University of Texas Rio Grande Valley
ScholarWorks @ UTRGV

Local well-posedness of the Cauchy problem for a p-adic Nagumo-type equation

L. F. Chacón-Cortés
C. A. Garcia-Bibiano

Wilson A. Zuniga-Galindo

Follow this and additional works at: https://scholarworks.utrgv.edu/mss_fac
Part of the Mathematics Commons

LOCAL WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR A p-ADIC NAGUMO-TYPE EQUATION

L. F. CHACÓN-CORTÉS, C. A. GARCIA-BIBIANO, AND W. A. ZÚÑIGA-GALINDO ${ }^{1}$

Abstract

We introduce a new family of p-adic non-linear evolution equations. We establish the local well-posedness of the Cauchy problem for these equations in Sobolev-type spaces. For a certain subfamily, we show that the blow-up phenomenon occurs and provide numerical simulations showing this phenomenon.

1. Introduction

Nowadays, the theory of linear partial pseudo-differential equations for complexvalued functions over p-adic fields is a well-established branch of mathematical analysis, see e.g. [1]-[6], [12]-[16], [22]-[25], [27]-[33], and references therein. Meanwhile very little is known about nonlinear p-adic equations. We can mention some semilinear evolution equations solved using p-adic wavelets [1], 24, a kind of equations of reaction-diffusion type and Turing patterns studied in 31, 33, a p-adic analog of one of the porous medium equation [17], [22, the blow-up phenomenon studied in [4, and non-linear integro-differential equations connected with p-adic cellular networks 30].

In this article we introduce a new family of nonlinear evolution equations that we have named as p-adic Nagumo-type equations:

$$
u_{t}=-\gamma \boldsymbol{D}_{x}^{\alpha} u-u^{3}+(\beta+1) u^{2}-\beta u+P\left(\boldsymbol{D}_{x}\right)\left(u^{m}\right), x \in \mathbb{Q}_{p}^{n}, t \in[0, T]
$$

where $\gamma>0, \beta \geq 0, \boldsymbol{D}_{x}^{\alpha}, \alpha>0$, is the Taibleson operator, m is a positive integer and $P\left(\boldsymbol{D}_{x}\right)$ is an operator of degree δ of the form $P(\boldsymbol{D})=\sum_{j=0}^{k} C_{j} \boldsymbol{D}^{\delta_{j}}$, where the $C_{j} \in \mathbb{R}$ and $\delta_{k}=\delta$. We establish the local well-posedness of the Cauchy problem for these equations in Sobolev-type spaces, see Theorem 11. For a certain subfamily, we show that the blow-up phenomenon occurs, see Theorem 2 and we also provide numerical simulations showing this phenomenon.

The theory of Sobolev-type spaces use here was developed in [34], see also [25], 18. This theory is based in the theory of countably Hilbert spaces of Gel'fandVilenkin [8. Some generalizations are presented in 9]-10. We use classical techniques of operator semigroups, see e.g. [3], 20]. The family of evolution equations studied here contains as a particular case, equations of the form

$$
\begin{equation*}
u_{t}=-\gamma \boldsymbol{D}_{x}^{\alpha} u-u^{3}+(\beta+1) u^{2}-\beta u \tag{1.1}
\end{equation*}
$$

[^0]where $x \in \mathbb{Q}_{p}^{n}, t \in[0, T], \boldsymbol{D}_{x}^{\alpha}$ is the Taibleson operator, that resemble the classical Nagumo-type equations, see e.g. [21].

In [7], the authors study the equations

$$
\begin{equation*}
u_{t}=D u_{x x}-u(u-\kappa)(u-1)-\varepsilon u_{x}^{m}, \tag{1.2}
\end{equation*}
$$

where $D>0, \kappa \in\left(0, \frac{1}{2}\right), \varepsilon>0, x \in \mathbb{R}, t>0$. They establish the local wellposedness of the Cauchy problem for these equations in standard Sobolev spaces. There are several crucial differences between (1.1) and (1.2). The operators $u_{x x}$, u_{x}^{m} are local while the operators $\boldsymbol{D}_{x}^{\alpha}, P\left(\boldsymbol{D}_{x}\right)\left({ }^{m}\right)$ are non-local. The p-adic heat equation $u_{t}=-\gamma \boldsymbol{D}_{x}^{\alpha} u$ has an arbitrary order of pseudo-differentiability $\alpha>0$ in the spatial variable, while in the classical fractional heat equation $u_{t}=D \frac{\partial^{\mu} u}{\partial x^{\mu}}$, the degree of pseudo-differentiability $\mu \in(0,2]$. This implies that the Markov processes attached to $u_{t}=-\gamma \boldsymbol{D}_{x}^{\alpha} u$ are completely different to the ones attached to $u_{t}=D u_{x x}$. In other words, the diffusion mechanisms in (1.1) and (1.2) are completely different. Notice that our non-linear term involves pseudo-derivatives of arbitrary order $P\left(\boldsymbol{D}_{x}\right)\left(u^{m}\right)$, while in [7] only of first order u_{x}^{m}. Of course, the p-adic Sobolev spaces behave completely different from their real counterparts, but the semigroup techniques are the same in both cases, since time is a non-negative real variable.

The article is organized as follows. In section 2 we review some basic aspects of the p-adic analysis and fix the notation. In section 3, we present some technical results about Sobolev-type spaces and p-adic pseudo-differential operators. In section 4. we show the local well-posedness of the p-adic Nagumo-type equations, see Theorem 1 In section [5, we show a subfamily of p-adic Nagumo-type equations whose solutions blow-up in finite time, see Theorem 2, In section 6, we present a numerical simulation showing the blow-up phenomenon.

2. p-Adic Analysis: Essential Ideas

In this section, we collect some basic results on p-adic analysis that we use through the article. For a detailed exposition the reader may consult [1, [14, [26], [29].
2.1. The field of p-adic numbers. Along this article p will denote a prime number. The field of p-adic numbers \mathbb{Q}_{p} is defined as the completion of the field of rational numbers \mathbb{Q} with respect to the p-adic norm $|\cdot|_{p}$, which is defined as

$$
|x|_{p}=\left\{\begin{array}{lll}
0 & \text { if } & x=0 \\
p^{-\gamma} & \text { if } & x=p^{\gamma} \frac{a}{b}
\end{array}\right.
$$

where a and b are integers coprime with p. The integer $\gamma:=\operatorname{ord}(x)$, with $\operatorname{ord}(0):=$ $+\infty$, is called the p-adic order of x.

Any p-adic number $x \neq 0$ has a unique expansion of the form

$$
x=p^{\operatorname{ord}(x)} \sum_{j=0}^{\infty} x_{j} p^{j}
$$

where $x_{j} \in\{0, \ldots, p-1\}$ and $x_{0} \neq 0$. By using this expansion, we define the fractional part of $x \in \mathbb{Q}_{p}$, denoted $\{x\}_{p}$, as the rational number

$$
\{x\}_{p}= \begin{cases}0 & \text { if } \quad x=0 \text { or } \operatorname{ord}(x) \geq 0 \\ p^{\operatorname{ord}(x)} \sum_{j=0}^{-\operatorname{ord}_{p}(x)-1} x_{j} p^{j} & \text { if } \quad \operatorname{ord}(x)<0 .\end{cases}
$$

2.2. Topology of \mathbb{Q}_{p}^{n}. For $r \in \mathbb{Z}$, denote by $B_{r}^{n}(a)=\left\{x \in \mathbb{Q}_{p}^{n} ;\|x-a\|_{p} \leq p^{r}\right\}$ the ball of radius p^{r} with center at $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Q}_{p}^{n}$, and take $B_{r}^{n}(0):=B_{r}^{n}$. Note that $B_{r}^{n}(a)=B_{r}\left(a_{1}\right) \times \cdots \times B_{r}\left(a_{n}\right)$, where $B_{r}\left(a_{i}\right):=\left\{x_{i} \in \mathbb{Q}_{p} ;\left|x_{i}-a_{i}\right|_{p} \leq p^{r}\right\}$ is the one-dimensional ball of radius p^{r} with center at $a_{i} \in \mathbb{Q}_{p}$. The ball B_{0}^{n} equals the product of n copies of $B_{0}=\mathbb{Z}_{p}$, the ring of p-adic integers. We also denote by $S_{r}^{n}(a)=\left\{x \in \mathbb{Q}_{p}^{n} ;\|x-a\|_{p}=p^{r}\right\}$ the sphere of radius p^{r} with center at $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Q}_{p}^{n}$, and take $S_{r}^{n}(0):=S_{r}^{n}$. We notice that $S_{0}^{1}=\mathbb{Z}_{p}^{\times}$(the group of units of \mathbb{Z}_{p}), but $\left(\mathbb{Z}_{p}^{\times}\right)^{n} \subsetneq S_{0}^{n}$. The balls and spheres are both open and closed subsets in \mathbb{Q}_{p}^{n}. In addition, two balls in \mathbb{Q}_{p}^{n} are either disjoint or one is contained in the other.

As a topological space $\left(\mathbb{Q}_{p}^{n},\|\cdot\|_{p}\right)$ is totally disconnected, i.e. the only connected subsets of \mathbb{Q}_{p}^{n} are the empty set and the points. A subset of \mathbb{Q}_{p}^{n} is compact if and only if it is closed and bounded in \mathbb{Q}_{p}^{n}, see e.g. [29, Section 1.3], or [1] Section 1.8]. The balls and spheres are compact subsets. Thus $\left(\mathbb{Q}_{p}^{n},\|\cdot\|_{p}\right)$ is a locally compact topological space.

Since $\left(\mathbb{Q}_{p}^{n},+\right)$ is a locally compact topological group, there exists a Haar measure $d^{n} x$, which is invariant under translations, i.e. $d^{n}(x+a)=d^{n} x$. If we normalize this measure by the condition $\int_{\mathbb{Z}_{p}^{n}} d x=1$, then $d^{n} x$ is unique.

Notation 1. We will use $\Omega\left(p^{-r}\|x-a\|_{p}\right)$ to denote the characteristic function of the ball $B_{r}^{n}(a)$. For more general sets, we will use the notation 1_{A} for the characteristic function of a set A.
2.3. The Bruhat-Schwartz space. A complex-valued function φ defined on \mathbb{Q}_{p}^{n} is called locally constant if for any $x \in \mathbb{Q}_{p}^{n}$ there exist an integer $l(x) \in \mathbb{Z}$ such that

$$
\begin{equation*}
\varphi\left(x+x^{\prime}\right)=\varphi(x) \text { for any } x^{\prime} \in B_{l(x)}^{n} \tag{2.1}
\end{equation*}
$$

A function $\varphi: \mathbb{Q}_{p}^{n} \rightarrow \mathbb{C}$ is called a Bruhat-Schwartz function (or a test function) if it is locally constant with compact support. Any test function can be represented as a linear combination, with complex coefficients, of characteristic functions of balls. The \mathbb{C}-vector space of Bruhat-Schwartz functions is denoted by $\mathcal{D}\left(\mathbb{Q}_{p}^{n}\right):=\mathcal{D}$. We denote by $\mathcal{D}_{\mathbb{R}}\left(\mathbb{Q}_{p}^{n}\right):=\mathcal{D}_{\mathbb{R}}$ the \mathbb{R}-vector space of Bruhat-Schwartz functions. For $\varphi \in \mathcal{D}\left(\mathbb{Q}_{p}^{n}\right)$, the largest number $l=l(\varphi)$ satisfying (2.1) is called the exponent of local constancy (or the parameter of constancy) of φ.

