
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Computer Science Faculty Publications and
Presentations College of Engineering and Computer Science

4-2022

Building Squares with Optimal State Complexity in Restricted Building Squares with Optimal State Complexity in Restricted

Active Self-Assembly Active Self-Assembly

Robert M. Alaniz
The University of Texas Rio Grande Valley

Sonya C. Cirlos
The University of Texas Rio Grande Valley

Elize Grizzell
The University of Texas Rio Grande Valley

Robert Schweller
The University of Texas Rio Grande Valley

Tim Wylie
The University of Texas Rio Grande Valley

See next page for additional authors

Follow this and additional works at: https://scholarworks.utrgv.edu/cs_fac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Alaniz, R. M., Caballero, D., Cirlos, S. C., Gomez, T., Grizzell, E., Rodriguez, A., ... & Wylie, T. (2022). Building
Squares with Optimal State Complexity in Restricted Active Self-Assembly. In 1st Symposium on
Algorithmic Foundations of Dynamic Networks (SAND 2022). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik. https://doi.org/10.4230/LIPIcs.SAND.2022.6

This Conference Proceeding is brought to you for free and open access by the College of Engineering and
Computer Science at ScholarWorks @ UTRGV. It has been accepted for inclusion in Computer Science Faculty
Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information,
please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/cs_fac?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F100&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

Authors Authors
Robert M. Alaniz, Sonya C. Cirlos, Elize Grizzell, Robert Schweller, Tim Wylie, David Caballero, Timothy
Gomez, Andrew Rodriguez, and Armando Tenorio

This conference proceeding is available at ScholarWorks @ UTRGV: https://scholarworks.utrgv.edu/cs_fac/100

https://scholarworks.utrgv.edu/cs_fac/100

Building Squares with Optimal State Complexity in
Restricted Active Self-Assembly
Robert M. Alaniz #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

David Caballero #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Sonya C. Cirlos #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Timothy Gomez #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Elise Grizzell #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Andrew Rodriguez #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Robert Schweller #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Armando Tenorio #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Tim Wylie #

Department of Computer Science,
University of Texas Rio Grande Valley, TX, USA

Abstract
Tile Automata is a recently defined model of self-assembly that borrows many concepts from cellular
automata to create active self-assembling systems where changes may be occurring within an assembly
without requiring attachment. This model has been shown to be powerful, but many fundamental
questions have yet to be explored. Here, we study the state complexity of assembling n × n squares
in seeded Tile Automata systems where growth starts from a seed and tiles may attach one at a
time, similar to the abstract Tile Assembly Model. We provide optimal bounds for three classes of
seeded Tile Automata systems (all without detachment), which vary in the amount of complexity
allowed in the transition rules. We show that, in general, seeded Tile Automata systems require
Θ(log 1

4 n) states. For Single-Transition systems, where only one state may change in a transition
rule, we show a bound of Θ(log 1

3 n), and for deterministic systems, where each pair of states may
only have one associated transition rule, a bound of Θ((log n

log log n
) 1

2).

2012 ACM Subject Classification Theory of computation → Computational geometry; Applied
computing → Computational biology; Theory of computation → Self-organization

Keywords and phrases Active Self-Assembly, State Complexity, Tile Automata

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.6

Supplementary Material Software (Source Code): https://github.com/asarg/AutoTile
archived at swh:1:dir:fd83de54cc0e347b80c90911b19bd8e0266a5bc8

Funding This research was supported in part by National Science Foundation Grant CCF-1817602.

Acknowledgements We would like to thank the reviewers for their comments, specifically for pointing
us toward relevant Cellular Automata Literature.

1 Introduction

Self-assembly is the process by which simple elements in a system organize themselves into
more complex structures based on a set of rules that govern their interactions. These types
of systems occur naturally and can be easily constructed artificially to offer many advantages
when building micro or nanoscale objects. One abstraction of these systems that has yielded
interesting results is Tile Self-Assembly.

© Robert M. Alaniz, David Caballero, Sonya C. Cirlos, Timothy Gomez, Elise Grizzell,
Andrew Rodriguez, Robert Schweller, Armando Tenorio, and Tim Wylie;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 6; pp. 6:1–6:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:robert.alaniz01@utrgv.edu
mailto:david.caballero01@utrgv.edu
mailto:sonya.cirlos01@utrgv.edu
mailto:timothy.gomez01@utrgv.edu
mailto:elise.grizzell01@utrgv.edu
mailto:andrew.rodriguez09@utrgv.edu
mailto:robert.schweller@utrgv.edu
mailto:armando.tenorio01@utrgv.edu
mailto:timothy.wylie@utrgv.edu
https://doi.org/10.4230/LIPIcs.SAND.2022.6
https://github.com/asarg/AutoTile
https://archive.softwareheritage.org/swh:1:dir:fd83de54cc0e347b80c90911b19bd8e0266a5bc8;origin=https://github.com/asarg/AutoTile;visit=swh:1:snp:72b9413e0d8881c9412792ab8954d592e89807ae;anchor=swh:1:rev:c6f3135642358c0cd08fde7d45f34b6b842e6a4e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

In the abstract Tile Assembly Model (aTAM) [35], the elements of a system are represented
using labeled unit squares called tiles. A system is initialized with a seed (a tile or assembly)
that grows as other single tiles attach until there are no more valid attachments. The behavior
of a system can then be programmed, using the interactions of tiles, and is known to be
capable of Turing Computation [35], is Intrinsically Universal [14], and can assemble general
scaled shapes [33]. However, many of these results utilize a concept called cooperative binding,
where a tile must attach to an assembly using the interaction from two other tiles. Unlike
with cooperative binding, the non-cooperative aTAM is not Intrinsically Universal [25,27]
and more recent work has shown that it is not capable of Turing Computation [26]. Many
extensions of this model increase the power of non-cooperative systems [4, 16,18,22,23,30].

One recent model of self-assembly is Tile Automata [8]. This model marries the concept
of state changes from Cellular Automata [19, 28, 37] and the assembly process from the
2-Handed Assembly model (2HAM) [6]. Previous work [3,7,8] has explored Tile Automata
as a unifying model for comparing the relative powers of the many different Tile Assembly
models. The complexity of verifying the behavior of systems along with their computational
power was studied in [5]. Many of these works impose additional experimentally motivated
limitations on the Tile Automata model that help connect the model and its capabilities to
potential molecular implementations, such as using DNA assemblies with sensors to assemble
larger structures [21], building spacial localized circuits on DNA origami [10], or DNA walkers
that sort cargo [34].

In this paper, we explore the aTAM generalized with state changes; we define our
producible assemblies as what can be grown by attaching tiles one at a time to a seed
tile or performing transition rules, which we refer to as seeded Tile Automata. This is a
bounded version of Asynchronous Cellular Automata [15]. Reachability problems, which are
similar to verification problems in self-assembly, have been studied with many completeness
results [13]. Further, the freezing property used in this and previous work also exists in
Cellular Automata [20,29].1 Freezing is defined differently in Cellular Automata by requiring
that there exists an ordering to the states.

While Tile Automata has many possible metrics, we focus on the number of states needed
to uniquely assemble n × n squares at the smallest constant temperature, τ = 1. We achieve
optimal bounds in three versions of the model with varying restrictions on the transition
rules. Our results, along with previous results in the aTAM, are outlined in Table 1.

1.1 Previous Work

In the aTAM, the number of tile types needed, for nearly all n, to construct an n × n square
is Θ(log n

log n log n) [1, 31] with temperature τ = 2 (row 2 of Table 1). The same lower bounds
hold for τ = 1 (row 1 of Table 1). The run time of this system was also shown to be optimal
Θ(n) [1]. Other bounds for building rectangles were shown in [2]. While no tighter bounds2

have been shown for n × n squares at τ = 1 in the aTAM, generalizations to the model
that allow (just-barely) 3D growth have shown an upper bound of O(log n) for tile types
needed [11]. Recent work in [17] shows improved upper and lower bounds on building thin
rectangles in the case of τ = 1 and in (just-barely) 3D.

