

bundle discounts exists in advance sales. Second, the bundle discount increases as the

correlation between the demands of the outbound and inbound flights increases. Third,

bundle discounts decrease as travelers become more certain about their travel plans.

We find strong empirical support to these three empirical implications. First, we find
1Such bundles are likely to be more profitable than selling just an airline ticket given the commission

from hotel bookings can be as large as 30% while airline ticket commissions are usually 2% (Salzman, 2013).
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robust evidence that bundling discounts exist when buying a round-trip ticket rather than

two one-way tickets separately. This is at odds with the large literature on airline pricing

that uses data from the Bureau of Transportation and Statistics and simply assumes that

one way prices are always half of round-trip prices (see, e.g., Brander and Zhang, 1990;

Borenstein and Rose, 1994; and Gerardi and Shapiro, 2009). Second, our estimates show

that bundling discounts are higher for tickets that include a Saturday-night stayover restric-

tion, suggesting that bundling discounts increase when the correlation between demands is

higher. Third, we find that bundling discounts decrease as the flight date nears, consistent

with smaller discounts for consumers who have a higher probability of a positive demand.

When considering the role of market structure, the results show that competition decreases

bundling discounts.

In this paper we refer to a bundle as a round-trip ticket purchase in comparison to two

one-way tickets which are considered unbundled. Airlines offer travelers a mixed bundle

(Adams and Yellen, 1976) since consumers can purchase either a round-trip ticket or two

one-way tickets of the same itinerary. However, anecdotal evidence supports the claim that

selling a bundle could be more profitable for airlines since a bundled round-trip airline

ticket is the default option in the largest US airlines websites for consumers searching for

airline tickets. Evans and Salinger (2005) suggest that bundling offers efficiencies for firms

due to marginal cost savings, quality improvements, and customer convenience. Marginal

cost savings have been used to explain bundle discounts in both the production of physical

goods (Hanson and Martin, 1990) and in the service industry (Guiltinan, 1987). Hence

airlines may have lower marginal costs of issuing a round-trip ticket compared to issuing

two separate one-way tickets. Others have also studied bundling in the airline industry

as Gillen and Morrison (2003) examine the interaction between low cost carriers and full

service carriers, where flights are a component of a larger bundle of goods that comprise air

travel demand.

To the best of our knowledge, our analysis is the first to analyze demand uncertainty in

bundling. While Alexandrov and Bedre-Defolie (2014) theoretically show the equivalence

of bundling and advance sales, we model bundling in advance sales and show that mixed

bundling is optimal when the correlation of valuations between the two goods is positive.

Note that we do not contradict the the literature of bundling theory which find that mixed
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bundling is generally supported by a negative correlation between the valuations of the two

goods, for example, Schmalensee (1984), Long (1984), Fang and Norman (2006), Chen and

Riordan (2013), and Chen and Ni (2017). In those models, the correlation is calculated

between buyers and derived from the seller’s beliefs about each buyer’s valuations since

they are not observable by the seller. In contrast, the correlation in our model is calculated

within a buyer and derived from the buyers’ perspective since their valuations are random

at the time of purchase.2

While this paper examines the bundle “discounts” from the purchase of a round-trip

ticket compared to the unbundled price of purchasing two one-way tickets, an alternative

view would label this “discount” as a penalty imposed on buyers who refuse to bundle. For

example, Dillbary (2010) and Elhauge (2009) examine situations where bundle discounts

can produce anticompetitive effects. The legal implications of bundle discounts are beyond

the scope of this paper. The rest of the paper is structured as follows. Section 2 presents

the theoretical model, including the optimal bundle scheme and the empirical implications.

Section 3 presents the empirical analysis by first describing the bundling discounts, then

setting the empirical model, and closing with the results. Section 4 concludes.

2 Theoretical Model

We propose a simple theoretical model that supports mixed bundling in a monopoly market.

We assume that the seller produces and sells two goods, a and b, to three types of buyers,

A, B, and AB. Type-A buyers consider buying only a, type-B buyers consider buying only

b, and type-AB buyers consider buying both a and b. Unlike most bundling models that

were built on Adams and Yellen (1976), we assume that the buyers make their purchase

decisions in advance so they do not know their reservation prices with certainty. Since

each advance-purchase decision involves risk, we use a random variable to represent each

buyer’s valuation of each good and assume that all players are risk averse. Thus, the ex-ante

willingness to pay for both goods for type-AB buyers, depends not only on the distribution

of each random variable, but also the correlation between the two random variables which
2Similar to the case of positive correlation, our claim that a bundle discount is not necessary when the

correlation between the two valuations is zero does not contradict McAfee et al. (1989) who show that
mixed bundling is an optimal strategy for a monopolist under the assumption on the reservation values
being independently distributed.
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is assumed to be nonnegative in our model.

We find that mixed bundling is optimal under the assumptions of positive correlation

and risk-averse buyers. The intuition is as follows. Since a higher correlation implies a

larger degree of combined risk, we find that the seller needs to offer a larger bundle discount

for buyers with a larger correlation between the two valuations. Given an optimal price

of a and b the seller sets for type-A and type-B buyers respectively, type-AB buyers will

not buy both a and b without a large enough bundle discount because they face a larger

risk than each of type-A or type-B buyers. If the bundle discount is not larger than the

reservation price for a single good, the buyers who consider buying only one of the goods

will not switch to buying a bundle and discard the good that they do not want. This is

analogous to price discrimination via quantity discount. Given a zero marginal cost, mixed

bundle pricing in our framework can increase both the firm’s profit and social welfare.