We denote by $\mathcal{D}_{m}^{l}\left(\mathbb{Q}_{p}^{n}\right)$ the finite-dimensional space of test functions from $\mathcal{D}\left(\mathbb{Q}_{p}^{n}\right)$ having supports in the ball B_{m}^{n} and with parameters of constancy $\geq l$. We now define a topology on \mathcal{D} as follows. We say that a sequence $\left\{\varphi_{j}\right\}_{j \in \mathbb{N}}$ of functions in \mathcal{D} converges to zero, if the two following conditions hold:
(1) there are two fixed integers k_{0} and m_{0} such that each $\varphi_{j} \in \mathcal{D}_{m_{0}}^{k_{0}}$;
(2) $\varphi_{j} \rightarrow 0$ uniformly.
\mathcal{D} endowed with the above topology becomes a topological vector space.
2.4. L^{ρ} spaces. Given $\rho \in[1, \infty)$, we denote by $L^{\rho}:=L^{\rho}\left(\mathbb{Q}_{p}^{n}\right):=L^{\rho}\left(\mathbb{Q}_{p}^{n}, d^{n} x\right)$, the \mathbb{C}-vector space of all the complex-valued functions g satisfying

$$
\int_{\mathbb{Q}_{p}^{n}}|g(x)|^{\rho} d^{n} x<\infty
$$

The corresponding \mathbb{R}-vector spaces are denoted as $L_{\mathbb{R}}^{\rho}:=L_{\mathbb{R}}^{\rho}\left(\mathbb{Q}_{p}^{n}\right)=L_{\mathbb{R}}^{\rho}\left(\mathbb{Q}_{p}^{n}, d^{n} x\right)$, $1 \leq \rho<\infty$.

If U is an open subset of $\mathbb{Q}_{p}^{n}, \mathcal{D}(U)$ denotes the space of test functions with supports contained in U, then $\mathcal{D}(U)$ is dense in

$$
L^{\rho}(U)=\left\{\varphi: U \rightarrow \mathbb{C} ;\|\varphi\|_{\rho}=\left\{\int_{U}|\varphi(x)|^{\rho} d^{n} x\right\}^{\frac{1}{\rho}}<\infty\right\}
$$

where $d^{n} x$ is the normalized Haar measure on $\left(\mathbb{Q}_{p}^{n},+\right)$, for $1 \leq \rho<\infty$, see e.g. [1, Section 4.3]. We denote by $L_{\mathbb{R}}^{\rho}(U)$ the real counterpart of $L^{\rho}(U)$.
2.5. The Fourier transform. Set $\chi_{p}(y)=\exp \left(2 \pi i\{y\}_{p}\right)$ for $y \in \mathbb{Q}_{p}$. The map $\chi_{p}(\cdot)$ is an additive character on \mathbb{Q}_{p}, i.e. a continuous map from $\left(\mathbb{Q}_{p},+\right)$ into S (the unit circle considered as multiplicative group) satisfying $\chi_{p}\left(x_{0}+x_{1}\right)=$ $\chi_{p}\left(x_{0}\right) \chi_{p}\left(x_{1}\right), x_{0}, x_{1} \in \mathbb{Q}_{p}$. The additive characters of \mathbb{Q}_{p} form an Abelian group which is isomorphic to $\left(\mathbb{Q}_{p},+\right)$. The isomorphism is given by $\kappa \rightarrow \chi_{p}(\kappa x)$, see e.g. [1, Section 2.3].

Given $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ and $y=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q}_{p}^{n}$, we set $\xi \cdot x:=\sum_{j=1}^{n} \xi_{j} x_{j}$. The Fourier transform of $\varphi \in \mathcal{D}\left(\mathbb{Q}_{p}^{n}\right)$ is defined as

$$
(\mathcal{F} \varphi)(\xi)=\int_{\mathbb{Q}_{p}^{n}} \chi_{p}(\xi \cdot x) \varphi(x) d^{n} x \quad \text { for } \xi \in \mathbb{Q}_{p}^{n}
$$

where $d^{n} x$ is the normalized Haar measure on \mathbb{Q}_{p}^{n}. The Fourier transform is a linear isomorphism from $\mathcal{D}\left(\mathbb{Q}_{p}^{n}\right)$ onto itself satisfying

$$
\begin{equation*}
(\mathcal{F}(\mathcal{F} \varphi))(\xi)=\varphi(-\xi) \tag{2.2}
\end{equation*}
$$

see e.g. [1, Section 4.8]. We will also use the notation $\mathcal{F}_{x \rightarrow \xi} \varphi$ and $\widehat{\varphi}$ for the Fourier transform of φ.

The Fourier transform extends to L^{2}. If $f \in L^{2}$, its Fourier transform is defined as

$$
(\mathcal{F} f)(\xi)=\lim _{k \rightarrow \infty} \int_{\|x\|_{p} \leq p^{k}} \chi_{p}(\xi \cdot x) f(x) d^{n} x, \quad \text { for } \xi \in \mathbb{Q}_{p}^{n}
$$

where the limit is taken in L^{2}. We recall that the Fourier transform is unitary on L^{2}, i.e. $\|f\|_{2}=\|\mathcal{F} f\|_{2}$ for $f \in L^{2}$ and that (2.2) is also valid in L^{2}, see e.g. [26, Chapter III, Section 2].
2.6. Distributions. The \mathbb{C}-vector space $\mathcal{D}^{\prime}\left(\mathbb{Q}_{p}^{n}\right):=\mathcal{D}^{\prime}$ of all continuous linear functionals on $\mathcal{D}\left(\mathbb{Q}_{p}^{n}\right)$ is called the Bruhat-Schwartz space of distributions. Every linear functional on \mathcal{D} is continuous, i.e. \mathcal{D}^{\prime} agrees with the algebraic dual of \mathcal{D}, see e.g. [29, Chapter 1, VI.3, Lemma]. We denote by $\mathcal{D}_{\mathbb{R}}^{\prime}\left(\mathbb{Q}_{p}^{n}\right):=\mathcal{D}_{\mathbb{R}}^{\prime}$ the dual space of $\mathcal{D}_{\mathbb{R}}$.

We endow \mathcal{D}^{\prime} with the weak topology, i.e. a sequence $\left\{T_{j}\right\}_{j \in \ltimes}$ in \mathcal{D}^{\prime} converges to T if $\lim _{j \rightarrow \infty} T_{j}(\varphi)=T(\varphi)$ for any $\varphi \in \mathcal{D}$. The map

$$
\begin{array}{ll}
\mathcal{D}^{\prime} \times \mathcal{D} & \rightarrow \mathbb{C} \\
(T, \varphi) & \rightarrow T(\varphi)
\end{array}
$$

is a bilinear form which is continuous in T and φ separately. We call this map the pairing between \mathcal{D}^{\prime} and \mathcal{D}. From now on we will use (T, φ) instead of $T(\varphi)$.

Every f in $L_{l o c}^{1}$ defines a distribution $f \in \mathcal{D}^{\prime}\left(\mathbb{Q}_{p}^{n}\right)$ by the formula

$$
(f, \varphi)=\int_{\mathbb{Q}_{p}^{n}} f(x) \varphi(x) d^{n} x
$$

Such distributions are called regular distributions. Notice that for $f \in L_{\mathbb{R}}^{2},(f, \varphi)=$ $\langle f, \varphi\rangle$, where $\langle\cdot, \cdot\rangle$ denotes the scalar product in $L_{\mathbb{R}}^{2}$.
2.7. The Fourier transform of a distribution. The Fourier transform $\mathcal{F}[T]$ of a distribution $T \in \mathcal{D}^{\prime}\left(\mathbb{Q}_{p}^{n}\right)$ is defined by

$$
(\mathcal{F}[T], \varphi)=(T, \mathcal{F}[\varphi]) \text { for all } \varphi \in \mathcal{D}\left(\mathbb{Q}_{p}^{n}\right)
$$

The Fourier transform $T \rightarrow \mathcal{F}[T]$ is a linear (and continuous) isomorphism from $\mathcal{D}^{\prime}\left(\mathbb{Q}_{p}^{n}\right)$ onto $\mathcal{D}^{\prime}\left(\mathbb{Q}_{p}^{n}\right)$. Furthermore, $T=\mathcal{F}[\mathcal{F}[T](-\xi)]$.

3. Sobolev-Type Spaces

The Sobolev-type spaces used here were introduce in [34, [25]. We follow here closely the presentation given in [18, Sections 10.1, 10.2].