Other models of self-assembly have also been shown to have a smaller tile complexity,
such as the staged assembly model [9, 12] and temperature programming [24]. Investigation
into different active self-assembly models have also explored the run time of systems [32,36].

1 We would like to thank a reviewer for bringing these works to our attention.
2 Other than trivial O(n) bounds.

R. M. Alaniz et al. 6:3

Table 1 Bounds on the number of states for n × n squares in the Abstract Tile Assembly model,
with and without cooperative binding, and the seeded Tile Automata model with our transition
rules. ST stands for Single-Transition.

Model τ
n × n Squares

Lower Upper Theorem

aTAM 1 Ω(log n
log log n

) O(n) [31], [1]

aTAM 2 Θ(log n
log log n

) [31], [1]

Flexible Glue aTAM 2 Θ(log 1
2 n) [2]

Seeded TA Det. 1 Θ((log n
log log n

) 1
2) Thm. 2, 12

Seeded TA ST 1 Θ(log 1
3 n) Thm. 4, 12

Seeded TA 1 Θ(log 1
4 n) Thm. 3, 12

1.2 Our Contributions

In this work, we explore building an important benchmark shape, squares, in non-cooperative
seeded Tile Automata. We also consider only affinity-strengthening transition rules that
remove the ability for an assembly to break apart. Our results are shown in Table 1.

We start in Section 3 by proving lower bounds for building n × n squares based on three
different transition rule restrictions. The first is nondeterministic or general seeded Tile
Automata, where there are no restrictions and a pair of states may have multiple transition
rules. The second is Single-Transition rules where only one tile may change states in a
transition rule, but we still allow multiple rules for each pair of states. The last restriction,
Deterministic, is the most restrictive where each pair of states may only have one transition
rule (for each direction).

In Section 4, we use Transition Rules to optimally encode strings in the various versions
of the model. We use these encodings as gadgets to seed the future constructions. We show
how to build optimal state complexity rectangles in Section 5, and finally optimal state
complexity squares in Section 6. Future work is discussed in Section 7.

AutoTile. To test our constructions, we developed AutoTile, a seeded Tile Automata
simulator. Each system discussed in the paper is currently available for simulation. AutoTile
is available at https://github.com/asarg/AutoTile.

2 Definitions

The Tile Automata model differs quite a bit from normal self-assembly models since a tile
may change state, which draws inspiration from Cellular Automata. Thus, there are two
aspects of a TA system being: the self-assembling that may occur with tiles in a state and
the changes to the states once they have attached to each other. To address these aspects,
we define the building blocks and interactions, and then the definitions around the model
and what it may assemble or output. Finally, since we are looking at a limited TA system,
we also define specific limitations and variations of the model. For reference, an example
system is shown in Figure 1.

SAND 2022

https://github.com/asarg/AutoTile

6:4 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

2.1 Building Blocks

The basic definitions of all self-assembly models include the concepts of tiles, some method
of attachment, and the concept of aggregation into larger assemblies. The Cellular Automata
aspect also brings in the concept of transitions.

Tiles. Let Σ be a set of states or symbols. A tile t = (σ, p) is a non-rotatable unit square
placed at point p ∈ Z2 and has a state of σ ∈ Σ.

Affinity Function. An affinity function Π over a set of states Σ takes an ordered pair of
states (σ1, σ2) ∈ Σ × Σ and an orientation d ∈ D, where D = {⊥, ⊢}, and outputs an element
of Z0. The orientation d is the relative position to each other with ⊢ meaning horizontal and
⊥ meaning vertical, with the σ1 being the west or north state respectively. We refer to the
output as the Affinity Strength between these two states.

Transition Rules. A Transition Rule consists of two ordered pairs of states (σ1, σ2), (σ3, σ4)
and an orientation d ∈ D, where D = {⊥, ⊢}. This denotes that if the states (σ1, σ2) are
next to each other in orientation d (σ1 as the west/north state) they may be replaced by the
states (σ3, σ4).

Assembly. An assembly A is a set of tiles with states in Σ such that for every pair of tiles
t1 = (σ1, p1), t2 = (σ2, p2), p1 ≠ p2. Informally, each position contains at most one tile.
Further, we say assemblies are equal in regards to translation. Two assemblies A1 and A2
are equal if there exists a vector v⃗ such that A1 = A2 + v⃗.

Let BG(A) be the bond graph formed by taking a node for each tile in A and adding
an edge between neighboring tiles t1 = (σ1, p1) and t2 = (σ2, p2) with a weight equal to
Π(σ1, σ2). We say an assembly A is τ -stable for some τ ∈ Z0 if the minimum cut through
BG(A) is greater than or equal to τ .

2.2 The Tile Automata Model

Here, we define and investigate the Seeded Tile Automata model, which differs by only
allowing single tile attachments to a growing seed similar to the aTAM.

Seeded Tile Automata. A Seeded Tile Automata system is a 6-tuple Γ = {Σ, Λ, Π, ∆, s, τ}
where Σ is a set of states, Λ ⊆ Σ a set of initial states, Π is an affinity function, ∆ is a set of
transition rules, s is a stable assembly called the seed assembly, and τ is the temperature (or
threshold). Our results use the most restrictive version of this model where s is a single tile.

Attachment Step. A tile t = (σ, p) may attach to an assembly A at temperature τ to build
an assembly A′ = A

⋃
t if A′ is τ -stable and σ ∈ Λ. We denote this as A →Λ,τ A′.

Transition Step. An assembly A is transitionable to an assembly A′ if there exists two
neighboring tiles t1 = (σ1, p1), t2 = (σ2, p2) ∈ A (where t1 is the west or north tile) such
that there exists a transition rule in ∆ with the first pair being (σ1, σ2) and A′ = (A \
{t1, t2})

⋃
{t3 = (σ3, p1), t4 = (σ4, p2)}. We denote this as A →∆ A′.

R. M. Alaniz et al. 6:5

S X1 X2

Y1 Y2 0

X1'

SX1 X2 Y1

Y2 0S Y1
X1

X1 X2

Y1 Y2

0

X1Y1

Y2 0 X1'

0

Y2

Y1

States Transitions

Affinity Initial States

0

X1Y1 0S S

(a)

S X2

Y1

Y2

S X1

Y1

Y2

S X1 X2

Y1

Y2
0X1 X2

S X1 X2

Y1

Y2
0X1 X2

0
X1'

S X1 X2

Y1

Y2
0X1 X2

X20

0

(b)

Figure 1 (a) Example of a Tile Automata system, it should be noted that τ = 1 and state S

is our seed. (b) A walkthrough of our example Tile Automata system building the 3 × 3 square it
uniquely produces. We use dotted lines throughout our paper to represent tiles attaching to one
another.

Producibles. We refer to both attachment steps and transition steps as production steps,
we define A →∗ A′ as the transitive closure of A →Λ,τ A′ and A →∆ A′. The set of producible
assemblies for a Tile Automata system Γ = {Σ, Λ, Π, ∆, s, τ} is written as PROD(Γ). We
define PROD(Γ) recursively as follows,

s ∈ PROD(Γ)
A′ ∈ PROD(Γ) if ∃A ∈ PROD(Γ) such that A →Λ,τ A′.
A′ ∈ PROD(Γ) if ∃A ∈ PROD(Γ) such that A →∆ A′.

Terminal Assemblies. The set of terminal assemblies for a Tile Automata system Γ =
{Σ, Λ, Π, ∆, τ} is written as TERM(Γ). This is the set of assemblies that cannot grow or
transition any further. Formally, an assembly A ∈ TERM(Γ) if A ∈ PROD(Γ) and there
does not exists any assembly A′ ∈ PROD(Γ) such that A →Λ,τ A′ or A →∆ A′. A Tile
Automata system Γ = {Σ, Λ, Π, ∆, s, τ} uniquely assembles an assembly A if A ∈ TERM(Γ),
and for all A′ ∈ PROD(Γ), A′ →∗ A.