2.1 Ex-ante willingness to pay for a bundle

Suppose that a monopolist sells two goods, a and b, in advance. The valuation of each good

is not known at the time of purchase. We assume that, for k = a, b, the valuation of good k

at the time of purchase is represented by random variable Vk which takes a strictly positive

value of v with probability π ∈ (0, 1) and zero with probability 1−π. Even though Va and Vb

are identically distributed, they are not necessarily independent. The joint probabilities of

the two variables are given in Table 1 where ρ ∈ [0, 1] is Pearson’s correlation coefficient.3

Given the bivariate binomial distribution assumed in this paper, ρ represents how likely

the valuation for a good is positive given the valuation for the other good is positive (or

how likely the valuation for a good is zero given the valuation for the other good is zero).

Specifically, the joint probabilities in Table 1 imply the following conditional probabilities:

Prob(Vk = v|Vl = v) = (1− ρ)π + ρ (1)

and

Prob(Vk = v|Vl = 0) = (1− ρ)π (2)
3See Biswas and Hwang (2002) for a more general class of bivariate binomial distributions where

Prob(Va = v) 6= Prob(Vb = v) and ρ < 0.
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where k, l = a, b and k 6= l. Thus, the probability that Vk = v given Vl = v is a weighted

average between π and 1 while the probability that Vk = v given Vl = 0 is a weighted

average between π and 0. These conditional probabilities are dependent on ρ as illustrated

in Figure 1.

Table 1: Joint probabilities of Va and Vb

Vb = v Vb = 0
Va = v [(1− ρ)π + ρ]π (1− ρ)(1− π)π
Va = 0 (1− ρ)(1− π)π [1− (1− ρ)π](1− π)

Figure 1: Conditional probabilities given π and ρ
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Suppose that the consumer has a utility function u and an initial wealth w0. Given the

joint probabilities in Table 1, we can derive his ex-ante willingness to pay for a bundle of

goods a and b, denoted by x, under expected utility theory from

[(1− ρ)π + ρ]πu(w0 + 2v − x) + 2(1− ρ)(1− π)πu(w0 + v − x)

+ [1− (1− ρ)π](1− π)u(w0 − x) = u(w0). (3)

We derive important properties of x in the following proposition.

Proposition 1. Given an increasing utility function u, x is

(i) increasing in π for any given ρ, and

(ii) decreasing (constant/increasing) in ρ for any given π if u is concave (linear/convex).

6

Electronic copy available at: https://ssrn.com/abstract=3857885



Proof. See Appendix A.1.

2.2 Optimal bundling scheme

Assume that the firm produces and sells goods a and b at zero marginal cost to consumers

who are categorized as one of the three types: A, B, and AB. The consumers who consider

buying both a and b, i.e., both Prob(Va = v) and Prob(Vb = v) are strictly positive as

analyzed above, are called type AB. Type-A consumers are those who consider buying only

good a and type-B consumers are those who consider buying only good b. Specifically, we

assume that Prob(Va = v) for type-A consumers and Prob(Vb = v) for type-B consumers

are equal to π, and Prob(Vb = v) for type-A consumers and Prob(Va = v) for type-B

consumers are zero. See Table 2.

Table 2: Three consumer types

Prob(Va = v) Prob(Vb = v)
Type A π 0
Type B 0 π

Type AB π π

Given a utility function u and the initial wealth w0, a type-A consumer’s willingness

to pay for good a (and a type-B consumer’s willingness to pay for good b) can be derived

under expected utility theory as y such that

πu(w0 + v − y) + (1− π)u(w0 − y) = u(w0). (4)

To obtain closed-form solutions for x in (3) and and y in (4), we assume the following utility

function:

u(w) = 1− e−rw (5)

where r > 0. This utility function is strictly concave and has a constant measure of absolute

risk aversion r. It follows that

x = −1

r
ln{[π(e−rv − 1) + 1][(1− ρ)π(e−rv − 1) + 1] + ρπe−rv(e−rv − 1)}. (6)
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and

y = −1

r
ln[π(e−rv − 1) + 1]. (7)

To maximize profit, the firm chooses one of the three bundling schemes: components, pure

bundling, and mixed bundling. In components sales, the firm sells the two goods separately

at the price of pa for good a and pb for good b. In pure-bundling sales, the firm sells the

two goods in a bundle (one unit of each good in each bundle) at the price of pab. In mixed-

bundling sales, the firm offers the two goods separately, at pa for good a and pb for good b,

and also in bundles, at pab per bundle.

We assume that all consumers will not purchase more than one unit of each good and

that type-AB will either buy a unit of each good or nothing at all. In components selling,

type-A consumers buy good a if and only if pa ≤ y. Type-B consumers buy good b if

and only if pb ≤ y. Type-AB consumers buy both goods if and only if pa + pb ≤ x. In

pure-bundling sales, type-A and type-B consumers buy a bundle (and discard the undesired

good) if and only if pab ≤ y, while Type-AB consumers buy a bundle if and only if pab ≤ x.