We set $[\xi]_{p}:=\max \left\{1,\|\xi\|_{p}\right\}$ for $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{Q}_{p}^{n}$. Given $\varphi, \varrho \in \mathcal{D}\left(\mathbb{Q}_{p}^{n}\right)$ and $s \in \mathbb{R}$, we define the scalar product:

$$
\langle\varphi, \varrho\rangle_{s}=\int_{\mathbb{Q}_{p}^{n}}[\xi]_{p}^{s} \widehat{\varphi}(\xi) \overline{\widehat{\varrho}(\xi)} d^{n} \xi
$$

where the bar denotes the complex conjugate. We also set $\|\varphi\|_{s}^{2}=\langle\varphi, \varphi\rangle_{s}$, and denote by $\mathcal{H}_{s}:=\mathcal{H}_{s}\left(\mathbb{Q}_{p}^{n}, \mathbb{C}\right)=\mathcal{H}_{s}(\mathbb{C})$ the completion of $\mathcal{D}\left(\mathbb{Q}_{p}^{n}\right)$ with respect to $\langle\cdot, \cdot\rangle_{s}$. Notice that if $r, s \in \mathbb{R}$, with $r \leq s$, then $\|\cdot\|_{r} \leq\|\cdot\|_{s}$ and $\mathcal{H}_{s} \hookrightarrow \mathcal{H}_{r}$ (continuous embedding). In particular,

$$
\cdots \supset \mathcal{H}_{-2} \supset \mathcal{H}_{-1} \supset \mathcal{H}_{0} \supset \mathcal{H}_{1} \supset \mathcal{H}_{2} \cdots
$$

where $\mathcal{H}_{0}=L^{2}$. We set

$$
\mathcal{H}_{\infty}\left(\mathbb{Q}_{p}^{n}, \mathbb{C}\right)=\mathcal{H}_{\infty}:=\bigcap_{s \in \mathbb{N}} \mathcal{H}_{s}
$$

Since $\mathcal{H}_{[s]+1} \subseteq \mathcal{H}_{s} \subseteq \mathcal{H}_{[s]}$ for $s \in \mathbb{R}_{+}$, where [•] is the integer part function, then $\mathcal{H}_{\infty}=\bigcap_{s \in \mathbb{R}_{+}} \mathcal{H}_{s}$. With the topology induced by the family of seminorms $\left\{\|\cdot\|_{l}\right\}_{l \in \mathbb{N}}$, \mathcal{H}_{∞} becomes a locally convex space, which is metrizable. Indeed,

$$
d(f, g):=\max _{l \in \mathbb{N}}\left\{2^{-l} \frac{\|f-g\|_{l}}{1+\|f-g\|_{l}}\right\}, \text { with } f, g \in \mathcal{H}_{\infty}
$$

is a metric for the topology of \mathcal{H}_{∞} considered as a convex topological space. The metric space $\left(\mathcal{H}_{\infty}, d\right)$ is the completion of the metric space $\left(\mathcal{D}\left(\mathbb{Q}_{p}^{n}\right), d\right)$, cf. [18,

Lemma 10.4]. Furthermore, $\mathcal{H}_{\infty} \subset L^{\infty} \cap C^{\text {unif }} \cap L^{1} \cap L^{2}$, and $\mathcal{H}_{\infty}\left(\mathbb{Q}_{p}^{n}, \mathbb{C}\right)$ is continuously embedded in $C_{0}\left(\mathbb{Q}_{p}^{n}, \mathbb{C}\right)$. This is the non-Archimedean analog of the Sobolev embedding theorem, cf. [18, Theorem 10.15].

Lemma 1. If $s_{1} \leq s \leq s_{2}$, with $s=\theta s_{1}+(1-\theta) s_{2}, 0 \leq \theta \leq 1$, then $\|f\|_{s} \leq$ $\|f\|_{s_{1}}^{\theta}\|f\|_{s_{2}}^{(1-\theta)}$.
Proof. Take $f \in \mathcal{H}_{s}$, then by using the Hölder inequality for the exponents $\frac{1}{q}=$ $\theta, \frac{1}{q^{\prime}}=1-\theta$,

$$
\begin{aligned}
\|f\|_{s}^{2} & =\int_{\mathbb{Q}_{p}^{n}}[\xi]_{p}^{s}|\widehat{f}(\xi)|^{2} d^{n} \xi=\int_{\mathbb{Q}_{p}^{n}}[\xi]_{p}^{\theta s_{1}+(1-\theta) s_{2}}|\widehat{f}(\xi)|^{2(\theta+(1-\theta))} d^{n} \xi \\
& =\int_{\mathbb{Q}_{p}^{n}}\left([\xi]_{p}^{s_{1}}|\widehat{f}(\xi)|^{2}\right)^{\theta}\left([\xi]_{p}^{s_{2}}|\widehat{f}(\xi)|^{2}\right)^{1-\theta} d^{n} \xi \\
& \leq\left(\int_{\mathbb{Q}_{p}^{n}}[\xi]_{p}^{s_{1}}|\widehat{f}(\xi)|^{2} d^{n} \xi\right)^{\theta}\left(\int_{\mathbb{Q}_{p}^{n}}[\xi]_{p}^{s_{2}}|\widehat{f}(\xi)|^{2} d^{n} \xi\right)^{1-\theta} d^{n} \xi
\end{aligned}
$$

The following characterization of the spaces \mathcal{H}_{s} and \mathcal{H}_{∞} is useful:
Lemma $2\left(\left[18\right.\right.$, Lemma 10.8]). (i) $\mathcal{H}_{s}=\left\{f \in L^{2} ;\|f\|_{s}<\infty\right\}=\left\{T^{\prime} \in \mathcal{D} ;\|T\|_{s}<\infty\right\}$, (ii) $\mathcal{H}_{\infty}=\left\{f \in L^{2} ;\|f\|_{s}<\infty\right.$ for any $\left.s \in \mathbb{R}_{+}\right\}=\left\{T^{\prime} \in \mathcal{D} ;\|T\|_{s}<\infty\right.$ for any $\left.s \in \mathbb{R}_{+}\right\}$. The equalities in (i)-(ii) are in the sense of vector spaces.

Proposition 1. If $s>n / 2$, then \mathcal{H}_{s} is a Banach algebra with respect to the product of functions. That is, if $f, g \in \mathcal{H}_{s}$, then $f g \in \mathcal{H}_{s}$ and $\|f g\|_{s} \leq C(n, s)\|f\|_{s}\|g\|_{s}$, where $C(n, s)$ is a positive constant.
Proof. By the ultrametric property of $\|\cdot\|_{p},\|\xi\|_{p} \leq \max \left\{\|\xi-\eta\|_{p},\|\eta\|_{p}\right\}$ for $\xi, \eta \in$ \mathbb{Q}_{p}^{n}, we have $\max \left\{1,\|\xi\|_{p}\right\} \leq \max \left\{1,\|\xi-\eta\|_{p},\|\eta\|_{p}\right\}$, which implies that

$$
\left[\max \left\{1,\|\xi\|_{p}\right\}\right]^{s} \leq \max \left\{1,\|\xi-\eta\|_{p}^{s},\|\eta\|_{p}^{s}\right\}=\max \left\{1,\|\xi-\eta\|_{p},\|\eta\|_{p}\right\}^{s}
$$

for $s>0$. Therefore

$$
\begin{equation*}
[\xi]_{p}^{s} \leq[\xi-\eta]_{p}^{s}+[\eta]_{p}^{s} \tag{3.1}
\end{equation*}
$$

Now, for $f, g \in L^{2}$, by using (3.1),

$$
\begin{aligned}
{[\xi]_{p}^{\frac{s}{2}}|\widehat{f g}(\xi)| } & =\left|[\xi]_{p}^{\frac{s}{2}} \int_{\mathbb{Q}_{p}^{n}} \widehat{f}(\xi-\eta) \widehat{g}(\eta) d^{n} \eta\right| \\
& \leq \int_{\mathbb{Q}_{p}^{n}}[\xi-\eta]_{p}^{\frac{s}{2}}|\widehat{f}(\xi-\eta)||\widehat{g}(\eta)| d^{n} \eta+\int_{\mathbb{Q}_{p}^{n}}[\eta]_{p}^{\frac{s}{2}}|\widehat{g}(\eta)||\widehat{f}(\xi-\eta)| d^{n} \eta \\
& =[\xi]_{p}^{\frac{s}{2}}|\widehat{f}(\xi)| *|\widehat{g}(\xi)|+|\widehat{f}(\xi)| *[\xi]_{p}^{\frac{s}{2}}|\widehat{g}(\xi)|
\end{aligned}
$$

Then

$$
\begin{aligned}
\|f g\|_{s} & \leq\left\|[\xi]_{p}^{\frac{s}{2}}|\widehat{f}(\xi)| *|\widehat{g}(\xi)|+|\widehat{f}(\xi)| *[\xi]_{p}^{\frac{s}{2}}|\widehat{g}(\xi)|\right\|_{2} \\
& \leq\left\|[\xi]_{p}^{\frac{s}{2}}|\widehat{f}(\xi)| *|\widehat{g}(\xi)|\right\|_{2}+\left\||\widehat{f}(\xi)| *[\xi]_{p}^{\frac{s}{2}}|\widehat{g}(\xi)|\right\|_{2} .
\end{aligned}
$$

Since $[\xi]_{p}^{\frac{s}{2}}|\widehat{f}(\xi)|,[\xi]_{p}^{\frac{s}{2}}|\widehat{g}(\xi)| \in L^{2}$, by using the Cauchy-Schwarz inequality with $s>n / 2$, we have $\||\widehat{g}(\xi)|\|_{1} \leq A(n, s)\|g\|_{s},\| \| \widehat{f}(\xi) \mid\left\|_{1} \leq A(n, s)\right\| f \|_{s}$, i.e. $|\widehat{g}(\xi)|$, $|\widehat{f}(\xi)| \in L^{1}$. Now, by the Young inequality, we obtain that

$$
\|f g\|_{s} \leq\|f\|_{s}\|\widehat{g}\|_{1}+\|g\|_{s}\|\widehat{f}\|_{1} \leq 2 A(n, s)\|f\|_{s}\|g\|_{s}
$$

3.1. The Taibleson operator. Let $\alpha>0$, the Taibleson operator is defined as

$$
\left(\boldsymbol{D}^{\alpha} \varphi\right)(x)=\mathcal{F}_{\xi \rightarrow x}^{-1}\left(\|\xi\|_{p}^{\alpha}\left(\mathcal{F}_{x \rightarrow \xi \varphi} \varphi\right)\right)
$$

for $\varphi \in \mathcal{D}\left(\mathbb{Q}_{p}^{n}\right)$. This operator admits the extension

$$
\left(\boldsymbol{D}^{\alpha} f\right)(x)=\frac{1-p^{\alpha}}{1-p^{-\alpha-n}} \int_{\mathbb{Q}_{p}^{n}}\|y\|_{p}^{-\alpha-n}\{f(x-y)-f(x)\} d^{n} y
$$

to locally constant functions satisfying

$$
\int_{\|x\|_{p}>1}\|x\|_{p}^{-\alpha-n}|f(x)| d^{n} x<\infty
$$

The Taibleson operator \boldsymbol{D}^{α} is the p-adic analog of the fractional derivative. If $n=1, \boldsymbol{D}^{\alpha}$ agrees with the Vladimirov operator. The operator \boldsymbol{D}^{α} does not satisfy the chain rule neither Leibniz formula. We also use the notation $\boldsymbol{D}_{x}^{\alpha}$, when the Taibleson operator acts on functions depending on the variables $x \in \mathbb{Q}_{p}^{n}$ and $t \geq 0$.

Given $0=\delta_{0}<\delta_{1}<\cdots<\delta_{k-1}<\delta_{k}=\delta$, we define

$$
P(\boldsymbol{D})=\sum_{j=0}^{k} C_{j} \boldsymbol{D}^{\delta_{j}}, \text { where the } C_{j} \in \mathbb{R}
$$

Lemma 3 ([18, Lemma 10.13 and Theorem 10.15]). For $s \in \mathbb{R}_{+}$, the mapping $P(\boldsymbol{D}): \mathcal{H}_{s+2 \delta} \longrightarrow \mathcal{H}_{s}$ is a well-defined continuous mapping between Banach spaces.