2.3 Limited Model Reference
We explore an extremely limited version of seeded TA that is affinity-strengthening, freez-
ing, and may be a single-transition system. We investigate both deterministic and non-
deterministic versions of this model.

Affinity Strengthening. We only consider transitions rules that are affinity strengthening,
meaning for each transition rule ((σ1, σ2), (σ3, σ4), d), the bond between (σ3, σ4) must be
at least the strength of (σ1, σ2). Formally, Π(σ3, σ4, d) ≥ Π(σ1, σ2, d). This ensures that
transitions may not induce cuts in the bond graph.

In the case of non-cooperative systems (τ = 1), the affinity strength between states is
always 1 so we may refer to the affinity function as an affinity set Λs, where each affinity is a
3-pule (σ1, σ2, d).

Freezing. Freezing systems were introduced with Tile Automata. A freezing system simply
means that a tile may transition to any state only once. Thus, if a tile is in state A and
transitions to another state, it is not allowed to ever transition back to A.

Deterministic vs. Nondeterministic. For clarification, a deterministic system in TA has
only one possible production step at a time, whether that be an attachment or a state
transition. A nondeterministic system may have many possible production steps and any
choice may be taken.

SAND 2022

6:6 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

Single-Transition System. We restrict our TA system to only use single-transition rules.
This means that for each transition rule one of the states may change, but not both. It
should be noted that we still allow Nondeterminism in this system.

3 State Space Lower Bounds

Let p(n) be a function from the positive integers to the set {0, 1}, informally termed a
proposition, where 0 denotes the proposition being false and 1 denotes the proposition being
true. We say a proposition p(n) holds for almost all n if limn→∞

1
n

∑n
i=1 p(i) = 1.

▶ Lemma 1. Let U be a set of TA systems, b be a one-to-one function mapping each element
of U to a string of bits, and ϵ a real number from 0 < ϵ < 1. Then for almost all integers n,
any TA system Γ ∈ U that uniquely assembles either an n × n square or a 1 × n line has a
bit-string of length |b(Γ)| ≥ (1 − ϵ) log n.

Proof. For a given i ≥ 1, let Mi ∈ U denote the TA system in U with the minimum
value |b(Mi)| over all systems in U that uniquely assembly an i × i square or 1 × i line,
and let Mi be undefined if no such system in U builds such a shape. Let p(i) be the
proposition that |b(Mi)| ≥ (1 − ϵ) log i. We show that limn→∞

1
n

∑n
i=1 p(i) = 1. Let

Rn = {Mi|1 ≤ i ≤ n, |b(Mi)| < (1 − ϵ) log n}. Note that n − |Rn| ≤
∑n

i=1 p(i). By the
pigeon-hole principle, |Rn| ≤ 2(1−ϵ) log n = n(1−ϵ). Therefore,

lim
n→∞

1
n

n∑
i=1

p(i) ≥ lim
n→∞

1
n

(n − |Rn|) ≥ lim
n→∞

1
n

(n − n1−ϵ) = 1. ◀

▶ Theorem 2 (Deterministic TA). For almost all n, any Deterministic Tile Automata system
that uniquely assembles either a 1 × n line or an n × n square contains Ω(log n

log log n) 1
2 states.

Proof. We can create a one-to-one mapping b(Γ) from any deterministic TA system to
bit-strings in the following way. Let S denote the set of states in a given system. We encode
the state set in O(log |S|) bits, we encode the affinity function in a |S| × |S| table of strengths
in O(|S|2) bits (assuming a constant bound on bonding thresholds), and we encode the rules
of the system in an |S| × |S| table mapping pairs of rules to their unique new pair of rules
using O(|S|2 log |S|) bits, for a total of O(|S|2 log |S|) bits to encode any |S| state system.

Let Γn denote the smallest state system that uniquely assembles an n × n square (or
similarly a 1×n line), and let Sn denote the state set. By Lemma 1, |b(Γn)| ≥ (1−ϵ) log n for
almost all n, and so |Sn|2 log |Sn| = Ω(log n) for almost all n. We know that |Sn| = O(log n),
so for some constant c, |Sn| ≥ c(log n

log log n) 1
2 for almost all n. ◀

▶ Theorem 3 (Nondeterministic TA). For almost all n, any Tile Automata system (in
particular any Nondeterministic system) that uniquely assembles either a 1 × n line or an
n × n square contains Ω(log

1
4 n) states.

▶ Theorem 4 (Single-Transition TA). For almost all n, any Single-Transition Tile Automata
system that uniquely assembles either a 1 × n line or an n × n square contains Ω(log

1
3 n)

states.

4 String Unpacking

A key tool in our constructions is the ability to build strings efficiently. We do so by encoding
the string in the transition rules.

R. M. Alaniz et al. 6:7

▶ Definition 5 (String Representation). An assembly A over states Σ represent a string S

over a set of symbols U if there exists a mapping from the elements of U to the elements of Σ
and a 1 × |S| (or |S| × 1) subassembly A′ ⊏ A, such that the state of the ith tile of A′ maps
to the ith symbol of S for all 0 ≤ i ≤ |S|.

4.1 Deterministic Transitions
We start by showing how to encode a binary string of length n in a set of (freezing) transition
rules that take place on a 2 × (n + 2) rectangle that will print the string on its right side.
We extend this construction to work for an arbitrary base string.

4.1.1 Overview
Consider a system that builds a length n string. First, we create a rectangle of index states
that is two wide as seen on the left side of Figure 5c. Each row has a unique pair of index
states so each bit of the string is uniquely indexed. We divide the index states into two
groups based on which column they are in, and which “digit” they represent. Let r = ⌈n

1
2 ⌉.

Starting with index states A0 and B0, we build a counter pattern with base r. We use
O(n 1

2) states shown in Figure 2 to build this pattern. We encode each bit of the string in
a transition rule between the two states that index that bit. A table with these transition
rules can be seen in Figure 5b.

The pattern is built in r sections of size 2 × r with the first section growing off of the
seed. The tile in state SA is the seed. There is also a state SB that has affinity for the right
side of SA. The building process is defined in the following steps for each section.
1. The states SB , 0B , 1B , . . . , (r−1B) grow off of SB , forming the right column of the section.

The last B state allows for a′ to attach on its west side. a tiles attach below a′ and below
itself. This places a states in a row south toward the state SA, depicted in Figure 3b.

2. Once a section is built, the states begin to follow their transition rules shown in Figure 4a.
The a state transitions with seed state SA to begin indexing the A column by changing
state a to state 0A. For 1 ≤ y ≤ n − 2, state a vertically transitions with the other y′

A

states, incrementing the index by changing from state a to state (y + 1)A.
3. This new index state zA propagates up by transitioning the a tiles to the state zA as well.

Once the zA state reaches a′ at the top of the column, it transitions a′ to the state z′
A.

Figure 4b presents this process of indexing the A column.
4. If z < n − 1, there is a horizontal transition rule from states (z′

A, n − 1B) to states
(z′

A, n − 1′
B). The state 0B attaches to the north of n − 1B and starts the next section. If

z = n, there does not exist a transition.
5. This creates an assembly with a unique state pair in each row as seen in the first column

of Figure 5c.

4.1.2 States
An example system with the states required to print a length-9 string are shown in Figure 2.
The first states build the seed row of the assembly. The seed tile has the state SA with initial
tiles in state SB . The index states are divided into two groups. The first set of index states,
which we call the A index states, are used to build the left column. For each i, 0 ≤ i < r, we
have the states iA and i′

A. There are two states a and a′, which exist as initial tiles and act
as “blank” states that can transition to the other A states. The second set of index states
are the B states. Again, we have r B states numbered from 0 to r − 1, however, we do not

SAND 2022

6:8 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

a'

a

0B 1B 2B

2'B 2''B

2'A

2A1A

1'A0'A

0A

B StatesA States

SA

SB a'

a0B

1B

2B

Seed

Initial Tiles

NB

NA

SB 1i0iSA

Seed Row

NBNA

Cap Row Symbol States

Figure 2 States to build a length-9 string in deterministic Tile Automata.