In mixed-bundling sales, type-A consumers buy good a if and only if pa ≤ min(y, pab)

and buy a bundle if and only if pab < min(y, pa). Type-B consumers buy good b if and only

if pb ≤ min(y, pab) and buy a bundle if and only if pab < min(y, pb). Type-AB consumers

buy a bundle if and only if pab ≤ min(x, pa + pb) and buy the two goods separately if and

only if pa + pb < min(x, pab).

Proposition 2. Given the utility function in (5),

(i) x < (=) 2y if and only if ρ > (=) 0, and

(ii) mixed bundling with pab = x and pa = pb = y strictly (weakly) dominates components

selling and pure bundling if and only if ρ > (=) 0.

Proof. See Appendix A.2.

If all consumers are risk neutral, (3) and (4) imply that x = 2y and y = πv for all

ρ. Thus, a type-AB consumer is indifferent between buying each good separately at the

unit price of πv and a bundle of the two goods at the bundle price of 2πv, regardless of

the correlation coefficient. The firm will be indifferent between component sales and mixed

bundling for any value of ρ.
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2.3 Optimal bundle discount

We define the discount value as

γ = pa + pb − pab (8)

and the discount rate (in percentage) as

δ =
γ

pa + pb
× 100 =

(
1− pab

pa + pb

)
× 100. (9)

Since mixed bundling is optimal, the firm sets pab = x and pa = pb = y where x and y are

given by (6) and (7) respectively. We obtain the following properties of γ.

Proposition 3. Assume the utility function in (5).

(i) γ is strictly positive for all ρ ∈ (0, 1] and π ∈ (0, 1).

(ii) γ is strictly increasing in ρ for all ρ, π ∈ (0, 1), and γ ↓ 0 as ρ ↓ 0.

(iii) γ is strictly decreasing (increasing) in π for all π > (<) 1
1+e−rv and ρ ∈ (0, 1], and

γ ↓ 0 as π ↑ 1 or π ↓ 0.

Proof. See Appendix A.3.

Figure 2: Bundle discount values given r = 0.01 and v = 100
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For example, given r = 0.01, v = 100, and π ∈ {0.3, 0.6.0.9}, we can plot the value of

bundle discount, γ, as a function of ρ for a given value of π in the left panel of Figure 2.
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It shows that, for any given π, a larger γ is needed for a type-AB consumer to buy a

bundle for a larger ρ as proposed in Proposition 3 (ii). The effect of π on γ, however, is

non-monotonic as illustrated in in the right panel of Figure 2. According to Proposition

3 (iii), γ decreases (increases) in π whenever π is larger (smaller) than 1
1+e−rv = 0.7311.

Moreover, the magnitude of the effect from a change in π on γ is larger as ρ increases. This

is consistent with the result in Proposition 3 (iv); ∂γ
∂π increases (decreases) as ρ increases

when ∂γ
∂π is positive (negative), i.e., when π is smaller (larger) than 0.7311. This results

is also illustrated in the right panel of Figure 2; ∂γ
∂ρ increases (decreases) as π increases

whenever π is smaller (larger) than 0.7311.

Now we analyze the corresponding bundle discount rate (δ). Given δ = γ
Σ × 100 where

Σ = pa + pb. It follows immediately that δ > 0 for all π ∈ (0, 1). Since Σ does not depend

on ρ, then ∂δ
∂ρ = ∂γ

∂π ×
100
Σ > 0 for all π ∈ (0, 1). Given ∂δ

∂π =
(

Σ ∂γ
∂π − γ

∂Σ
∂π

)
× 100

Σ2 , where
∂γ
∂π S 0 if π T 1

1+e−rv and ∂Σ
∂π > 0 for all π ∈ (0, 1), then we know that there exists a

threshold value π̄ < 1
1+e−rv such that ∂δ

∂π < 0 for all π ∈ (π̄, 1). Thus, as π increases from

zero to one, δ begins to fall and converge to zero before γ does. We summarize these results

in the following Corollary.

Corollary 1. Assume the utility function in (5).

(i) δ is strictly positive for all ρ ∈ (0, 1] and π ∈ (0, 1).

(ii) δ is strictly increasing in ρ for all ρ, π ∈ (0, 1), and δ ↓ 0 as ρ ↓ 0.

(iii) There exists π̂ ∈
[
0, 1

1+e−rv

)
such that δ is strictly decreasing in π for all π ≥ π̂ and

ρ ∈ (0, 1], and δ ↓ 0 as π ↑ 1 .

Consider the same numerical example above. Given r = 0.01 and v = 100, we plot the

corresponding bundle discount rate, δ, as a function of ρ for a given value of π and as a

function of π for a given value of ρ in Figure 3. Note that for this set of parameters, π̂ = 0

so that δ is strictly decreasing in π for all π ∈ (0, 1).