Lemma 4. Take $s-2 \delta>n / 2$ and $f, g \in \mathcal{H}_{s+2 \delta}$. Then

$$
\|P(\boldsymbol{D})(f g)\|_{s} \leq C(n, s, \delta)\|f\|_{s+2 \delta}\|g\|_{s+2 \delta}
$$

where $C(n, s, \delta)$ is a positive constant that depends of n, s and δ.

Proof. Since $s>n / 2$ and $f, g \in \mathcal{H}_{s+2 \delta}$, by Proposition 1. $f g \in \mathcal{H}_{s+2 \delta}$, and by Lemma 3, $P(\boldsymbol{D})(f g) \in \mathcal{H}_{s}$. Now by using Proposition 1 ,

$$
\begin{gathered}
\|P(\boldsymbol{D})(f g)\|_{s} \leq \sum_{j=0}^{k}\left|C_{j}\right|\left\|\boldsymbol{D}^{\delta_{j}}(f g)\right\|_{s} \\
=\sum_{j=0}^{k}\left|C_{j}\right|\left(\int_{\mathbb{Q}_{p}^{n}}[\xi]_{p}^{s}\|\xi\|_{p}^{2 \delta_{j}}|\widehat{f g}(\xi)|^{2} d^{n} \xi\right)^{\frac{1}{2}} \leq \sum_{j=0}^{k}\left|C_{j}\right|\left(\int_{\mathbb{Q}_{p}^{n}}[\xi]_{p}^{s+2 \delta_{j}}|\widehat{f g}(\xi)|^{2} d^{n} \xi\right)^{\frac{1}{2}} \\
=\sum_{j=0}^{k}\left|C_{j}\right|\|f g\|_{s+2 \delta_{j}} \leq \sum_{j=0}^{k}\left|C_{j}\right| C\left(n, s, \delta_{j}\right)\|f\|_{s+2 \delta_{j}}\|g\|_{s+2 \delta_{j}} \\
\leq\left(\sum_{j=0}^{k}\left|C_{j}\right| C\left(n, s, \delta_{j}\right)\right)\|f\|_{s+2 \delta}\|g\|_{s+2 \delta}
\end{gathered}
$$

4. Local well-posedness of the p-adic Nagumo-type equations

4.1. Some technical remarks. Let X, Y Banach spaces, $T_{0} \in(0, \infty)$ and let $F:\left[0, T_{0}\right] \times Y \longrightarrow X$ a continuous function. The Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t} u(t)=F(t, u(t)) \tag{4.1}\\
u(0)=\phi \in Y
\end{array}\right.
$$

is locally well-posed in Y, if the following conditions are satisfied.
(i) There is $T \in\left(0, T_{0}\right]$ and a function $u \in C([0, T] ; Y)$, with $u(0)=\phi$, satisfying the differential equation in the following sense:

$$
\lim _{h \rightarrow 0}\left\|\frac{u(t+h)-u(t)}{h}-F(t, u(t))\right\|_{X}=0
$$

where the derivatives at $t=0$ and $t=T$ are calculated from the right and left, respectively.
(ii) The initial value problem (4.1) has at most one solution in $C([0, T] ; Y)$.
(iii) The function $\phi \rightarrow u$ is continuous. That is, let $\left\{\phi_{n}\right\}$ be a sequence in Y such that $\phi_{n} \rightarrow \phi_{\infty}$ in Y and let $u_{n} \in C\left(\left[0, T_{n}\right] ; Y\right)$, resp. $u_{\infty} \in C\left(\left[0, T_{\infty}\right] ; Y\right)$, be the corresponding solutions. Let $T \in\left(0, T_{\infty}\right)$, then the solutions u_{n} are defined in $[0, T]$ for all n big enough and

$$
\lim _{n \rightarrow \infty} \sup _{t \in[0, T]}\left\|u_{n}(t)-u_{\infty}(t)\right\|_{Y}=0
$$

4.2. Main result. Consider the following Cauchy problem:

$$
\left\{\begin{array}{l}
u \in C\left([0, T], \mathcal{H}_{s}\right) \cap C^{1}\left([0, T], \mathcal{H}_{s}\right) \tag{4.2}\\
u_{t}=-\gamma \boldsymbol{D}_{x}^{\alpha} u-u^{3}+(\beta+1) u^{2}-\beta u+P\left(\boldsymbol{D}_{x}\right)\left(u^{m}\right), \quad x \in \mathbb{Q}_{p}^{n}, t \in[0, T] \\
u(0)=f_{0} \in \mathcal{H}_{s},
\end{array}\right.
$$

where $T, \gamma, \alpha, \beta>0$, and m is a positive integer. The main result of this work is the following:
Theorem 1. For $s>n / 2+2 \delta$, the Cauchy problem (4.2) is locally well-posed in \mathcal{H}_{s}.
4.3. Preliminary results. We denote by $\boldsymbol{V}(t)=e^{-\left(\gamma \boldsymbol{D}^{\alpha}+\beta \boldsymbol{I}\right) t}, t \geq 0$, the semigroup in L^{2} generated by the operator $\boldsymbol{A}=-\gamma \boldsymbol{D}^{\alpha}-\beta \boldsymbol{I}$, that is,

$$
\boldsymbol{V}(t) f(x)=\mathcal{F}_{\xi \rightarrow x}^{-1}\left(e^{-\left(\gamma\|\xi\|_{p}^{\alpha}+\beta\right) t} \mathcal{F}_{x \rightarrow \xi} f\right), \text { for } f \in L^{2}, t \geq 0
$$

Lemma 5. $\{\boldsymbol{V}(t)\}_{t \geq 0}$ is a C^{0}-semigroup of contractions in $\mathcal{H}_{s}, s \in \mathbb{R}$, satisfying $\|\boldsymbol{V}(t)\|_{s} \leq e^{-\beta t}$ for $t \geq 0$. Moreover, $u(x, t)=\boldsymbol{V}(t) f_{0}(x)$ is the unique solution to the following Cauchy problem:

$$
\left\{\begin{array}{l}
u \in C\left([0, T], \mathcal{H}_{s}\right) \cap C^{1}\left([0, T], \mathcal{H}_{s}\right) \tag{4.3}\\
u_{t}=-\gamma \boldsymbol{D}^{\alpha} u-\beta u, t \in[0, T] \\
u(x, 0)=f_{0}(x) \in \mathcal{H}_{s}
\end{array}\right.
$$

where T is an arbitrary positive number.
Proof. We just verify the strongly continuity of the semigroup. Since

$$
\begin{aligned}
\| \mathcal{F}_{\xi \rightarrow x}^{-1}\left(e^{-\left(\gamma\|\xi\|_{p}^{\alpha}+\beta\right) t} \mathcal{F}_{x \rightarrow \xi} f\right) & -f(x) \|_{s}^{2} \\
& =\int_{\mathbb{Q}_{p}^{n}}[\xi]_{p}^{s}|\widehat{f}(\xi)|^{2}\left\{1-e^{-\left(\gamma\|\xi\|_{p}^{\alpha}+\beta\right) t}\right\}^{2} d^{n} \xi \leq\|f\|_{s}^{2}
\end{aligned}
$$

it follows from the dominated convergence theorem that

$$
\lim _{t \rightarrow 0+}\|\boldsymbol{V}(t) f-f\|_{s}=0
$$

The existence and uniqueness of a solution for the Cauchy problem (4.3) follows from a well-known result, see e.g. [20, Theorem 4.3.1].

Lemma 6. Let $f_{0} \in \mathcal{H}_{s}, s \in \mathbb{R}, \lambda \geq 0$. Then, there exists a positive constant $C(\lambda, \alpha)$ that depends of λ and α such that

$$
\begin{equation*}
\left\|\boldsymbol{V}(t) f_{0}\right\|_{s+\lambda} \leq e^{-\beta t}\left(1+C(\lambda, \alpha)\left(\frac{\lambda}{2 \alpha \gamma t}\right)^{\frac{\lambda}{2 \alpha}}\right)\left\|f_{0}\right\|_{s} \text { for } t>0 \tag{4.4}
\end{equation*}
$$

Proof. We first notice that

$$
\begin{gathered}
\left\|\boldsymbol{V}(t) f_{0}\right\|_{s+\lambda}^{2}=\int_{\mathbb{Q}_{p}^{n}}[\xi]_{p}^{s+\lambda} e^{-2\left(\gamma\|\xi\|_{p}^{\alpha}+\beta\right) t}\left|f_{0}(\xi)\right|^{2} d^{n} \xi \\
\leq e^{-2 \beta t}\left(\sup _{\xi \in \mathbb{Q}_{p}^{n}}[\xi]_{p}^{\lambda} e^{-2 \gamma\|\xi\|_{p}^{\alpha} t}\right)\left\|f_{0}\right\|_{s}^{2} \leq e^{-2 \beta t}\left(1+\sup _{\xi \in \mathbb{Q}_{p}^{n} \backslash \mathbb{Z}_{p}^{n}}\|\xi\|_{p}^{\lambda} e^{-2 \gamma\|\xi\|_{p}^{\alpha} t}\right)\left\|f_{0}\right\|_{s}^{2} \\
\leq e^{-2 \beta t}\left(1+\sup _{\xi \in \mathbb{Q}_{p}^{n}}\|\xi\|_{p}^{\lambda} e^{-2 \gamma\|\xi\|_{p}^{\alpha} t}\right)\left\|f_{0}\right\|_{s}^{2}
\end{gathered}
$$

We now set $y=\|\xi\|_{p}$ and $h(y)=y^{\lambda} e^{-2 \gamma y^{\alpha} t}$. By using the fact that $h(y)$ reaches its maximum at $y_{\max }=\left(\frac{\lambda}{2 \alpha \gamma t}\right)^{\frac{1}{\alpha}}$, we conclude that

$$
\sup _{\xi \in \mathbb{Q}_{p}^{n}}\|\xi\|_{p}^{\lambda} e^{-2 \gamma\|\xi\|_{p}^{\alpha} t} \leq\left(\frac{\lambda}{2 \alpha \gamma t}\right)^{\frac{\lambda}{\alpha}} e^{-\frac{\lambda}{\alpha}} \leq \mathrm{C}(\lambda, \alpha)\left(\frac{\lambda}{2 \alpha \gamma t}\right)^{\frac{\lambda}{\alpha}}
$$