SA SB SB a2Ba'

a'

a

a0B

0B

1B

1B

2B

2'B

0B

(a) Affinity Rules for Initial Tiles.

SA SB

0B

1B

2B

2B

a'

0B

1B

SA SB SA SB

0B

2B

a

a SA SB

0Ba

1B

2B

a

a'

1B

(b) Process of Building a section.

Figure 3 (a) Affinity rules to build each section. We only show affinity rules that are actually
used in our system for initial tiles to attach, while our system would have more rules in order to
meet the affinity strengthening restriction. (b) The B column attaches above the state SB as shown
by the dotted lines. The a′ attaches to the left of 2B and the other a states may attach below it
until they reach SA.

have a prime for each state. Instead, there are two states r − 1′
B and r − 1′′

B , that are used
to control the growth of the next column and the printing of the strings. The last states are
the symbol states 0S and 1S , the states that represent the string.

4.1.3 Affinity Rules/Placing Section

Here, we describe the affinity rules for building the first section. We later describe how this is
generalized to the other r − 1 sections. We walk through this process in Figure 3b. To begin,
the B states attach in sequence above the tile SB in the seed row. Assuming r2 = n, n is a
perfect square, the first state to attach is 0B . 1B attaches above this tile and so on. The last
B state r − 1B does not have affinity with 0B, so the column stops growing. However, the
state a′ has affinity on the left of r − 1B and can attach. a has affinity for the south side of
a′, so it attaches below. The a state also has a vertical affinity with itself. This grows the A

column southward toward the seed row.
If n is not a perfect square, we start the index state pattern at a different value. We do

so by finding the value q = r2 − n. In general, the state iB attaches above SB for i = q%r.

4.1.4 Transition Rules/Indexing A column

Once the A column is complete and the last A state is placed above the seed, it transitions
with SA to 0A (assuming r2 = n). A has a vertical transition rule with iA (0 ≤ i < r)
changing the state A to state iA. This can be seen in Figure 4a, where the 0A state is
propagated upward to the A′ state. The A′ state also transitions when 0A is below it, going
from state A′ to state 0′

A. If n is not a perfect square, then A transitions to iA for i = ⌊q/r⌋.
Once the transition rules have finished indexing the A column if i < r − 1, the last state

i′
A transitions with r − 1B changing the state r − 1B to r − 1′

B. This transition can be
seen in Figure 4b. The new state r − 1′

B has an affinity rule allowing 0B to attach above it
allowing the next section to be built. When the state A is above a state j′

A, 0 ≤ j < r − 1, it
transitions with that state changing from state A to j + 1A, which increments the A index.

R. M. Alaniz et al. 6:9

a

0ASA

a

SA

0A

0A
2B0'A

0A

0A a'

0A

0'A
2'B0'A

(a) Transition Rules to Index the first section.

SA SB

0Ba

1B

2B

a

a'

SA SB

0B0A

1B

2B

a

a'

SA SB

0B0A

1B

2B

0A

a'

SA SB

0B0A

1B

2B

0A

0'A

SA SB

0B0A

1B

2'B

0A

0'A

0B

(b) Process of Indexing A column.

Figure 4 (a) The first transition rule used is takes place between the seed SA and the a state
changing to 0A. The state 0A changes the states north of it to 0A or 0′

A. Finally, the state 0′
A

transitions with 2B (b) Once the a states reach the seed row they transition with the state SA to go
to 0A. This state propagates upward to the top of the section.

4.1.5 Look up
After creating a 2 × (n + 2) rectangle, we can encode a length n string S into the transitions
rules. Note that each row of our assembly consists of a unique pair of index states, which we
call a bit gadget. Each bit gadget will look up a specific bit of our string and transition the
B tile to a state representing the value of that bit.

Figure 5b shows how to encode a string S in a table with two columns using r digits to
index each bit. From this encoding, we create our transition rules. Consider the kth bit of S

(where the 0th bit is the least significant bit) for k = ir + j. Add transition rules between the
states iA and jB, changing the state jB to either 0S or 1S based on the kth bit of S. This
transition rule is slightly different for the northmost row of each section as the state in the
A column is i′

A. Also, we do not want the state in the B column, r − 1B, to prematurely
transition to a symbol state. Thus, we have the two states r − 1′

B and r − 1′′
B . As mentioned,

once the A column finishes indexing, it changes the state r − 1B to state r − 1′
B, allowing

for 0B to attach above it, which starts the next column. Once the state 0B (or a symbol
state) is above r − 1′

B , there are no longer any possible undesired attachments, so the state
transitions to r − 1′′

B , which has the transition to the symbol state.
The last section has a slightly different process as r − 1B state will never have a 0B attach

above it, so we have a different transition rule. This alternate process is shown in Figure
5a. The state r − 1′

A has a vertical affinity with the cap state NA. This state allows NB to
attach on its right side. This state transitions with r − 1B below it, changing it directly to
r − 1′′

B , allowing the symbol state to print.

▶ Theorem 6. For any binary string s with length n > 0, there exists a freezing tile automata
system Γs with deterministic transition rules, that uniquely assembles an 2 × (n + 2) assembly
AS that represents S with O(n 1

2) states.

4.1.6 Arbitrary Base
In order to optimally build rectangles, we first print arbitrary base strings. Here, we show
how to generalize Theorem 6 to print base-b strings.

▶ Corollary 7. For any base-b string S with length n > 0, there exists a freezing tile automata
system Γ with deterministic transition rules, that uniquely assembles an (n + 2) × 2 assembly
which represents S with O(n 1

2 + b) states.

4.2 Nondeterministic Single-Transition Systems
For the case of Single-Transition systems, we use the same method from above but instead
building bit gadgets that are of size 3 × 2. Expanding to 3 columns allows for a third index
digit to be used giving us an upper bound of O(n 1

3). The second row will be used for error

SAND 2022

6:10 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

2B

0B

1B

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

a'

a

a

2B

0B

1B

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

2B

0B

1B

a'

a

a

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

NA

2B

0B

1B

2A

2A

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

2'A

NBNA
2''B

0B

1B

2A

2A

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

2'A

NBNA

0B

1B

2A

2A

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

2'A 2B

NBNA
2B

0B

1B

2A

2A

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

2'A

(a) Attaching Cap Row.

A B S

2 2 0
2 1 1
2 0 1
1 2 1
1 1 0
1 0 1
0 2 1
0 1 0
0 0 0

(b) Encoding of S.

S1S2 S1FS2F

0B0A

1B0A

0'A

0B1A

1B1A

1'A

0B2A

1B2A

2'A 2''B

2''B

2''B

2'A

2A

2A

1'A

1A

1A

0'A

0A

0A

1S

0S

0S

0S

0S

1S

1S

1S

1S

(c) Transition Rules.

Figure 5 (a) Once the last section finishes building the state NA attaches above 2′
A. NB then

attaches to the assembly and transitions with 2B changing it directly to 2′′
B so the string may begin

printing. (b) A table indexing the string S = 011101100 using two columns and base |S|
1
2 . (c)

Transition Rules to print S. We build an assembly where each row has a unique pair of index states
in ascending order.

checking which we will describe later in the section. This system utilizes Nondeterministic
transitions, (two states may have multiple rules with the same orientation) and is non-freezing
(a tile may repeat states). This system also contains cycles in its production graph, this
implies the system may run indefinitely. We conjecture this system has a polynomial run
time. Here, let r = ⌈n

1
3 ⌉.

4.2.1 Index States and Look Up States

We generalize the method from above to start from a C column. The B column now behaves
as the second index of the pattern and is built using B′ and B as the A column was in the
previous system. Once the B reaches the seed row, it is indexed with its starting value. This
construction also requires bit gadgets of height 2, so we will use index states iA, iB , iC and
north index states iAu, iBu, iCu for 0 ≤ i < r. This allows us to separate the two functions
of the bit gadget into each row. The north row has transition rules to control the building of
each section. The bottom row has transition rules that encode the represented bit.