2.4 Empirical implications

In this section we discuss the empirical implications of our theoretical model on airline ticket

prices. Following our theoretical model, airline sellers provide outbound and inbound flights
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Figure 3: Bundle discount rates given r = 0.01 and v = 100
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between airport pairs and offer three different tickets: outbound (good a), inbound (good

b), and round-trip (bundle ab) to three types of buyers: A, B, and AB. Since the correlation

between the outbound and inbound flights is positive for type-AB buyers, Proposition 3

predicts that the seller should offer mixed bundling tickets. That is consistent with what we

observe in airline markets as buyers can either buy the outbound and inbound separately

or in a bundle.

Buyers arrive at the market before their departure date and purchase a ticket in advance

if the fare is not greater than their ex-ante willingness to pay. Otherwise, they leave the

market without buying. Our model can explain third-degree price discrimination by airlines.

Airlines sell tickets in advance and the length of time between buyers arriving at the market

and their departure date is negatively related to the probability that their valuation is

positive. That is, as the departure date approaches, the probability of having a positive

demand π increases as in Escobari and Jindapon (2014). Thus, (6) and (7) predict that

outbound, inbound, and round-trip bundle prices will all increase as the departure date

approaches, a feature that has been widely documented for airline prices (see, e.g., Escobari

(2012) and Alderighi et al. (2015)). Proposition 2 part 3 predicts that the round-trip

discount increases and then decreases as the departure date approaches.

A widely known screening device that airlines employ to separate between consumer

types and second-degree price discrimination is the Saturday-night stayover restriction

(Stavins, 2001). In this paper we also aim to assess the effect of the Saturday night-stay on
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the bundling discount. Business travelers are less likely to stay for the Saturday-night have

a lower ρ (the demand correlation between a and b) as they are less likely to have definite

plans. ρ is higher for tourists because once they already decided the date of the outbound,

the date of the return is more certain. This suggests that the joint probability that both

demands are positive is higher for tourists.

After understanding what π and ρ capture in airline markets, we obtain the following

hypotheses from the theoretical predictions in Corollary 1.

Hypothesis 1. Bundle discount values and bundle discount rates are positive.

Hypothesis 2. Bundle discount values and bundle discount rates are larger for tickets

with Saturday-night stay.

Hypothesis 3. Bundle discount values and bundle discount rates are smaller closer to

departure.

3 Empirical analysis

3.1 Data and discounts

We used a spider to collect a unique panel dataset of posted fares from a U.S. online travel

agency during the third quarter of 2017. The key advantage of our data construction is that

we collected fare quotes simultaneously for the same seats for both roundtrip itineraries for

the bundle ab and corresponding one-way fares for identical itineraries that capture the

prices for the outbound a and the inbound b. Hence, we can use (8) to calculate the bundle

discount value γijt for flights i on route j at time t as:

γijt = paijt + pbijt − pabijt, (10)

where paijt is the one-way outbound price, pbijt is the one-way inbound price, and pabijt is

the round-trip bundle from buying outbound and inbound together. By looking at the

difference between paijt + pbijt and p
ab
ijt we are able to difference out any costs that change at

the seat level, including capacity costs that arise due to aggregate demand uncertainty (see,

e.g., Dana, 1999). Following (9), we are also interested in the discount rate δijt, calculated

12
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as

δijt =
γijt

paijt + pbijt
× 100 =

(
1−

pabijt

paijt + pbijt

)
× 100. (11)

Our dataset incorporates three important features. First, we collected quotes at multiple

times t prior to departure to be able to assess the role of the probability of having a positive

demand π on discounts. Second, the sample contains two sets of roundtrip tickets, one

that includes a Saturday-night stayover (outbound is Tuesday, October 3, and inbound is

Tuesday, October 10) and one that does not (outbound is Tuesday, October 3 and inbound

is Thursday October 5). This will allow us to assess the role of demand correlation ρ on the

discount. Third, we examine the role of competition on bundle discounts since our sample

includes a variety of market structures: 60 monopoly routes, 54 duopoly routes, 31 routes

with three carriers, and 21 routes with four or more carriers.

Overall, the panel data includes 602,088 prices on 332 directional airport-pair routes

(166 round-trip routes). Following Escobari and Jindapon (2014), we focus on single depar-

ture dates to help control for likely differences in prices and consumer heterogeneity across

different day-of-the-week departures. The panel structure of our data is an improvement

over Stavins (2001) as we can control for unobserved flight and route specific characteristics.

As in Escobari (2012), all fares are non-refundable economy class to account for potential

price differences associated with more complex itineraries and potential consumer hetero-

geneities (e.g., refundable tickets have a refundability premium). Each cross-sectional unit

is a flight and we recorded prices every day for 51 days as the departure date approached.

The carriers in the sample are Alaska, American, Delta, Frontier, Jet Blue, Southwest,

Spirit, United, and Virgin, where the proportion of flights by carrier was selected to be

close to the share of the carrier in the U.S. market.

Table 3 presents the summary statistics. Consistent with the existence of a bundle

discount, the average of roundtrip fares pabijt ($306.70) is less expensive than the sum of

the average outbound paijt and inbound pbijt prices ($179.9+$191.5=$371.4). Moreover, the

average inbound price is above the average of the outbound price. This can be explained

by the fact that fares were recorded longer in advance for the inbound portion, and that

fares typically increase as the departure date nears (see, e.g., Alderighi et al., 2015).