Proposition 2. Let $s>n / 2+2 \delta$ and $F(u)=(\beta+1) u^{2}-u^{3}+P(\boldsymbol{D})\left(u^{m}\right)$. Then $F: \mathcal{H}_{s} \longrightarrow \mathcal{H}_{s-2 \delta}$ is a continuous function satisfying

$$
\begin{equation*}
\|F(u)-F(w)\|_{s-2 \delta} \leq L\left(\|u\|_{s},\|w\|_{s}\right)\|u-w\|_{s} \tag{4.5}
\end{equation*}
$$

for $u, w \in \mathcal{H}_{s}$, here $L(\cdot, \cdot)$ is a continuous function, which is not decreasing with respect to each of their arguments. In particular,

$$
\begin{equation*}
\|F(u)\|_{s-2 \delta} \leq L\left(\|u\|_{s}, 0\right)\|u\|_{s} \tag{4.6}
\end{equation*}
$$

Proof. We first notice that

$$
\begin{gathered}
F(u)-F(w)=(\beta+1)\left(u^{2}-w^{2}\right)-\left(u^{3}-w^{3}\right)+P(\boldsymbol{D})\left(u^{m}-w^{m}\right) \\
=(\beta+1)(u-w)(u+w)-(u-w)\left(u^{2}+u w+w^{2}\right)+P(\boldsymbol{D})((u-w) q(u, w))
\end{gathered}
$$

where $q(u, w)=\sum_{k=0}^{m-1} u^{k} w^{m-1-k}$. By using Proposition 1 and Lemma 4, the condition $s>n / 2$ implies that if $u, w \in \mathcal{H}_{s}$, then any polynomial function in u, w belongs to \mathcal{H}_{s}, and

$$
\begin{aligned}
\|F(u)-F(w)\|_{s-2 \delta} & \leq C\left\{(\beta+1)\|u-w\|_{s-2 \delta}\|u+w\|_{s-2 \delta}+\right. \\
& \left.\|u-w\|_{s-2 \delta}\left\|u^{2}+u w+w^{2}\right\|_{s-2 \delta}+\|u-w\|_{s}\|q(u, w)\|_{s}\right\},
\end{aligned}
$$

where $C=C(n, s, \delta)$. Then

$$
\|F(u)-F(w)\|_{s-2 \delta} \leq A\left(\|u\|_{s},\|w\|_{s}\right)\|u-w\|_{s}
$$

where

$$
\begin{gathered}
A\left(\|u\|_{s},\|w\|_{s}\right)=C\left\{(\beta+1)\|u+w\|_{s}+\left\|u^{2}+u w+w^{2}\right\|_{s}+\|q(u, w)\|_{s}\right\} \\
\leq C\left\{(\beta+1)\|u\|_{s}+(\beta+1)\|w\|_{s}+\left\|u^{2}\right\|_{s}+\|u w\|_{s}+\left\|w^{2}\right\|_{s}+\sum_{k=0}^{m-1}\left\|u^{k} w^{m-1-k}\right\|_{s}\right\} \\
\leq C(\beta+1)\|u\|_{s}+C(\beta+1)\|w\|_{s}+C^{2}\|u\|_{s}^{2}+C^{2}\|u\|_{s}\|w\|_{s}+C^{2}\|w\|_{s}^{2}+ \\
C^{m+1} \sum_{k=0}^{m-1}\|u\|_{s}^{k}\|w\|_{s}^{m-1-k}=: L\left(\|u\|_{s},\|w\|_{s}\right)
\end{gathered}
$$

For $M, T>0$ and $f_{0} \in \mathcal{H}_{s}$, we set

$$
\mathcal{X}\left(M, T, f_{0}\right):=\left\{u(t) \in C\left([0, T] ; \mathcal{H}_{s}\right) ; \sup _{t \in[0, T]}\left\|u(t)-V(t) f_{0}\right\|_{s} \leq M\right\}
$$

We endow $\mathcal{X}\left(M, T, f_{0}\right)$ with the metric $d(u(t), v(t))=\sup _{t \in[0, T]}\|u(t)-v(t)\|_{s}$. The resulting metric space is complete.

Proposition 3. Take $f_{0} \in \mathcal{H}_{s}$ with $s>n / 2+2 \delta, \delta>0$. Then, there exists $T=T\left(\left\|f_{0}\right\|_{s}, M\right)>0$ and a unique function $u \in C\left([0, T] ; \mathcal{H}_{s}\right)$ satisfying the integral equation

$$
\begin{equation*}
u(t)=\boldsymbol{V}(t) f_{0}+\int_{0}^{t} \boldsymbol{V}(t-\tau) F(u(\tau)) d \tau \tag{4.7}
\end{equation*}
$$

such that $u(0)=f_{0}$. Here $F(u)=(\beta+1) u^{2}-u^{3}+P(\boldsymbol{D})\left(u^{m}\right)$ as before.
Remark 1. Since $F(u)$ is not a locally Lipschitz function because inequality 4.6) involves two different norms, the existence of mild solutions of type 4.7) does not follow directly from standard results in semigroup theory, see e.g. [20, Theorem 5.2.2].

Proof. Given $u \in \mathcal{X}\left(M, T, f_{0}\right)$, we set

$$
\boldsymbol{N} u(t)=\boldsymbol{V}(t) f_{0}+\int_{0}^{t} \boldsymbol{V}(t-\tau) F(u(\tau)) d \tau
$$

Claim 1. $\boldsymbol{N}: \mathcal{X}\left(M, T, f_{0}\right) \longrightarrow C\left([0, T] ; \mathcal{H}_{s}\right)$.
Take $u \in \mathcal{X}\left(M, T, f_{0}\right)$, then

$$
\begin{gather*}
\left\|\boldsymbol{N} u\left(t_{1}\right)-\boldsymbol{N} u\left(t_{2}\right)\right\|_{s} \leq\left\|\left(\boldsymbol{V}\left(t_{1}\right)-\boldsymbol{V}\left(t_{2}\right)\right) f_{0}\right\|_{s} \tag{4.8}\\
+\left\|\int_{0}^{t_{1}} \boldsymbol{V}\left(t_{1}-\tau\right) F(u(\tau)) d \tau-\int_{0}^{t_{2}} \boldsymbol{V}\left(t_{2}-\tau\right) F(u(\tau)) d \tau\right\|_{s} .
\end{gather*}
$$

Since $\{\boldsymbol{V}(t)\}_{t \geq 0}$ is a C_{0}-semigroup in \mathcal{H}_{s}, cf. Lemma 5 the first term on the right-hand side of the inequality (4.8) tends to zero when $t_{2} \rightarrow t_{1}$. To study the second term, we assume without loss of generality that $0<t_{1}<t_{2}<T$. Then

$$
\begin{aligned}
& \left\|\int_{0}^{t_{1}} \boldsymbol{V}\left(t_{1}-\tau\right) F(u(\tau)) d \tau-\int_{0}^{t_{2}} \boldsymbol{V}\left(t_{2}-\tau\right) F(u(\tau)) d \tau\right\|_{s} \\
& \leq \int_{0}^{t_{1}}\left\|\left\{\boldsymbol{V}\left(t_{1}-\tau\right)-\boldsymbol{V}\left(t_{2}-\tau\right)\right\} F(u(\tau))\right\|_{s} d \tau+\int_{t_{1}}^{t_{2}}\left\|\boldsymbol{V}\left(t_{2}-\tau\right) F(u(\tau))\right\|_{s} d \tau
\end{aligned}
$$

By using Lemma 6 with $\lambda=\alpha$ and Proposition 2,

$$
\begin{gathered}
\left\|\left(\boldsymbol{V}\left(t_{1}-\tau\right)-\boldsymbol{V}\left(t_{2}-\tau\right)\right) F(u(\tau))\right\|_{s} \\
\leq\left\|\boldsymbol{V}\left(t_{1}-\tau\right) F(u(\tau))\right\|_{s}+\left\|\boldsymbol{V}\left(t_{2}-\tau\right) F(u(\tau))\right\|_{s} \\
\leq\left\{2+C_{0}\left(\frac{1}{2 \gamma\left(t_{1}-\tau\right)}\right)^{\frac{1}{2}}+C_{0}\left(\frac{1}{2 \gamma\left(t_{2}-\tau\right)}\right)^{\frac{1}{2}}\right\}\|F(u(\tau))\|_{s-\alpha} \\
\leq 2\left\{1+C_{0}\left(\frac{1}{2 \gamma\left(t_{1}-\tau\right)}\right)^{\frac{1}{2}}\right\} \sup _{\tau \in[0, T]}\|F(u(\tau))\|_{s-\alpha} \\
=A(T, s, \alpha)\left\{1+C_{0}\left(\frac{1}{2 \gamma\left(t_{1}-\tau\right)}\right)^{\frac{1}{2}}\right\} \in L^{1}\left(\left[0, t_{1}\right]\right)
\end{gathered}
$$

Now, by applying the dominated convergence theorem,

$$
\lim _{t_{2} \rightarrow t_{1}} \int_{0}^{t_{1}}\left\|\left(\boldsymbol{V}\left(t_{1}-\tau\right)-\boldsymbol{V}\left(t_{2}-\tau\right)\right) F(u(\tau))\right\|_{s} d \tau=0
$$

By a similar argument, one shows that

$$
\left\|\boldsymbol{V}\left(t_{2}-\tau\right) F(u(\tau))\right\|_{s-2 \delta} \leq 1+C_{0}\left(\frac{1}{2 \gamma\left(t_{2}-\tau\right)}\right)^{\frac{1}{2}} L\left(\|u(\tau)\|_{s}, 0\right)\|u(\tau)\|_{s}
$$

and since

$$
\begin{equation*}
\|u(\tau)\|_{s} \leq\left\|u(\tau)-\boldsymbol{V}(\tau) f_{0}\right\|_{s}+\left\|\boldsymbol{V}(\tau) f_{0}\right\|_{s} \leq M+\left\|f_{0}\right\|_{s}, \text { for all } \tau \in[0, T] \tag{4.9}
\end{equation*}
$$

we have

$$
\begin{gather*}
\int_{t_{1}}^{t_{2}}\left\|\boldsymbol{V}\left(t_{2}-\tau\right) F(u(\tau))\right\|_{s} d \tau \tag{4.10}\\
\leq L\left(M+\left\|f_{0}\right\|_{s}, 0\right)\left(M+\left\|f_{0}\right\|_{s}\right)\left(\int_{t_{1}}^{t_{2}}\left(1+C_{0}\left(\frac{1}{2 \gamma\left(t_{2}-\tau\right)}\right)^{\frac{1}{2}}\right) d \tau\right) \\
=L\left(M+\left\|f_{0}\right\|_{s}, 0\right)\left(M+\left\|f_{0}(\cdot)\right\|_{s}\right)\left(\left(t_{2}-t_{1}\right)+C_{0}\left(\sqrt{\frac{2\left(t_{2}-t_{1}\right)}{\gamma}}\right)\right)
\end{gather*}
$$

and consequently, by applying the dominated convergence theorem,

$$
\lim _{t_{2} \rightarrow t_{1}} \int_{t_{1}}^{t_{2}}\left\|\boldsymbol{V}\left(t_{2}-\tau\right) F(u(\tau))\right\|_{s} d \tau=0
$$