In addition to the index states, we use 2r look up states, 0Ci and 1Ci for 0 ≤ i < r.
These states are used as intermediate states during the look up. The first number (0 or 1)
represents the value of the retrieved bit, while the second number represents the C index
of the bit. The A and B indices of the bit will be represented by the other states in the
transition rule.

In the same way as the previous construction, we build the rightmost column first. We
include the C index states as initial states and allow 0C to attach above SC . We include
affinity rules to build the column northwards as follows starting with the southmost state
0C , 0Cu, 1C , 1Cu, . . . , r − 2Cu, r − 1C , r − 1Cu .

To build the other columns, the state b′ can attach on the left of r − 1Cu. The state b

is an initial state and attaches below b′ and itself to grow downward toward the seed row.
The state b transitions with the seed row as in the previous construction to start the column.
However, we alternate between C states and Cu states. The state b above iC transitions b

to iCu. If b is above iCu it transitions to iC . The state b′ above state iB transitions to i′
Bu.

If i < r − 1, the state i′
B and r − 1Cu transition horizontally changing r − 1′

Cu, which allows
0C to attach above it to repeat the process. This is shown in Figure 6b.

R. M. Alaniz et al. 6:11

0C0A

0Cu0Au

0Bu

1C0 2C0

1C1 2C1

0C0

0C1

xB

0B

1C 2C

2B1B

1Cu 2Cu

2Bu1Bu

1A

1Au

2A

2Au

Index States

2'Cu

1''Bu0'Bu

0''Bu1'Bu

2'Bu

2'Au

1'Au

0'Au

Look Up States

Symbol States

SBSA SC

Seed Row

B

A

A'

B' 2''Bu

1S 0S

(a) States space for when |S| = 27.

2C

2CuB'

B

1C

1Cu

0B

0Bu

2C

2CuB'

1C

1Cu

0B

0Bu

0B 2C

2Cu

1C

1Cu

0B

0Bu

0B

0'Bu

2C

1C

1Cu

0B

0Bu

0B

0'Bu 2'Cu

0C

2C

2Cu

1C

1Cu

B'

B

B

B

(b) Indexing B column.

2Cu

2C

1C

1Cu

2B

2Bu

2B

2'BuA'

A

A

A

2C

1C

1Cu

2B

2Bu

2B

2'BuA'

A

0A

0Au

2C

1C

1Cu

2B

2Bu

2B

2'BuA'

0A

0Au

0A 2C

1C

1Cu

2B

2Bu

2B

2'Bu

0A

0Au

0A

0'Au

2C

1C

1Cu

2'Cu

2B

2Bu

2B

0A

0Au

0A

0'An2''Bu

2C

1C

1Cu

2B

2Bu

2B

0A

0Au

0A

0'Au2Cu 2Cu 2Cu 2Cu

0C

2''Bu

(c) Indexing the A column.

Figure 6 (a) States needed to construct a length 27 string where r = 3. (b) The index 0
propagates upward by transitioning the tiles in the column to 0B and 0Bu and transitions a′ to 0′

Bu.
The state 0′

Bu transitions with the state 2Cu, changing the state 2Cu to 2′
Cu, which has affinity with

0C to build the next section. These rules also exist for the index 1. (c) When the index state 2B

reaches the top of the section, it transitions b′ to 2′
Bu. This state does not transition with the C

column and instead has affinity with the state a′, which builds the A column downward. The index
propagates up the A column in the same way as the B column. When the index state 0A reaches
the top of the section, it transitions the state 2′

B to 2′′
B . This state transitions with 2Cu changing it

to 2′
Cu allowing the column to grow.

The state a′ attaches on the left of r − 1Cu. The A column is indexed just like the B

column. For 0 ≤ i < r − 1, the state i′
Au and r − 1′

Bu change the state r − 1′
Bu to r − 1′′

Bu.
This state transitions with r − 1Cu, changing it to r − 1′

Cu. See Figure 6c.

4.2.2 Bit Gadget Look Up
The bottom row of each bit gadget has a unique sequence of states, again we use these index
states to represent the bit indexed by the digits of the states. However, since we can only
transition between two tiles at a time, we must read all three states in multiple steps. These
steps are outlined in Figure 7a. The first transition takes place between the states iA and
jB. We refer to these transition rules as look up rules. We have r look up rules between
these states for 0 ≤ k < r of these states that changes the state jB to that state kC0 if the
bit indexed by i, j, and k is 0 or the state kC1 if the bit is 1.

Our bit gadget has Nondeterministically looked up each bit indexed by it’s A and B

states, Now, we must compare the bit we just retrieved to the C index via the state in the C

column. The states kC0 and kC transition changing the state kC to the 0i state only when
they represent the same k. The same is true for the state kC1 except Ck transitions to 1i.

If they both represent different k, then the state kC goes to the state Bx. This is the
error checking of our system. The Bx states transitions with the north state jBu above it
transitioning Bx to jB once again. This takes the bit gadget back to it’s starting configuration
and another look up can occur.

▶ Theorem 8. For any binary string S with length n > 0, there exists a Single-Transition
tile automata system Γ, that uniquely assembles an (2n + 2) × 3 assembly which represents S

with O(n 1
3) states.

4.3 General Nondeterministic Transitions
Using a similar method to the previous sections, we build length n strings using O(n 1

4) states.
We start by building a pattern of index states with bit gadgets of height 2 and width 4.

SAND 2022

6:12 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

(u)

(u)

(u)

(v)

(x)

(w)

1C00A

0Au 0Bu 0Cu 0Cu

0Cu

2C10A

0Au 0Bu

0C

0C00A

0Au 0Bu

0s0A

0Au 0Bu

0B 0C

0Cu

S = 001...

0C 0C

0C0 0C0A

0Cu0Au 0Bu 0Cu

xB0A

0Au 0Bu

(a) ST Bit Gadget look up.

0'B

0D

0Bu0Cu

0Cu

0Bu

0Bu

0Cu 0Cu

0Au 0Bu

0Au 0Bu

0Au 0Bu

0Au 0Bu

0Au 0Bu

0Au 0Bu0Au 0Bu 0Du0Cu

0D

0Du0Cu

0D

0Du0Cu

0D

0Du0Cu

0D

0Du0Cu

0D

0D

0Du0Cu

1D10A1

0D0C0A 0B

0Du0Cu

0D0C0A 0'B 0D00A00A

0D02A0

0A

0A

0D0PA00A

PA1 1D10A

FB 0D00A

PD0PA00A

FCPA10A

PD0FB0A

PA00A 0S PA00A

FB FC0A

0Du0Cu0Au 0Bu 0Du

0D

0Du

0D

0Du

0D

0Du

0Du0Cu

0D

0Au

0Au

0Au

0Au 0Bu

0Au 0Bu

0Au 0Bu 0Du0Cu

0A

0Au 0Bu 0Du0Cu

0DxC

0A

0Au 0Bu 0Du0Cu

0DxC0'B

(a) (b) (c) (c) (d)

(e)

(d)

(f)

0S 0S

(b) Nondeterminstic Bit Gadget look up.

Figure 7 (a.u) For a string S, where the first 3 bits are 001, the states 0A and 0B have |S|
1
3

transition rules changing the state 0B to a state representing one of the first |S|
1
3 bits. The state is

iC0 if the ith bit is 0 or iC1 if the ith bit is 1 (a.v) The state 0C0 and the state 0C both represent the
same C index so the 0C state transition to the 0s. (a.w) For all states not matching the index of 0C ,
they transition to xB , which can be seen as a blank B state. (a.x) The state 0Bu transitions with the
state xB changing to 0B resetting the bit gadget. (b.a) Once the state A0 appears in the bit gadget
it transitions with 0B changing 0B to 0′

B . (b.b) The states 0′
B and 0C Nondeterminstically look up

bits with matching B and C indices. The state 0′
B transitions to look up state representing the bit

retrieved and the bit’s A index. The state 0C transitions to a look up state representing the D index
of the retrieved bit. (b.c) The look-up states transition with the states 0A and 0D, respectively. As
with the Single-Transition construction these may pass or fail. (b.d) When both tests pass, they
transition the D look up state to a symbol state that propagates out. (b.e) If a test fails, the states
both go to blank states. (b.f) The blank states then reset using the states to their north.