Table 3 shows that the average discount value is $42.9 while the average discount rate
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Table 3: Summary Statistics

(1) (2) (3) (4) (5)
VARIABLES N mean sd min max

pabijt (Round-trip bundle price) 283,175 306.7 114.1 69.37 998.4
paijt (Outbound price) 319,224 179.9 112.4 45.20 915.2
pbijt (Inbound price) 319,319 191.5 105.9 45.20 915.2
γijt (Discount value) 283,175 42.90† 124.8 -363.0 1,467
δijt (Discount rate) 283,175 8.674† 17.60 -147.8 85.47
ρ̃ijt (Saturday-night) 321,346 0.500 0.500 0 1
π̃ijt (Days) 321,346 25.52 14.86 1 52
HHIij (Concentration) 321,346 0.553 0.207 0.176 1
Alaska 321,346 0.0575 0.233 0 1
American 321,346 0.334 0.472 0 1
Delta 321,346 0.279 0.448 0 1
Frontier 321,346 0.00227 0.0476 0 1
Jet Blue 321,346 0.0138 0.117 0 1
Southwest 321,346 0.0227 0.149 0 1
Spirit 321,346 0.00741 0.0857 0 1
United 321,346 0.281 0.450 0 1
Virgin 321,346 0.00225 0.0474 0 1

Notes: † The null hypothesis that the mean is zero against the alternative that
is positive has a p-value of 0.000.

is 8.67%. When testing the null hypothesis that the mean discount value and discount

rate are equal to zero, we reject the null at the usual significance levels in both cases.

We interpret this as strong empirical evidence supporting the first hypothesis from our

theoretical model that the discount rate and discount value are positive. This result is

important for the literature that uses airline prices from the popular DB1B data from the

Bureau of Transportation Statistics as the standard assumption in this literature is that

bundling discounts do not exist (i.e., γ = δ = 0). For example, Borenstein and Rose (1994,

pp. 677) explain that one-way fares are simply computed as one-half of the round-trip fare.4

See also Borenstein (1989, pp. 349) and Gerardi and Shapiro (2009, pp. 5) for the same

assumption.

3.2 Explaining the bundle discounts

Following hypotheses two and three, we are interested on how the discount value γ and the

discount rate δ are affected by the demand correlation ρ and the probability of having a
4Earlier versions of these data are referred to as U.S. Department of Transportation’s DB1A.
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positive demand π. Hence, we estimate the following empirical specification:

γijt = βρ · ρ̃ij + βπ · π̃ijt + µij + εijt, (12)

where the dependent variable is the discount value γijt (or the discount rate δijt) on flights

i, route j, and at time t.5 ρ̃ijt is our empirical measure of ρ, and it is is an indicator variable

equal to one if the itinerary includes a Saturday-night stay, zero otherwise. Moreover, π̃ij

captures π and it is measured in number of days as the departure date nears. µij + εijt is

the two-way error term.

Table 4: Monopoly estimates

VARIABLES (1) (2) (3) (4)

Panel A. Dependent Variable is the Discount Value γ
ρ̃ 127.0*** 126.9*** 149.3***

(11.94) (11.93) (13.47)
π̃ -0.731*** -0.732*** -0.239***

(0.0588) (0.0587) (0.0407)
ρ̃× π̃ -0.904***

(0.106)
Constant 75.94*** 146.8*** -21.31 78.84***

(22.40) (1.481) (23.29) (22.11)

Observations 38,369 38,369 38,369 38,369
R-squared 0.072

Panel B. Dependent Variable is the Discount Rate δ
ρ̃ 12.37*** 12.36*** 14.81***

(1.036) (1.035) (1.210)
π̃ -0.106*** -0.106*** -0.0521***

(0.00714) (0.00714) (0.00562)
ρ̃× π̃ -0.0990***

(0.0131)
Constant 9.664*** 18.55*** 12.50*** 14.31***

(2.497) (0.180) (2.491) (2.996)

Observations 38,369 38,369 38,369 38,369
R-squared 0.094

Notes: The dependent variable in Panel A is the discount value γijt as
defined in Equation (10), while in Panel B is the discount rate δijt as
defined in Equation (11). We omit the Virgin America dummy. ***
significant at 1%, ** significant at 5%, and * significant at 10%. The
figures in parentheses are robust standard errors, clustered by flights.

Table 4 presents the carrier fixed effects regression estimates of Equation (12), where

the dependent variable is either the discount value (panel A) or the discount rate (panel B).

The specifications in column 2 additionally include flights i fixed effects. We treat µij as
5Note that the results would be equivalent if we define a premium for one-way tickets instead of a

roundtrip discount.
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random in the specifications that include ρ̃ij to be able to identify βρ as ρ̃ij does not change

over time. The numbers in parentheses are robust standard errors, clustered by flights. All

the specifications in this table focus on monopoly routes to better match our theoretical

model.