Claim 2. There exists T_{0} such that $\boldsymbol{N}\left(\mathcal{X}\left(M, T_{0}, f_{0}\right)\right) \subseteq \mathcal{X}\left(M, T_{0}, f_{0}\right)$.
By using a reasoning similar to the one used to established inequality (4.10), one gets

$$
\begin{gathered}
\left\|(\boldsymbol{N} u)(t)-\boldsymbol{V}(t) f_{0}\right\|_{s} \leq \int_{0}^{t}\|\boldsymbol{V}(t-\tau) F(u(\tau))\|_{s} d \tau \\
\leq L\left(M+\left\|f_{0}\right\|_{s}, 0\right)\left(M+\left\|f_{0}\right\|_{s}\right)\left(\int_{0}^{t}\left(1+C_{0}\left(\frac{1}{2 \gamma(t-\tau)}\right)^{\frac{1}{2}}\right) d \tau\right) \\
\leq L\left(M+\left\|f_{0}\right\|_{s}, 0\right)\left(M+\left\|f_{0}\right\|_{s}\right)\left(T+C_{0}\left(\sqrt{\frac{2 T}{\gamma}}\right)\right)
\end{gathered}
$$

Now taking T_{0} such that

$$
\begin{equation*}
L\left(M+\left\|f_{0}\right\|_{s}, 0\right)\left(M+\left\|f_{0}\right\|_{s}\right)\left(T_{0}+C_{0}\left(\sqrt{\frac{2 T_{0}}{\gamma}}\right)\right) \leq M \tag{4.11}
\end{equation*}
$$

we conclude that $\boldsymbol{N} u \in \mathcal{X}\left(M, T_{0}, f_{0}\right)$, for all $u(t) \in \mathcal{X}\left(M, T_{0}, f_{0}\right)$.
Claim 3. There exists T_{0}^{\prime} such that \boldsymbol{N} is a contraction on $\mathcal{X}\left(M, T_{0}^{\prime}, f_{0}\right)$.
Given $u(t), v(t) \in \mathcal{X}\left(M, T_{0}, f_{0}\right)$, by using Proposition 2, with

$$
C_{0}^{\prime}=L\left(M+\left\|f_{0}\right\|_{s}, M+\left\|f_{0}\right\|_{s}\right)
$$

see (4.9), we have

$$
\begin{aligned}
\|\boldsymbol{N} u(t)-\boldsymbol{N} v(t)\|_{s} & \leq \int_{0}^{t}\|\boldsymbol{V}(t-\tau)[F(u(\tau))-F(v(\tau))]\|_{s} d \tau \\
& \leq \int_{0}^{t}\left(1+C_{0}\left(\frac{1}{2 \gamma(t-\tau)}\right)^{\frac{1}{2}}\right)\|F(u(\tau))-F(v(\tau))\|_{s-\alpha} d \tau \\
& \leq C_{0}^{\prime} \int_{0}^{t}\left(1+C_{0}\left(\frac{1}{2 \gamma(t-\tau)}\right)^{\frac{1}{2}}\right)\|u(\tau)-v(\tau)\|_{s} d \tau \\
& \leq C_{0}^{\prime}\left(\sup _{\tau \in\left[0, T_{0}\right]}\|u(\tau)-v(\tau)\|_{s}\right) \int_{0}^{t}\left(1+C_{0}\left(\frac{1}{2 \gamma(t-\tau)}\right)^{\frac{1}{2}}\right) d \tau \\
& \leq C_{0}^{\prime}\left(T_{0}+C_{0}\left(\sqrt{\frac{2 T_{0}}{\gamma}}\right)\right) d(u(t), v(t))
\end{aligned}
$$

Thus, taking T_{0}^{\prime} such that

$$
\begin{equation*}
C:=C_{0}^{\prime}\left(T_{0}^{\prime}+C_{0}\left(\sqrt{\frac{2 T_{0}^{\prime}}{\gamma}}\right)\right)<1 \tag{4.12}
\end{equation*}
$$

we obtain that $d(\boldsymbol{N} u(t), \boldsymbol{N} v(t)) \leq C d(u(t), v(t))$, that is, \boldsymbol{N} is a strict contraction in $\mathcal{X}\left(M, T_{0}^{\prime}, f_{0}\right)$. We pick T such that the inequalities (4.11) and (4.11) hold true, and apply the Banach Fixed Point Theorem to get $u(t) \in \mathcal{X}\left(M, T, f_{0}\right)$ a unique fixed point of \boldsymbol{N}, which satisfies the integral equation (4.7), where $T=T\left(\left\|f_{0}\right\|_{s}, M\right)>$ 0 .

Remark 2. Let \mathcal{X} be a Banach space and let $\boldsymbol{A}: \operatorname{Dom}(\boldsymbol{A}) \rightarrow \mathcal{X}$ be an operator with dense domain such that \boldsymbol{A} is the infinitesimal generator of a contraction semigroup $\left(\boldsymbol{S}_{t}\right)_{t>0}$. Fix $T>0$ and let $f:[0, T] \rightarrow \mathcal{X}$ be a continuous function. Consider the Cauchy problem:

$$
\left\{\begin{array}{l}
u \in C([0, T], \operatorname{Dom}(\boldsymbol{A})) \cap C^{1}([0, T], \mathcal{X}) \tag{4.13}\\
u_{t}=\boldsymbol{A} u+f(t), \quad t \in[0, T] \\
u(0)=u_{0} \in \mathcal{X}
\end{array}\right.
$$

Then

$$
\begin{equation*}
\left.u(t)=\boldsymbol{S}(t) u_{0}+\int_{0}^{t} \boldsymbol{S}(t-\tau) f(\tau)\right) d \tau \tag{4.14}
\end{equation*}
$$

for $t \in[0, T]$, see e.g. [3, Lemma 4.1.1]. Conversely, if $u_{0} \in \operatorname{Dom}(\boldsymbol{A}), f \in$ $C([0, T], \mathcal{X})$,

$$
\int_{(0, T)}\|f(\tau)\|_{\mathcal{X}} d \tau<\infty
$$

then a solution of (4.14) is a solution of the Cauchy problem 4.13), see e.g. [3, Proposition 4.1.6].

Proposition 4. The problem (4.2) is equivalent to the integral equation (4.7). More precisely, if $s>n / 2+2 \delta$, and $u(t) \in C\left([0, T] ; \mathcal{H}_{s}\right) \cap C^{1}\left((0, T] ; \mathcal{H}_{s-2 \delta}\right)$ is a solution of 4.2), then $u(t)$ satisfies the integral equation 4.7). Conversely,
if $s>n / 2+2 \delta$, and $u(t) \in C\left([0, T] ; \mathcal{H}_{s}\right)$ is a solution of 4.7), then $u(t) \in$ $C^{1}\left([0, T] ; \mathcal{H}_{s-2 \delta}\right)$ and it satisfies (4.2).

Proof. It follows from Remark 2, Propositions 3, 2, by taking $\boldsymbol{A}=-\gamma \boldsymbol{D}_{x}^{\alpha}-\beta \boldsymbol{I}$, $\operatorname{Dom}(\boldsymbol{A})=\mathcal{H}_{s}, \mathcal{X}=\mathcal{H}_{s-2 \delta}, f(t)=F(u(t))$. We first recall that $\mathcal{D} \hookrightarrow \mathcal{H}_{s} \hookrightarrow$ $\mathcal{H}_{s-2 \delta}$, where \hookrightarrow means continuous embedding, an that \mathcal{D} is dense in $\mathcal{H}_{s-2 \delta}$. If $u(t)$ is a solution of (4.2), then, since $F(u(t)) \in C\left([0, T] ; \mathcal{H}_{s-2 \delta}\right)$, by Proposition 2 $u(t)$ is a solution of (4.7). Conversely, if $u(t)$ is a solution of (4.7), since

$$
\int_{(0, T)}\|F(u(\tau))\|_{s-2 \delta} d \tau<\infty
$$

by Proposition 2, $u(t)$ is a solution of (4.2).
Lemma 7 ([20, Theorem 5.1.1]). If $h \in L^{1}(0, T)$, with $T>0$, is real-valued function such that. If

$$
h(t) \leq a+b \int_{0}^{t} h(s) d s
$$

for $t \in(0, T)$ a.e., where $a \in \mathbb{R}$ and $b \in[0, \infty)$ then $h(t) \leq a e^{b t}$ for almost all t in $(0, T)$.

Proposition 5. Let $f_{0}, f_{1} \in \mathcal{H}_{s}$ and $\left.u(t), v(t) \in C[0, T] ; \mathcal{H}_{s}\right)$ be the corresponding solutions of equation (4.7) with initial conditions $u(0)=f_{0}$ and $v(0)=f_{1}$, respectively. If $s>n / 2+2 \delta$, then

$$
\|u(t)-v(t)\|_{s} \leq e^{L(W, W)}\left\|f_{0}-f_{1}\right\|_{s}
$$

where L is given in Proposition 1 and

$$
W:=\max \left\{\sup _{t \in[0, T]}\|u(t)\|_{s}, \sup _{t \in[0, T]}\|v(t)\|_{s}\right\} .
$$

Proof. By using (4.7), we have

$$
u(t)-v(t)=\boldsymbol{V}(t)\left(f_{0}-f_{1}\right)+\int_{0}^{t} \boldsymbol{V}(t-\tau)\{F(u(\tau))-F(v(\tau))\} d \tau
$$

By using Proposition 1 we get

$$
\begin{aligned}
&\|u(t)-v(t)\|_{s} \leq\left\|f_{0}-f_{1}\right\|_{s}+\int_{0}^{t}\|\boldsymbol{V}(t-\tau)\{F(u(\tau))-F(v(\tau))\}\|_{s} d \tau \\
& \leq\left\|f_{0}-f_{1}\right\|_{s}+\int_{0}^{t}\|F(u(\tau))-F(v(\tau))\|_{s-\alpha} d \tau \\
& \leq\left\|f_{0}-f_{1}\right\|_{s}+L(W, W) \int_{0}^{t}\|u(\tau)-v(\tau)\|_{s} d \tau
\end{aligned}
$$

Now the result follow from Lemma 7 by taking $h(t)=\|u(t)-v(t)\|_{s}, a=$ $\left\|f_{0}-f_{1}\right\|_{s}, b=L(W, W)$.