4.3.1 Overview

Here, let r = ⌈n
1
4 ⌉. We build index states in the same way as the Single-Transition system

but instead starting from the D column. We have 4 sets of index states, A, B, C, D. The
same methods are used to control when the next section builds by transitioning the state
r − 1D to r − 1′

D when the current section is finished building.

We use a similar look up method as the previous construction where we Nondeterminist-
ically retrieve a bit. However, since we are not restricting our rules to be a Single-Transition
system, we may retrieve 2 indices in a single step. We include 2 sets of O(r) look up
states, the A look up states and the D look up states. We also include Pass and Fail states
FB , FC , PA0, PD0, PA1, PD1 along with the blank states Bx and Cx. We utilize the same
method to build the north and south row.

Let S(α, β, γ, δ) be the ith bit of S where i = αr3+βr2+γr+δ. The states β′
B and γC have

r2 transitions rules. The process of these transitions is outlined in Figure 7b. They transition
from (β′

B , γC) to either (αA0, δD0) if S(α, β, γ, δ) = 0, or (αA1, δD1) if S(α, β, γ, δ) = 1. After
both transitions have happened, we test if the indices match to the actual A and D indices.
We include the transition rules (αA, αA0) to (αA, PA0) and (αA, αA1) to (αA, PA1). We refer
to this as the bit gadget passing a test. The two states (PA0, PD0) horizontally transition to
(PA0, 0s). The 0s state then transitions the state δD to 0s as well as propagating the state to
the right side of the assembly. If the compared indices are not equal, then the test fails and
the look up states will transition to the fail states FB or FC . These fail states will transition
with the states above them, resetting the bit gadget as in the previous system.

▶ Theorem 9. For any binary string S with length n > 0, there exists a tile automata system
Γ, that uniquely assembles an (2n + 2) × 4 assembly which represents S with O(n 1

4) states.

R. M. Alaniz et al. 6:13

0

1c

nc

N

S+

Additional States

2'A

N c

0c

c nc

1 0

nc

+

+SB

S +

Affinity Rules

0c

c1 1 0c

0 c 0 1

nc1 1 1

0 nc 0 0

N nc N N

1

+ S

1

0

+

0

S

Transition Rules

0c

1

0

1

0c 0

00

(a) New states and rules for a binary counter.

1

S + S +

0

1

S +

c

S +

0 c

1

S +

0c

S +

0 1

1

1 0c

0

1 0c

1 c

1 0c

0 c

1 0c

1 0c

1 0c

0 1

1 0c

Attachment

Transition

1

1
0

1
0

0

1
0

1
0

1 nc

1
0

1
0

0 nc

1
0

1
0

1 1

1
0

1
0

0 0

1
0

1
0

(b) Every case for the half adder.

Figure 8 (b) The 0/1 tile is not present in the system. It is used in the diagram to show that
either a 0 tile or a 1 tile can take that place.

S

1

1

0

0

1

0

0

0

N

S

1

1

0

0

1

0

0

0

N

+S

1

1

0

0

1

0

0

0

N

c

S

1

0

0

1

0

0

0

N

+

1 0c

+S

1

1

0

0

1

0

0

0

N

0c

+S

1

0

0

1

0

0

0

N

+S

1

1

0

0

1

0

0

0

N

0c

0c

+S

1

1

0

1

0

0

0

N

0c

0c

0 1

+S

1

1

0

0

1

0

0

0

N

0c

0c

1

nc

+S

1

1

0

1

0

0

0

N

0c

0c

1

0 0

+S

1

1

0

0

1

0

0

0

N

0c

0c

1

0

1

0

0

0

+S

1

1

0

0

1

0

0

0

0c

0c

1

0

1

0

0

0

N

+S

1

1

0

0

1

0

0

0

N

0c

0

1

0

0

0

N

+S

1

1

0

0

1

0

0

0

N

1

0

1

0

0

0

N

S

1

1

0

0

1

0

0

0

N

1

0

1

0

0

0

0

0

SS

1

0

0

1

0

0

0

N

S

0

0

1

0

0

0

N

0

0

1

S

0

0

1

0

0

0

N

0

0

+

c

c

nc N N

1

0 0

00c

1 0c

(a) Binary Counter.

S

7

0

0

1

N

S

7

0

0

1

N

+ S

7

0

0

1

N

+

c

S

7

0

0

1

N

+

8

S

7

0

0

1

N

8

0

0

1

N

S +

c

S

7

0

0

1

N

8

0

0

1

N

S +

9

S

7

0

0

1

N

8

0

0

1

N

S

9

S

0

0

1

N

+

c

S

7

0

0

1

N

8

0

0

1

N

S

9

S

0

0

1

N

+

0c

S

7

0

0

1

N

8

0

0

1

N

S

9

S

0

0

1

N

+

0c

c

S

7

0

0

1

N

8

0

0

1

N

S

9

S

0

0

1

N

+

0c

1

S

7

0

0

1

N

8

0

0

1

N

S

9

S

0

0

1

N

1

0

1

N

0

S

(b) Base-10 Counter.

Figure 9 (a) The process of the binary counter. (b) A base-10 counter.

5 Rectangles

In this section, we will show how to use the previous constructions to build O(log n) × n

rectangles. All of these constructions rely on using the previous results to encode and print
a string then adding additional states and rules to build a counter.

5.1 States

We choose a string and construct a system that will create that string, using the techniques
shown in the previous section. We then add states to implement a binary counter that
will count up from the initial string. The states of the system, seen in Figure 8a, have two
purposes. The north and south states (N and S) are the bounds of the assembly. The plus,
carry, and no carry states (+, c, and nc) forward the counting. The 1, 0, and 0 with a carry
state make up the number. The counting states and the number states work together as half
adders to compute bits of the number.

5.2 Transition Rules / Single Tile Half Adder

As the column grows, in order to complete computing the number, each new tile attached in
the current column along with its west neighbor are used in a half adder configuration to
compute the next bit. Figure 8b shows the various cases for this half adder.

When a bit is going to be computed, the first step is an attachment of a carry tile or a
no-carry tile (c or nc). A carry tile is attached if the previous bit has a carry, indicated by a
tile with a state of plus or 0 with a carry (+ or 0c). A no-carry tile is placed if the previous
bit has no-carry, indicated by a tile with a state of 0 or 1. Next, a transition needs to occur
between the newly attached tile and its neighbor to the west. This transition step is the
addition between the newly placed tile and the west neighbor. The neighbor does not change
states, but the newly placed tile changes into a number state, 0 or 1, that either contains a
carry or does not. This transition step completes the half adder cycle, and the next bit is
ready to be computed.

SAND 2022

6:14 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

5.3 Walls and Stopping
The computation of a column is complete when a no-carry tile is placed next to any tile with
a north state. The transition rule changes the no-carry tile into a north state, preventing the
column from growing any higher. The tiles in the column with a carry transition to remove
the carry information, as it is no longer needed for computation. A tile with a carry changes
states into a state without the carry. The next column can begin computation when the plus
tile transitions into a south tile, thus allowing a new plus tile to be attached. The assembly
stops growing to the right when the last column gets stuck in an unfinished state. This
column, the stopping column, has carry information in every tile that is unable to transition.
When a carry tile is placed next to a north tile, there is no transition rule to change the state
of the carry tile, thus preventing any more growth to the right of the column.

▶ Theorem 10. For all n > 0, there exists a Tile Automata system that uniquely assembles
a O(log n) × n rectangle using,

Deterministic Transition Rules and O(log
1
2 n) states.

Single-Transition Transition Rules and Θ(log
1
3 n) states.