The first column (panels A and B) presents strong empirical support that higher corre-

lation between demands for goods a and b increases the discount when purchased together

as a bundle ab. Consistent with the left panel of Figure 2, the highly statistically significant

point estimate in panel A shows that the discount value γ is $127 higher when the bundle

ab includes a Saturday-night stay. In terms of the discount rate, consistent with the left

panel of Figure 3, panel B in Table 4 indicates that a when the Saturday-night stayover is

met, the discount rate for purchasing the bundle increases by 12.4 percentage points. Our

theoretical model suggests a possible explanation for this result. The discount exists since

risk averse travelers do not like combining two positively correlated risks of the outbound

a and the inbound b portions of the trip. Hence, business travelers are willing to pay less

for the round-trip bundle ab (they face a larger discount value and discount rate) as their

correlation between a and b is lower.

The point estimates on the second column (panels A and B) provide strong empirical

support to our third hypothesis. Increasing the probability of positive demand π lowers the

discount value (panel A) and the discount rate (panel B), with both marginal effects being

highly statistically significant. As π̃ is measured in days, the reported point estimates

show that travelers who buy ten days closer to departure face a discount value that is

$7.31 (panel A) or 1.06 percentage points (panel B) lower. Our theoretical setup helps us

understand this negative coefficient, as illustrated in the right panel of Figure 2, for relatively

large values of π, and in the right panel of Figure 3. When π is large enough, getting closer

to the departure date moves π towards certainty of flying. This means that there is less

risk associated with buying tickets in advance and the bundle becomes more attractive.

Consequently, airlines reduce the magnitude of the bundle discount as the departure date

nears. The third column provides both sets of results, for ρ̃ and π̃, with the magnitudes of

the point estimates being nearly the same as in the previous columns.

The last column on Table 4 additionally reports the coefficient on the interaction ρ̃ ×

π̃. Along with the point estimates on ρ̃ and π̃, the negative and statistically significant
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coefficient on the interaction term indicates that a larger demand correlation increases

discounts and this effect is larger when the probability of positive demand is lower. This

is illustrated in the left panel of Figure 3, where the marginal effect of ρ on δ is positive

but decreasing for higher values of π. Likewise, a higher probability of positive demand

decreases discounts, with the marginal effect being larger for a higher demand correlation

as illustrated in the right panel of Figure 3 by steeper curves at high values of ρ.

Note that airlines use these same Saturday-night restriction and advance purchase re-

quirements as screening devices to second-degree price discriminate. That is, these restric-

tions serve to separate consumers who have different valuations for a ticket so that airlines

can charge higher prices to the group of consumers who have higher valuations. Our empir-

ical specifications control for differences in valuations as the left-hand side variable in the

regression is not the price, but the differences in prices as defined in (10). The structure is

analogous to the first difference in a difference-in-differences specification.

Table 5: All markets estimates

VARIABLES (1) (2) (3) (4)

Panel A. Dependent Variable is the Discount Value γ
ρ̃ 47.33*** 47.33*** 50.30***

(2.219) (2.218) (2.595)
π̃ -0.112*** -0.113*** -0.0541***

(0.0152) (0.0152) (0.00877)
ρ̃× π̃ -0.115***

(0.0298)
Constant -3.714 45.75*** -0.755 -2.275

(6.210) (0.387) (6.201) (6.211)

Observations 283,175 283,175 283,175 283,175
R-squared 0.002

Panel B. Dependent Variable is the Discount Rate δ
ρ̃ 7.394*** 7.395*** 8.076***

(0.343) (0.342) (0.375)
π̃ -0.0518*** -0.0520*** -0.0385***

(0.00233) (0.00232) (0.00222)
ρ̃× π̃ -0.0264***

(0.00458)
Constant 1.073 9.993*** 2.439*** 2.090**

(0.891) (0.0593) (0.891) (0.891)

Observations 283,175 283,175 283,175 283,175
R-squared 0.010

Notes: The dependent variable in Panel A is the discount value γijt as
defined in Equation (10), while in Panel B is the discount rate δijt as
defined in Equation (11). We omit the Virgin America dummy. ***
significant at 1%, ** significant at 5%, and * significant at 10%. The
figures in parentheses are robust standard errors, clustered by flights.
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Table 5 reports the results for all the 166 round-trip routes in the sample, including

non-monopoly routes. Both panels show that across all specifications the coefficient on

ρ̃ is positive and statistically significant, and the coefficient on π̃ is negative and statis-

tically significant. All signs are consistent with the ones reported for monopoly markets.

Greater correlation across demands and lower probabilities of positive demand, both increase

the bundle discounts. We interpret this as strong evidence that our results hold beyond

monopoly markets. Appendix B presents an analysis on the role of market structure.

4 Conclusion

Studying bundling empirically has been challenging due to lack of data. This paper takes

advantage of a unique dataset where we simultaneously observe the prices of goods offered

separately and as bundles. This allows us to test if bundling discounts exist. Moreover, we

are able to capture exogenous variation in two key characteristics, the correlation between

demands and the probability of having a positive demand. Our theoretical model, set to

understand bundling during advance sales, offers three main empirical predictions. First,

that bundling discounts exists. Second, that discounts increase with higher correlation

between demands, and third that discounts decrease with the probability of having positive

demands. Our theory is also consistent with increasing prices as departure date nears, a

feature widely observed in the industry.