Proposition 6. Let $s>n / 2+2 \delta$ and $\delta \geq 0$. Then, the map $f_{0} \mapsto u(t)$ is continuous in the following sense: if $f_{0}^{(n)} \rightarrow f_{0}$ in \mathcal{H}_{s} and $u_{n}(t) \in C\left(\left[0, T_{n}\right] ; \mathcal{H}_{s}\right)$, with $T_{n}=T\left(\left\|f_{0}^{(n)}\right\|_{s}, M\right)>0$, are the corresponding solutions to the Cauchy
problem (4.2) with $u_{n}(0)=f_{0}^{(n)}$. Then, there exist $T>0$ and a positive integer $N=N\left(\gamma, f_{0}, T\right)$ such that $T_{n} \geq T$ for all $n \geq N$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{t \in[0, T]}\left\|u_{n}(t)-u(t)\right\|_{s}=0 \tag{4.15}
\end{equation*}
$$

Proof. By Proposition 33 the $T_{n}=T\left(\left\|f_{0}^{(n)}\right\|_{s}, M\right)>0$ are continuous functions of $\left\|f_{0}^{(n)}\right\|_{s}$, then, given $T^{*}>0$ there exists $N \in \mathbb{N}$ such that $T^{*} \leq T_{n}$ for all $n \geq N$. We set $T:=\min \left\{T^{*}, T_{1}, T_{2}, \ldots, T_{N-1}\right\}$. Therefore, all the $u_{n}(t)$ are defined on $[0, T]$, furthermore, $u \in \mathcal{X}\left(M, T, f_{0}^{(n)}\right)$ for all n, and

$$
\left\|u_{n}(t)\right\|_{s} \leq\left\|f_{0}^{(n)}\right\|_{s}+M \leq \delta+M
$$

where $\delta=\sup _{n \in \mathbb{N}}\left\|f_{0}^{(n)}\right\|_{s}$. Now

$$
\sup _{t \in[0, T]}\left\|u_{n}(t)\right\|_{s} \leq \delta+M \text { for all } n, \text { and } \sup _{t \in[0, T]}\|u(t)\|_{s} \leq \delta+M
$$

On the other hand, by reasoning as in the proof of Proposition [5] we have

$$
\left\|u_{n}(t)-u(t)\right\|_{s} \leq\left\|f_{0}^{(n)}-f_{0}\right\|_{s}+L(\delta+M, \delta+M) \int_{0}^{t}\left\|u_{n}(\tau)-u(\tau)\right\|_{s} d \tau
$$

and by applying Lemma 7

$$
\left\|u_{n}(t)-u(t)\right\|_{s} \leq e^{T L(\delta+M, \delta+M)}\left\|f_{0}^{(n)}-f_{0}\right\|_{s}
$$

which in turns implies (4.15).
4.4. Proof of the Main result. The local well-posedness of the Cauchy problem (4.2) in $\mathcal{H}_{s}, s>n / 2+2 \delta$, follows from Propositions (3) 5, 6,

5. The Blow-up phenomenon

In this section, we study the blow-up phenomenon for the solution of the equation

$$
\left\{\begin{array}{l}
u_{t}=-\gamma \boldsymbol{D}_{x}^{\alpha} u+F(u)+\boldsymbol{D}_{x}^{\alpha_{1}} u^{3}, \quad x \in \mathbb{Q}_{p}^{n}, t \in[0, T] \tag{5.1}\\
u(0)=f_{0} \in \mathcal{H}_{\infty}
\end{array}\right.
$$

where $F(u)=-u^{3}+(\beta+1) u^{2}-\beta u$. We will say that a non-negative solution $u(x, t) \geq 0$ of (5.1) blow-up in a finite time $T>0$, if $\lim _{t \rightarrow T^{-}} \sup _{x \in \mathbb{Q}_{p}^{n}} u(x, t)=+\infty$. This limit makes sense since $\mathcal{H}_{\infty}\left(\mathbb{Q}_{p}^{n}, \mathbb{C}\right)$ is continuously embedded in $C_{0}\left(\mathbb{Q}_{p}^{n}, \mathbb{C}\right)$, [18, Theorem 10.15].
5.1. p-adic wavelets and pseudo-differential operators. We denote by $C\left(\mathbb{Q}_{p}, \mathbb{C}\right)$ the \mathbb{C}-vector space of continuous \mathbb{C}-valued functions defined on \mathbb{Q}_{p}.

We fix a function $\mathfrak{a}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$and define the pseudo-differential operator

$$
\begin{array}{rll}
\mathcal{D} & \rightarrow & C\left(\mathbb{Q}_{p}, \mathbb{C}\right) \cap L^{2} \\
\varphi & \rightarrow & \boldsymbol{A} \varphi,
\end{array}
$$

where $(\boldsymbol{A} \varphi)(x)=\mathcal{F}_{\xi \rightarrow x}^{-1}\left\{\mathfrak{a}\left(|\xi|_{p}\right) \mathcal{F}_{x \rightarrow \xi} \varphi\right\}$.

The set of functions $\left\{\Psi_{r n j}\right\}$ defined as

$$
\begin{equation*}
\Psi_{r n j}(x)=p^{\frac{-r}{2}} \chi_{p}\left(p^{-1} j\left(p^{r} x-n\right)\right) \Omega\left(\left|p^{r} x-n\right|_{p}\right) \tag{5.2}
\end{equation*}
$$

where $r \in \mathbb{Z}, j \in\{1, \cdots, p-1\}$, and n runs through a fixed set of representatives of $\mathbb{Q}_{p} / \mathbb{Z}_{p}$, is an orthonormal basis of $L^{2}\left(\mathbb{Q}_{p}\right)$ consisting of eigenvectors of operator A:

$$
\begin{equation*}
\boldsymbol{A} \Psi_{r n j}=\mathfrak{a}\left(p^{1-r}\right) \Psi_{r n j} \text { for any } r, n, j \tag{5.3}
\end{equation*}
$$

see e.g. [18, Theorem 3.29], [1, Theorem 9.4.2]. Notice that

$$
\widehat{\Psi}_{r n j}(\xi)=p^{\frac{r}{2}} \chi_{p}\left(p^{-r} n \xi\right) \Omega\left(\left|p^{-r} \xi+p^{-1} j\right|_{p}\right)
$$

and then

$$
\mathfrak{a}\left(|\xi|_{p}\right) \widehat{\Psi}_{r n j}(\xi)=\mathfrak{a}\left(p^{1-r}\right) \widehat{\Psi}_{r n j}(\xi)
$$

In particular, $\boldsymbol{D}_{x}^{\alpha} \Psi_{r n j}=p^{(1-r) \alpha} \Psi_{r n j}$, for any r, n, j and $\alpha>0$, and since $p^{(1-r) \alpha}$,

$$
\boldsymbol{D}_{x}^{\alpha} \operatorname{Re}\left(\Psi_{r n j}\right)=p^{(1-r) \alpha} \operatorname{Re}\left(\Psi_{r n j}\right), \boldsymbol{D}_{x}^{\alpha} \operatorname{Im}\left(\Psi_{r n j}\right)=p^{(1-r) \alpha} \operatorname{Im}\left(\Psi_{r n j}\right)
$$

And,

$$
\begin{aligned}
\left\{\Psi_{r n 1}(x)\right\}^{2} & =p^{-r} \chi_{p}\left(2 p^{-1}\left(p^{r} x-n\right)\right) \Omega\left(\left|p^{r} x-n\right|_{p}\right) \\
& =p^{r}\left\{\Psi_{r n 1}(x)\right\}^{2}=p^{\frac{r}{2}} \Psi_{r n 2}(x)
\end{aligned}
$$

then

$$
\boldsymbol{D}_{x}^{\alpha} \operatorname{Re}\left(\left\{\Psi_{r n 1}(x)\right\}^{2}\right)=p^{\frac{r}{2}} p^{(1-r) \alpha} \operatorname{Re}\left(\Psi_{r n 2}(x)\right)=p^{(1-r) \alpha} \operatorname{Re}\left(\left\{\Psi_{r n 1}(x)\right\}^{2}\right)
$$

5.2. The blow-up. In this section, we assume that $u(x, t)$ is real-valued nonnegative solution of the Cauchy problem (4.2) in \mathcal{H}_{∞}. We set $w(x):=\operatorname{Re}\left(\left\{\Psi_{r n 1}(x)\right\}^{2}\right)$, so $\boldsymbol{D}_{x}^{\alpha} w(x)=p^{(1-r) \alpha} w(x)$. Thus $w(x) d x$ defines a (positive) measure. We also set $G(t):=\int_{\mathbb{Q}_{p}} u(x, t) w(x) d x$, where $u(x, t)$ is a positive solution of (5.1), then

$$
\begin{align*}
& G^{\prime}(t)=\int_{\mathbb{Q}_{p}} u_{t}(x, t) w(x) d x=-\gamma \int_{\mathbb{Q}_{p}}\left(\boldsymbol{D}_{x}^{\alpha} u\right)(x, t) w(x) d x \\
& \quad+\int_{\mathbb{Q}_{p}} F(u(x, t)) w(x) d x+\int_{\mathbb{Q}_{p}}\left(\boldsymbol{D}_{x}^{\alpha_{1}} u^{3}\right)(x, t) w(x) d x \tag{5.4}
\end{align*}
$$

Now, by using that $\boldsymbol{D}_{x}^{\alpha} u(\cdot, t), w \in L^{2}$, and $F(u(\cdot, t)), \boldsymbol{D}_{x}^{\alpha_{1}} u^{3}(\cdot, t) \in L^{2}$ since for $s>n / 2, \mathcal{H}_{s}$ is a Banach algebra contained in L^{2} cf. Proposition 1, and applying the Parseval-Steklov theorem, we get (5.4) can be rewritten as

$$
G^{\prime}(t)=\int_{\mathbb{Q}_{p}}\left(-\gamma p^{(1-r) \alpha} u(x, t)+F(u(x, t))+p^{(1-r) \alpha_{1}} u^{3}(x, t)\right) w(x) d x .
$$

Since the function $H(y)=-\gamma p^{(1-r) \alpha} y+F(y)+p^{(1-r) \alpha_{1}} y^{3}$ is convex because

$$
H^{\prime \prime}(y)=-6 y+2(\beta+1)+p^{(1-r) \alpha_{1}} 6 y=6 y\left(p^{(1-r) \alpha_{1}}-1\right)+2(\beta+1) \geq 0
$$

for $y \geq 0$, and $r \leq 0$, we can use the Jensen's inequality to get $G^{\prime}(t) \geq H(G(t))$, then the function $G(t)$ can not remain finite for every $t \in[0, \infty)$. Then there exists
$T \in(0, \infty)$ such that $\lim _{t \rightarrow T^{-}} G(t)=+\infty$, hence $u(x, t)$ blow ups at the time T. Then we have established the following result:

Theorem 2. Let $u(x, t)$ be a positive solution of (5.1). Then there $T \in(0,+\infty)$ depending on the initial datum such that $\lim _{t \rightarrow T^{-}} \sup _{x \in \mathbb{Q}_{p}^{n}} u(x, t)=+\infty$.