Nondeterministic Transition Rules and Θ(log
1
4 n) states.

5.4 Arbitrary Bases
Here, we generalize the binary counter process for arbitrary bases. The basic functionality
remains the same. The digits of the number are computed one at a time going up the column.
If a digit has a carry, then a carry tile attaches to the north, just like the binary counter. If
a digit has no carry, then a no-carry tile is attached to the north. The half adder addition
step still adds the newly placed carry or no-carry tile with the west neighbor to compute the
next digit. This requires adding O(b) counter states to the system, where b is the base.

▶ Theorem 11. For all n > 0, there exists a Deterministic Tile Automata system that
uniquely assembles a O(log n

log log n) × n rectangle using Θ
(

(log n
log log n) 1

2

)
states.

6 Squares

In this section we utilize the rectangle constructions to build n × n squares using the optimal
number of states.

Let n′ = n − 4⌈ log n
log log n ⌉ − 2, and Γ0 be a determinstic Tile Automata system that builds

a n′ × (4⌈ log n
log log n ⌉ + 2) rectangle using the process described in Theorem 11. Let Γ1 be a

copy of Γ0 with the affinity and transition rules rotated 90 degrees clockwise, and the state
labels appended with the symbol “*1”. This system will have distinct states from Γ0, and
will build an equivalent rectangle rotated 90 degrees clockwise. We create two more copies of
Γ0 (Γ2 and Γ3), and rotate them 180 and 270 degrees, respectively. We append the state
labels of Γ2 and Γ3 in a similar way.

We utilize the four systems described above to build a hollow border consisting of the
four rectangles, and then adding additional initial states which fill in this border, creating
the n × n square.

We create Γn, starting with system Γ0, and adding all the states, initial states, affinity
rules, and transition rules from the other systems (Γ1, Γ2, Γ3). The seed states of the other
systems are added as initial states to Γn. We add a constant number of additional states and
transition rules so that the completion of one rectangle allows for the “seeding” of the next.

R. M. Alaniz et al. 6:15

SA

N C pAN

SA

SA*

C*

N*

pA

SA

SA*pA

SA

Figure 10 The transitions that take place after the first rectangle is built. The carry state
transitions to a new state that allows a seed row for the second rectangle to begin growth.

pC

SA#

pD pD

SA$

SA*

N*

pA

SA

pB

pC

SA#

pD pD pD

SA$

SA*

N*

pA

SA

pB

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

f

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

f f

f

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

f f f f

fff

ff

f f f

f f

f

f

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

Figure 11 Once all 4 sides of the square build the pD state propagates to the center and allows
the light blue tiles to fill in.

Reseeding the Next Rectangle. To Γn we add transition rules such that once the first
rectangle (originally built by Γ0) has built to its final width, a tile on the rightmost column
of the rectangle will transition to a new state pA. pA has affinity with the state SA ∗ 1, which
originally was the seed state of Γ1. This allows state SA ∗ 1 to attach to the right side of the
rectangle, “seeding” Γ1 and allowing the next rectangle to assemble (Figure 10). The same
technique is used to seed Γ2 and Γ3.

Filler Tiles. When the construction of the final rectangle (of Γ3) completes, transition rules
propagate a state pD towards the center of the square (Figure 11). Additionally, we add an
initial state r, which has affinity with itself in every orientation, as will as with state pD on
its west side. This allows the center of the square to be filled with tiles.

▶ Theorem 12. For all n > 0, there exists a Tile Automata system that uniquely assembles
an n × n square with,

Deterministic transition rules and Θ
(

(log n
log log n) 1

2

)
states.

Single-Transition rules and Θ(log
1
3 n) states.

Nondeterministic transition rules and Θ(log
1
4 n) states.

7 Future Work

This paper showed optimal bounds for uniquely building n × n squares in three variants of
seeded Tile Automata without cooperative binding. En route, we proved upper bounds for
constructing strings and rectangles. Serving as a preliminary investigation into constructing
shapes in this model. This leaves many open questions:

As shown in [5], even 1D Tile Automata systems can perform Turing computation. This
behavior may imply interesting results for constructing 1 × n lines. We conjecture, it is
possible to achieve the optimal bound of Θ((log n

log log n) 1
2) with deterministic rules.

Our rectangles had a height bounded by O(log n
log log n), and none fell below the k < log n

log log n [2]
bound for a thin rectangle. In Tile Automata without cooperative binding, is it possible
to optimally construct k × n thin rectangles?
We allow transition rules between non-bonded tiles. Can the same results be achieved
with the restriction that a transition rule can only exist between two tiles if they share
an affinity in the same direction?

SAND 2022

6:16 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

While we show optimal bounds can be achieved without cooperative binding, can we
simulate so-called zig-zag aTAM systems? These are a restricted version of the cooperative
aTAM that is capable of Turing computation.
We show efficient bounds for constructing strings in Tile Automata. Given the power of
the model, it should be possible to build algorithmically defined shapes such as in [33] by
printing Komolgorov optimal strings and inputting them to a Turing machine.

References
1 Leonard Adleman, Qi Cheng, Ashish Goel, and Ming-Deh Huang. Running time and program

size for self-assembled squares. In Proceedings of the thirty-third annual ACM symposium on
Theory of computing, pages 740–748, 2001.

2 Gagan Aggarwal, Qi Cheng, Michael H Goldwasser, Ming-Yang Kao, Pablo Moisset De Espanes,
and Robert T Schweller. Complexities for generalized models of self-assembly. SIAM Journal
on Computing, 34(6):1493–1515, 2005.

3 John Calvin Alumbaugh, Joshua J. Daymude, Erik D. Demaine, Matthew J. Patitz, and
Andréa W. Richa. Simulation of programmable matter systems using active tile-based self-
assembly. In Chris Thachuk and Yan Liu, editors, DNA Computing and Molecular Programming,
pages 140–158, Cham, 2019. Springer International Publishing.

4 Bahar Behsaz, Ján Maňuch, and Ladislav Stacho. Turing universality of step-wise and stage
assembly at temperature 1. In Darko Stefanovic and Andrew Turberfield, editors, DNA
Computing and Molecular Programming, pages 1–11, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

5 David Caballero, Timothy Gomez, Robert Schweller, and Tim Wylie. Verification and
Computation in Restricted Tile Automata. In Cody Geary and Matthew J. Patitz, editors,
26th International Conference on DNA Computing and Molecular Programming (DNA 26),
volume 174 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–10:18,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.DNA.2020.10.

6 Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz,
Robert T. Schweller, Scott M Summers, and Andrew Winslow. Two Hands Are Better Than
One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM. In 30th International
Symposium on Theoretical Aspects of Computer Science (STACS 2013), volume 20 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 172–184. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2013.

7 Angel A Cantu, Austin Luchsinger, Robert Schweller, and Tim Wylie. Signal passing self-
assembly simulates tile automata. In 31st International Symposium on Algorithms and
Computation (ISAAC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

8 Cameron Chalk, Austin Luchsinger, Eric Martinez, Robert Schweller, Andrew Winslow, and
Tim Wylie. Freezing simulates non-freezing tile automata. In David Doty and Hendrik Dietz,
editors, DNA Computing and Molecular Programming, pages 155–172, Cham, 2018. Springer
International Publishing.

9 Cameron Chalk, Eric Martinez, Robert Schweller, Luis Vega, Andrew Winslow, and Tim
Wylie. Optimal staged self-assembly of general shapes. Algorithmica, 80(4):1383–1409, 2018.

10 Gourab Chatterjee, Neil Dalchau, Richard A. Muscat, Andrew Phillips, and Georg Seelig.
A spatially localized architecture for fast and modular DNA computing. Nature Nano-
technology, July 2017. URL: https://www.microsoft.com/en-us/research/publication/
spatially-localized-architecture-fast-modular-dna-computing/.