The empirical results show strong support to our theory. Using data from airlines where

tickets can be bought as round-trip bundle or two separate one way tickets, we find that the

discount from buying the round-trip bundle rather than two separate one-way tickets is on

average $42.9. Measured as a rate, the discount is 8.67% of the sum of unbundled prices.

Greater correlation across demands increases the discounts because risk averse travelers do

not like two positively correlated risks. Moreover, as the probability of having a positive

demand increases closer to the departure date, bundling discounts are lower. We argue that

this is because the risk of buying tickets in advance decreases.

In addition to the contribution for bundling theory and empirics, the results are impor-

tant for airlines as the previous empirical work assumed that round-trip prices are simply

the sum of one-way fares. When assessing the role of market structure we found that
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concentration increases discounts and also increases the effects of demand correlation and

positive demand on bundling discounts. We interpret this as evidence that previous work

that aimed at obtained the role of concentration on price dispersion is biased.

A Proofs

A.1 Proof of Proposition 1

Denote the left-hand side of (3) by U(x;π, ρ). Define ∆1 = u(w + v − x) − u(w − x) and

∆2 = u(w + 2v − x)− u(w + v − x). Given u′ > 0, then ∂U
∂x < 0, ∆1 > 0 and ∆2 > 0.

(i) We find ∂U
∂π = [2(1 − ρ)π + ρ]∆2 + [2(1 − ρ)(1 − π) + ρ]∆1 > 0. Therefore, dx

dπ =

−∂U/∂π
∂U/∂x > 0.

(ii) We find ∂U
∂ρ = (1 − π)π(∆2 − ∆1). Since ∆2 S ∆1 whenever u′′ S 0, then dx

dρ =

− ∂U/∂ρ
∂U/∂x S 0 whenever u′′ S 0.

A.2 Proof of Proposition 2

(i) Given ρ = 0, then (6) can be written as

x = −1

r
ln
{

[π(e−rv − 1) + 1]2
}

(13)

which is equal to 2y where y is derived in (7). Proposition 1 suggests that, given a

concave u, x is decreasing in ρ. Since y does not depend on ρ, it follows immediately

that x < 2y if and only of ρ > 0.

(ii) Let nτ be the number of type-τ buyers where τ = A,B,AB. Let RC , RP , and

RM be the firm’s revenue from components, pure-bundling, and mixed-bundling sales,

respectively. Consider two possible cases.

Case 1: ρ = 0 (i.e. x = 2y). Under components selling, the firm sets pa = pb = y so

RC = (nA+nB + 2nAB)y. Under pure bundling, the firm sets pab = x so RP = nABx,

or pab = y so RP = (nA+nB+nAB)y. Under mixed bundling, the firm sets pab = x and

pa = pb = y. Thus, RM = nABx+ (nA + nB)y. Since x = 2y, then RM = RC > RP .
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Case 2: ρ > 0 (i.e., y < x < 2y). Under components selling, the firm’s optimal price

menu is one of the following: (1) pa = pb = y so RC = (nA + nB)y, (2) pa = y

and pb = x − y so RC = nAy + nB(x − y) + nABx, or (3) pa = x − y and pb = y

so RC = nA(x − y) + nBy + nABx. Under pure bundling, the firm sets pab = x so

RP = nABx, or pab = y so RP = (nA + nB + nAB)y. Under mixed bundling, the firm

sets pab = x and pa = pb = y so that RM = nABx + (nA + nB)y. Since x < 2y, then

RM > max(RC , RP ).

A.3 Proof of Proposition 3

The firm sets pab = x and pa = pb = y where x and y are given by (6) and (7), respectively.

(i) Given the utility function in (5), Proposition 2 (i) implies γ > 0 for all π ∈ (0, 1).

(ii) Given the utility function in (5), Proposition 1 (ii) implies γ is strictly increasing in

ρ. Thus, Proposition 1 (ii) and Proposition 2 (i) together imply γ ↓ 0 as ρ ↓ 0.

(iii) Given x in (6) and y in (7), we can write

γ =
1

r
ln

{
φ

[π(e−rv − 1) + 1]2

}
. (14)

where

φ = [π(e−rv − 1) + 1][(1− ρ)π(e−rv − 1) + 1] + ρπe−rv(e−rv − 1) > 0. (15)

We find that
∂∆

∂π
=

ρ(e−rv − 1)2ψ

r[π(e−rv − 1) + 1]2φ
(16)

where

ψ = (1− e−2rv)π2 − 2π + 1. (17)

Thus, the sign of ∂∆
∂π is the same as the sign of ψ which is a quadratic function of π. It

follows that ψ < 0 if and only if 1
1+e−rv < π < 1

1−e−rv . Given 0 < 1
1+e−rv < 1 < 1

1−e−rv

for all r and v, we find that ∂∆
∂π < (>) 0 if π > (<) 1

1+e−rv for all π ∈ (0, 1). Given

π = 1, (3) and (4) imply x = 2v = 2y and, as a result, ∆ = 0. Therefore, ∆ ↓ 0 as
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π ↑ 1. Given π = 0, (3) and (4) imply x = y = 0 and, as a result, ∆ = 0. Therefore,

∆ ↓ 0 as π ↓ 0.