6. Numerical Simulations

In this section, we present two numerical simulations for the solution of problem (5.1) (in dimension one) for a suitable initial datum. We solve and visualize (using a heat map) the radial profiles of the solution of (5.1). We consider equation (5.1) for radial functions $u(x, \cdot)$. In [15], Kochubei obtained a formula for $\boldsymbol{D}_{x}^{\alpha} u(x, t)$ as an absolutely convergent real series, we truncate this series and then we apply the classic Euler Forward Method (see e.g. [23]) to find the values of $u\left(p^{-\operatorname{ord}(x)}, t\right)$, when $-20 \leq \operatorname{ord}(x) \leq 20$ (vertical axis) and when $t=\left\{t_{k}: t_{k}=1 / k, k=1, \ldots, 300\right\}$ (horizontal axis). In Figure 1, on the left, the heat map of the numerical solution of the homogeneous equation $u_{t}(x, t)=-\boldsymbol{D}_{x}^{\alpha} u(x, t)$ with initial data $u(x, 0)=$ $4 e^{-p^{|o r d(x)|} / 100}$ (Gaussian bell type), and parameters $p=3, \alpha=0.2, \gamma=1$. On the right side, we have the numerical solution of the equation $u_{t}(x, t)=-\boldsymbol{D}_{x}^{\alpha} u(x, t)-$ $u^{3}(x, t)+(\beta+1) u^{2}(x, t)-\beta u(x, t)+\boldsymbol{D}_{x}^{\alpha_{1}} u^{3}(x, t)$, with $p=3, \alpha=0.2, \alpha_{1}=0.1$, and $\beta=0.7$.

On the left side of the Figure 1, we observe that the solution u is uniformly decreasing with respect to the variable t. This behavior is typical for solutions of diffusion equations. These equations have been extensively studied, see e.g. [18], [35] and the references therein.

On the right side of Figure 1, we see that the evolution of $u(x, t)$ is controlled by the diffusion term $-\boldsymbol{D}_{x}^{\alpha} u(x, t)$, up to a time T (blow-up time), this behavior is similar to that described above. When $t>T$, the reactive term $-u^{3}(x, t)+$ $(\beta+1) u^{2}(x, t)-\beta u(x, t)+\boldsymbol{D}_{x}^{\alpha_{1}} u^{3}(x, t)$ takes over and $u(x, t)$ grows rapidly towards infinity.

The method converges quite fast, but still lacks a mathematical formalism to support it, for this reason we refer to it as a numerical simulation of the solution.

References

[1] Albeverio S., Khrennikov A. Yu., Shelkovich V. M., Theory of p-adic distributions: linear and nonlinear models. London Mathematical Society Lecture Note Series, 370. Cambridge University Press, Cambridge, 2010.
[2] Albeverio S., Khrennikov A. Yu., Shelkovich V. M., The Cauchy problems for evolutionary pseudo-differential equations over p-adic field and the wavelet theory, J. Math. Anal. Appl. 375 (2011), no. 1, 82-98.
[3] Cazenave Thierry, Haraux Alain, An introduction to semilinear evolution equations. Oxford University Press, 1998.
[4] Chacón-Cortés L. F., Gutiérrez-García Ismael, Torresblanca-Badillo Anselmo, Vargas Andrés Finite time blow-up for a p-adic nonlocal semilinear ultradiffusion equation, J. Math. Anal. Appl. 494 (2021), no. 2, Paper No. 124599, 22 pp.
[5] Chacón-Cortés L. F., Zúñiga-Galindo W. A., Non-local operators, non-Archimedean parabolic-type equations with variable coefficients and Markov processes, Publ. Res. Inst. Math. Sci. 51 (2015), no. 2, 289-317.
[6] Chacón-Cortés L. F., Zúñiga-Galindo W. A. Nonlocal operators, parabolic-type equations, and ultrametric random walks, J. Math. Phys. 54 (2013), no. 11, 113503, 17 pp.
[7] De la Cruz Richard, Lizarazo Vladimir, Local well-posedness to the Cauchy problem for an equation of Nagumo type. Preprint 2019.
[8] Gel'fand I.M., Vilenkin N.Y., Generalized Functions. Applications of Harmonic Analysis, vol. 4. Academic Press, New York, 1964.
[9] Górka Przemysław, Kostrzewa Tomasz, Reyes Enrique G., Sobolev spaces on locally compact abelian groups: compact embeddings and local spaces, J. Funct. Spaces 2014, Art. ID 404738, 6 pp.
[10] Górka Przemysław, Kostrzewa Tomasz, Sobolev spaces on metrizable groups, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 2, 837-849.
[11] Halmos Paul R., Measure Theory. D. Van Nostrand Co., Inc., New York, N.Y., 1950.
[12] Haran S., Quantizations and symbolic calculus over the p-adic numbers. Ann. Inst. Fourier 43 (1993), no. 4, 997-1053.
[13] Kaneko H., Besov space and trace theorem on a local field and its application, Math. Nachr. 285 (2012), no. 8-9, 981-996.
[14] Kochubei A.N., Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields. Marcel Dekker, New York, 2001.
[15] Kochubei A. N., Radial solutions of non-Archimedean pseudodifferential equations, Pacific J. Math. 269 (2014), no. 2, 355-369.
[16] Kochubei A.N., A non-Archimedean wave equation, Pacific J. Math. 235 (2008), no. 2, 245261.
[17] Khrennikov Andrei Yu, Kochubei Anatoly N., p-Adic Analogue of the Porous Medium Equation, J Fourier Anal Appl (2018) 24:1401-1424.
[18] Khrennikov Andrei Yu., Kozyrev Sergei V., Zúñiga-Galindo W. A., Ultrametric pseudodifferential equations and applications. Encyclopedia of Mathematics and its Applications, 168. Cambridge University Press, Cambridge, 2018.
[19] Khrennikov Andrei, Oleschko Klaudia, Correa López,Maria de Jesús, Application of p-adic wavelets to model reaction-diffusion dynamics in random porous media, J. Fourier Anal. Appl. 22 (2016), no. 4, 809-822.
[20] Miklavčič Milan. Applied functional analysis and partial differential equations. World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
[21] Nagumo J., Yoshizawa S. and Arimoto S. Bistable Transmission Lines. IEEE Transactions on Circuit Theory, vol. 12, no. 3, pp. 400-412, September 1965.
[22] Oleschko K., Khrennikov A., Transport through a network of capillaries from ultrametric diffusion equation with quadratic nonlinearity, Russ. J. Math. Phys. 24 (2017), no. 4, 505516.
[23] Press W. H., Flannery B. P., Teukolsky, S. A., and Vetterling W. T., Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, p. 710, 1992.
[24] Pourhadi Ehsan, Khrennikov Andrei Yu., Oleschko Klaudia, Correa Lopez María de Jesús, Solving nonlinear p-adic pseudo-differential equations: combining the wavelet basis with the Schauder fixed point theorem, J. Fourier Anal. Appl. 26 (2020), no. 4, Paper No. 70, 23 pp.
[25] Rodríguez-Vega J. J., Zúñiga-Galindo W. A., Elliptic pseudodifferential equations and Sobolev spaces over p-adic fields, Pacific J. Math. 246 (2010), no. 2, 407-420.
[26] Taibleson M.H., Fourier Analysis on Local Fields. Princeton University Press, Princeton, 1975.
[27] Torresblanca-Badillo Anselmo, Zúñiga-Galindo W. A., Ultrametric diffusion, exponential landscapes, and the first passage time problem, Acta Appl. Math. 157 (2018), 93-116.
[28] Torresblanca-Badillo Anselmo, Zúñiga-Galindo W. A., Non-Archimedean pseudodifferential operators and Feller semigroups, p-Adic Numbers Ultrametric Anal. Appl. 10 (2018), no. 1, 57-73.
[29] Vladimirov V. S., Volovich I. V. and Zelenov E. I., p-adic analysis and mathematical physics, World Scientific, 1994.
[30] Zambrano-Luna B., Zúñiga-Galindo W. A., p-Adic Cellular Neural Networks. https://arxiv.org/abs/2107.07980.
[31] Zúñiga-Galindo W. A., Reaction-diffusion equations on complex networks and Turing patterns, via p-adic analysis, J. Math. Anal. Appl. 491 (2020), no. 1, 124239, 39 pp.
[32] Zúñiga-Galindo W. A., Non-archimedean replicator dynamics and Eigen's paradox, J. Phys. A 51 (2018), no. 50, 505601, 26 pp .
[33] Zúñiga-Galindo W. A., Non-Archimedean reaction-ultradiffusion equations and complex hierarchic systems, Nonlinearity 31 (2018), no. 6, 2590-2616.
[34] Zúñiga-Galindo W. A. Non-Archimedean white noise, pseudodifferential stochastic equations, and massive Euclidean fields, J. Fourier Anal. Appl. 23 (2017), no. 2, 288-323.
[35] Zúñiga-Galindo W. A., Pseudodifferential equations over non-Archimedean spaces. Lecture Notes in Mathematics, 2174. Springer, Cham, 2016.
[36] Zúñiga-Galindo W. A., The Cauchy problem for non-Archimedean pseudodifferential equations of Klein-Gordon type, J. Math. Anal. Appl. 420 (2014), no. 2, 1033-1050.
[37] Zúñiga-Galindo W. A., Parabolic equations and Markov processes over p-adic fields. Potential Anal. 28 (2008), no. 2, 185-200.
[38] Zuniga-Galindo W. A., Fundamental solutions of pseudo-differential operators over p-adic fields. Rend, Sem. Mat. Univ. Padova 109 (2003), 241-245.

Pontificia Universidad Javeriana, Departamento de Matemáticas, Cra. 7 N. 40-62, Bogotá D.C., Colombia

Email address: leonardo.chacon@javeriana.edu.co
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Matemáticas, Unidad Querétaro. Libramiento Norponiente \#2000, Fracc. Real de Juriquilla. Santiago de Querétaro, Qro. 76230. México

Email address: cagarcia@math.cinvestav.mx
University of Texas Rio Grande Valley. School of Mathematical \& Statistical Sciences. One West University Blvd. Brownsville, TX 78520, United States

Email address: wilson.zunigagalindo@utrgv.edu

[^0]: 2000 Mathematics Subject Classification. Primary 47G30, 35B44; Secondary 46E36, 32P05.
 Key words and phrases. p-adic analysis, pseudo-differential operators, Sobolev-type spaces, blow-up phenomenon.

 The third author was partially supported by the Lokenath Debnath Endowed Professorship, UTRGV.