11 Matthew Cook, Yunhui Fu, and Robert Schweller. Temperature 1 self-assembly: Deterministic
assembly in 3d and probabilistic assembly in 2d. In Proceedings of the twenty-second annual
ACM-SIAM symposium on Discrete Algorithms, pages 570–589. SIAM, 2011.

https://doi.org/10.4230/LIPIcs.DNA.2020.10
https://doi.org/10.4230/LIPIcs.DNA.2020.10
https://www.microsoft.com/en-us/research/publication/spatially-localized-architecture-fast-modular-dna-computing/
https://www.microsoft.com/en-us/research/publication/spatially-localized-architecture-fast-modular-dna-computing/

R. M. Alaniz et al. 6:17

12 Erik D Demaine, Martin L Demaine, Sándor P Fekete, Mashhood Ishaque, Eynat Rafalin,
Robert T Schweller, and Diane L Souvaine. Staged self-assembly: nanomanufacture of arbitrary
shapes with o (1) glues. Natural Computing, 7(3):347–370, 2008.

13 Alberto Dennunzio, Enrico Formenti, Luca Manzoni, Giancarlo Mauri, and Antonio E Porreca.
Computational complexity of finite asynchronous cellular automata. Theoretical Computer
Science, 664:131–143, 2017.

14 David Doty, Jack H Lutz, Matthew J Patitz, Robert T Schweller, Scott M Summers, and
Damien Woods. The tile assembly model is intrinsically universal. In 2012 IEEE 53rd Annual
Symposium on Foundations of Computer Science, pages 302–310. IEEE, 2012.

15 Nazim Fates. A guided tour of asynchronous cellular automata. In International Workshop on
Cellular Automata and Discrete Complex Systems, pages 15–30. Springer, 2013.

16 Bin Fu, Matthew J Patitz, Robert T Schweller, and Robert Sheline. Self-assembly with
geometric tiles. In International Colloquium on Automata, Languages, and Programming,
pages 714–725. Springer, 2012.

17 David Furcy, Scott M. Summers, and Logan Withers. Improved Lower and Upper Bounds on
the Tile Complexity of Uniquely Self-Assembling a Thin Rectangle Non-Cooperatively in 3D.
In Matthew R. Lakin and Petr Šulc, editors, 27th International Conference on DNA Computing
and Molecular Programming (DNA 27), volume 205 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 4:1–4:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.DNA.27.4.

18 Oscar Gilbert, Jacob Hendricks, Matthew J Patitz, and Trent A Rogers. Computing in
continuous space with self-assembling polygonal tiles. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 937–956. SIAM, 2016.

19 Eric Goles, P-E Meunier, Ivan Rapaport, and Guillaume Theyssier. Communication complexity
and intrinsic universality in cellular automata. Theoretical Computer Science, 412(1-2):2–21,
2011.

20 Eric Goles, Nicolas Ollinger, and Guillaume Theyssier. Introducing freezing cellular auto-
mata. In Cellular Automata and Discrete Complex Systems, 21st International Workshop
(AUTOMATA 2015), volume 24, pages 65–73, 2015.

21 Leopold N Green, Hari KK Subramanian, Vahid Mardanlou, Jongmin Kim, Rizal F Hariadi,
and Elisa Franco. Autonomous dynamic control of DNA nanostructure self-assembly. Nature
chemistry, 11(6):510–520, 2019.

22 Daniel Hader and Matthew J Patitz. Geometric tiles and powers and limitations of geometric
hindrance in self-assembly. Natural Computing, 20(2):243–258, 2021.

23 Jacob Hendricks, Matthew J. Patitz, Trent A. Rogers, and Scott M. Summers. The power
of duples (in self-assembly): It’s not so hip to be square. Theoretical Computer Science,
743:148–166, 2018. doi:10.1016/j.tcs.2015.12.008.

24 Ming-Yang Kao and Robert Schweller. Reducing tile complexity for self-assembly through
temperature programming. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithm, SODA ’06, pages 571–580, USA, 2006. Society for Industrial and
Applied Mathematics.

25 Pierre-Etienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, Andrew
Winslow, and Damien Woods. Intrinsic universality in tile self-assembly requires cooperation.
In Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 752–771, 2014. doi:10.1137/1.9781611973402.56.

26 Pierre-Étienne Meunier and Damien Regnault. Directed Non-Cooperative Tile Assembly Is
Decidable. In Matthew R. Lakin and Petr Šulc, editors, 27th International Conference on
DNA Computing and Molecular Programming (DNA 27), volume 205 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 6:1–6:21, Dagstuhl, Germany, 2021. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.DNA.27.6.

SAND 2022

https://doi.org/10.4230/LIPIcs.DNA.27.4
https://doi.org/10.1016/j.tcs.2015.12.008
https://doi.org/10.1137/1.9781611973402.56
https://doi.org/10.4230/LIPIcs.DNA.27.6

6:18 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

27 Pierre-Étienne Meunier and Damien Woods. The non-cooperative tile assembly model is not
intrinsically universal or capable of bounded Turing machine simulation. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 328–341,
New York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3055399.
3055446.

28 Turlough Neary and Damien Woods. P-completeness of cellular automaton rule 110. In Michele
Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages
and Programming, pages 132–143, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

29 Nicolas Ollinger and Guillaume Theyssier. Freezing, bounded-change and convergent cellular
automata. arXiv preprint, 2019. arXiv:1908.06751.

30 Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers. Exact shapes and Turing
universality at temperature 1 with a single negative glue. In Proceedings of the 17th Interna-
tional Conference on DNA Computing and Molecular Programming, DNA’11, pages 175–189,
Berlin, Heidelberg, 2011. Springer-Verlag.

31 Paul WK Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares. In Proceedings of the thirty-second annual ACM symposium on Theory of computing,
pages 459–468, 2000.

32 Nicholas Schiefer and Erik Winfree. Time complexity of computation and construction in the
chemical reaction network-controlled tile assembly model. In Yannick Rondelez and Damien
Woods, editors, DNA Computing and Molecular Programming, pages 165–182, Cham, 2016.
Springer International Publishing.

33 David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. SIAM Journal on
Computing, 36(6):1544–1569, 2007.

34 Anupama J. Thubagere, Wei Li, Robert F. Johnson, Zibo Chen, Shayan Doroudi, Yae Lim
Lee, Gregory Izatt, Sarah Wittman, Niranjan Srinivas, Damien Woods, Erik Winfree, and
Lulu Qian. A cargo-sorting DNA robot. Science, 357(6356):eaan6558, 2017. doi:10.1126/
science.aan6558.

35 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,
June 1998.

36 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng Yin.
Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In Proceedings
of the 4th conference on Innovations in Theoretical Computer Science, pages 353–354, 2013.

37 Thomas Worsch. Towards intrinsically universal asynchronous ca. Natural Computing,
12(4):539–550, 2013.

https://doi.org/10.1145/3055399.3055446
https://doi.org/10.1145/3055399.3055446
http://arxiv.org/abs/1908.06751
https://doi.org/10.1126/science.aan6558
https://doi.org/10.1126/science.aan6558

	Building Squares with Optimal State Complexity in Restricted Active Self-Assembly
	Recommended Citation
	Authors

	1 Introduction
	1.1 Previous Work
	1.2 Our Contributions

	2 Definitions
	2.1 Building Blocks
	2.2 The Tile Automata Model
	2.3 Limited Model Reference

	3 State Space Lower Bounds
	4 String Unpacking
	4.1 Deterministic Transitions
	4.1.1 Overview
	4.1.2 States
	4.1.3 Affinity Rules/Placing Section
	4.1.4 Transition Rules/Indexing A column
	4.1.5 Look up
	4.1.6 Arbitrary Base

	4.2 Nondeterministic Single-Transition Systems
	4.2.1 Index States and Look Up States
	4.2.2 Bit Gadget Look Up

	4.3 General Nondeterministic Transitions
	4.3.1 Overview

	5 Rectangles
	5.1 States
	5.2 Transition Rules / Single Tile Half Adder
	5.3 Walls and Stopping
	5.4 Arbitrary Bases

	6 Squares
	7 Future Work