B The role of market structure

Formally extending our theoretical model to include competition is challenging because

we would need to have an equilibrium concept, in addition to showing its existence and

uniqueness. Moreover, a model that includes competition would probably need assumptions

on the structure of competition, e.g., to model if competition is on prices or on quantities.

It is possibly that because of these complications, most papers on optimal bundling focus on

monopoly markets (see, e.g., Adams and Yellen, 1976; Guiltinan, 1987; Hanson and Martin,

1990).6 With our theoretical model as the starting point, it is reasonable to argue that

competition is likely to decrease bundling discounts. In a perfectly competitive market,

prices are set to be equal to the marginal cost. Then, because marginal costs of providing

a and b is the same as marginal costs of ab, there should be no price markup over marginal

costs; hence, no bundling discounts.

Table B1 presents the regression results where we interact ρ̃ and π̃ with the Herfindahl-

Hirschman Index (HHI) on each route. We use the number of direct flights on each route

to capture each of the carriers’ shares, and then use these shares to obtain the HHI. HHI

captures the level of competition in a route, where higher values indicate more concentrated

markets. We assume that HHI is exogenous in our bundling discount equation. This

is consistent with Stavins (2001), who assumes that the HHI is exogenous in her pricing

equation. We believe our assumption is milder as bundling discounts are less likely to trigger

changes in scheduled flights. Moreover, we note the sequential nature of airline operational

decisions—they schedule flights and assign aircraft capacity many months in advance of

departure and then they sell tickets. This sequence of decisions is consistent with HHI not

responding to prices. We are aware that some airline pricing papers instrument for HHI

(e.g., Borenstein and Rose, 1994), but in these papers the data spans over various months

or years, giving airlines sufficient time to adjust their scheduled flights in response to prices

from previous flights. In our two-month sample period HHI is constant as we did not observe
6One exception is Zhou (2021) who examines mixed bundling in oligopoly markets.
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any changes in the number of flights for any of our routes.

Table B1: Role of market structure on bundling discounts

Dependent Variable: Discount value γ Discount rate δ

VARIABLES (1) (2) (3) (4) (5) (6)

ρ̃×HHI 172.0*** 172.0*** 12.18*** 12.18***
(18.95) (18.96) (1.869) (1.871)

π̃ ×HHI -1.276*** -1.276*** -0.138*** -0.138***
(0.0980) (0.0980) (0.0123) (0.0123)

HHI 67.45*** 193.9*** 100.6*** 9.079*** 19.27*** 12.67***
(5.632) (14.61) (7.018) (0.730) (1.319) (0.850)

ρ̃ -46.27*** 45.84*** -46.29*** 0.718 7.246*** 0.715
(9.117) (2.083) (9.125) (1.069) (0.336) (1.070)

π̃ -0.112*** 0.611*** 0.611*** -0.0519*** 0.0265*** 0.0265***
(0.0152) (0.0553) (0.0553) (0.00232) (0.00708) (0.00708)

Constant 13.21*** -54.64*** -5.811 2.499*** -3.023*** 0.438
(4.895) (8.346) (4.890) (0.636) (0.990) (0.651)

Observations 283,175 283,175 283,175 283,175 283,175 283,175

Notes: The dependent variable in columns 1 through 3 is the discount value γijt as defined in
Equation (10), while in columns 4 through 6 is the discount rate δijt as defined in Equation (11).
We omit the Virgin America dummy. We omit the American Airlines dummy. *** significant at
1%, ** significant at 5%, and * significant at 10%. The figures in parentheses are robust standard
errors, clustered by flights.

Across all columns of Table B1, HHI has a positive and statistically significant effect

on the discount value and the discount rate. For example, column 1 shows that for the

average ρ̃, the marginal effect of a one-point increase in HHI on the discount value is about

$153.45 ($67.45+0.5×$172.0). Consider the most extreme cases in our sample where HHI

goes from a minimum of 0.176 to a maximum of 1. We estimate that the most concentrated

routes, based on the HHI, have discount values approximately $126.44 ($153.45×(1-0.176))

higher than in the most competitive routes. Calculating the impact of the same extreme

change in HHI on discount rates using column 4 estimates reveals that the most competitive

routes in our sample have discount values that are about 13.78 percentage points lower than

monopoly routes. The marginal effects are consistent across all columns, showing robust

evidence that market concentration increases bundle discounts.

When assessing how demand correlation between the inbound and the outbound, and

the probability of having a positive demand change with market structure, both marginal

effects show intuitive results. We previously found that higher correlated risks associated

with the consumption of two positively correlated goods will increase the discount. The

point estimate of 172 on the interaction ρ̃×HHI reported in column 1 suggests that this effect

is greater in more concentrated markets. Moreover, columns 2 and 5 support the theoretical
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prediction that as uncertainty about consuming the bundle disappears the bundle discount

decreases. This effect is larger in more concentrated markets.

Our results that bundling discounts decrease with competition is in line with Gerardi

and Shapiro (2009), who find that competition has a negative effect on price dispersion.

However, because their data does not allow to measure bundling discounts, they are likely

to be underestimating the effect of competition on price dispersion. Moreover, our results

additionally suggest that the estimates on the role of competition on price dispersion in

Borenstein and Rose (1994), who also assume bundling discounts are zero, are likely to be

biased.
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