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Abstract: Multidrug resistance (MDR) is one of the major therapeutic challenges that limits the efficacy
of chemotherapeutic response resulting in poor prognosis of ovarian cancer (OC). The multidrug
resistance protein 1 (MRP1) is a membrane-bound ABC transporter involved in cross resistance
to many structurally and functionally diverse classes of anticancer drugs including doxorubicin,
taxane, and platinum. In this study, we utilize homology modelling and molecular docking analysis
to determine the binding affinity and the potential interaction sites of MRP1 with Carboplatin,
Gemcitabine, Doxorubicin, Paclitaxel, and Topotecan. We used AutoDock Vina scores to compare
the binding affinities of the anticancer drugs against MRP1. Our results depicted Carboplatin <
Gemcitabine < Topotecan < Doxorubicin < Paclitaxel as the order of binding affinities. Paclitaxel
has shown the highest binding affinity whereas Carboplatin displayed the lowest affinity to MRP1.
Interestingly, our data showed that Carboplatin, Paclitaxel, and Topotecan bind specifically to Asn510
residue in the transmembrane domains 1 of the MRP1. Our results suggest that Carboplatin could
be an appropriate therapeutic choice against MRP1 in OC as it couples weakly with Carboplatin.
Further, our findings also recommend opting Carboplatin with Gemcitabine as a combinatorial
chemotherapeutic approach to overcome MDR phenotype associated with recurrent OC.

Keywords: ovarian cancer; multidrug resistance; gemcitabine; carboplatin; multidrug resistance
protein 1

1. Introduction

Ovarian cancer (OC) ranks fifth leading cause of death among women and one of the
deadliest cancers among all female genital malignancies [1–3]. Despite the improvements
and advancements in the diagnostic and therapeutic procedures, OC still remains the
lowest survival disease among all gynecological malignancies in developed countries [2,4].
The high mortality rate of OC is due to the fact that 30% of the advanced stage tumors do
not respond to standard chemotherapeutic regimens and the majority of the responders
relapse over time [5,6]. Irrespective of the clinical stages, the current treatment modalities
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of OC include cytoreductive surgery followed by the first line of taxane and platinum-
based chemotherapy to manage the cancer progression [7–9]. Despite the availability
of a wide range of OC chemotherapeutic agents, none is fully effective in suppressing
tumor growth due to the emergence of multidrug resistance (MDR) phenomenon. MDR
is commonly attributed by its ability to efflux the therapeutic drugs out of the tumor
cell by ABC transport proteins [10,11]. Often, MDR phenotype is treated by the use
of Topotecan, Gemcitabine, Cisplatin, or Doxorubicin either alone or in a combination,
depending on the type of MDR transporter involved in the given cancer [8,12]. Numerous
findings have confirmed the involvement of ABC transporter, namely P-glycoprotein
(P-gp), and the multidrug resistance associated protein (MRP) as major MDR pumps, and
they are often responsible for chemotherapeutic failure in the OC [11,13]. P-gp and MRP
transporters recognize similar substrates apart from few anticancer drugs such as taxanes
(Paclitaxel and Docetaxel) which are preferable substrates for P-gp. Yet, both P-gp and MRP
have been reported to be equally involved in conferring multidrug resistance in OC [14].
Despite the low structural and sequence homology between MRP1 and P-gp, yet they
show overlapping substrate specificity such as binding to a wide range of substrates, and
utilizing ATP hydrolysis to efflux the chemotherapeutic drugs out of cancer cells [15]. The
MRP1, also known as ABCC1, has been reported to be actively engaged in translocating
various chemotherapeutic agents in addition to diverse physiological substrates including
glutathione conjugated drugs. Hence, it has been suggested to be playing a vital role in drug
resistance phenotype in various cancers including OC [10,15]. The MRP1 transporter is a cell
membrane channel with three transmembrane domains (TMD0, TMD1, and TMD2), and
two cytosolic nucleotide-binding domains (N-terminal NBD1 and C-terminal NBD2) [16].
The TMDs are mainly involved in substrate identification and transportation whereas, the
NBDs are responsible for ATP binding/hydrolysis, which is vital for energy-dependent
efflux of MRP1 substrates [16,17]. It has been well documented that overexpression of
MRP1 leads to efflux anticancer drugs and as a result MRP1 is considered as one of the
major contributors of chemotherapeutic resistance in OC [18,19]. Of note, many mutations
have been reported in the TMDs and NBDs of MRP1 that could affect the MRP1 protein
folding and localization and hence, influence its substrate binding specificity which in
turn could modulate chemotherapeutic response in OC patients [19–21] For example, a
very common SNPs, G2168A, (arginine to glutamine) in MRP1 has been correlated with
reduced drug transport activity and as a result increases the chemotherapeutic response
in OC patients [20,22]. Therefore, it is highly interesting to investigate the MRP1 and
its substrates interaction in order to determine the protein–ligand binding affinity and
specificity with the wild-type and mutant protein transporter. To date, there is insufficient
information available to address chemotherapeutic outcome with regard to the interaction
of anticancer drugs with MRP1transporter. The MRP1 protein and its substrate specificity
as well as its pharmacokinetics have been poorly understood by in silico analysis. Thus,
understanding the MRP1 substrates specificities would have a major impact in designing
novel chemotherapeutic drugs in order to minimize MRP1-related drug–drug interactions.
In this present study, we aim to determine the binding site of MRP1 with various anticancer
drugs using in silico analysis to determine the binding affinity and the potential interaction
sites in full protein and to predict the best anticancer drugs that may be a promising choice
to treat non-responder OC patients often caused due to overexpressed MRP1 transporter.

2. Materials and Methods
2.1. Ligand Preparation

The 2-dimensional structures (2D) of the six drugs, Doxorubicin (PubChem ID: 31703),
Gemcitabine (PubChem ID: 60750), Topotecan (PubChem ID: 60700), Paclitaxel (PubChem
ID: 36314), and Carboplatin (PubChem ID: 426756) were retrieved from the NCBI PubChem
database in .sdf format (https://pubchem.ncbi.nlm.nih.gov/, accessed on 18 December
2021) [22]. Whereas, the 2D structure of the ligands was converted into .mol2 format using
Open Babel software as shown in Figure 1 [23].

https://pubchem.ncbi.nlm.nih.gov/
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Figure 1. 2D structure of anticancer drugs assessed in this study.

2.2. Protein

Homology modelling of MRP1 was performed using Bos taurus MRP1 (PDB ID: 6UY0)
as a template in Swiss-Model online software [24]. Sequence of Human MRP1 was retrieved
from the UniPort database (Accession ID: P33527) [25]. The MRP1 protein structure was
prepared for docking using BIOVIA discovery studio visualizer (Discovery Studio Visual-
izer v21.1.0.20298) [26]. The discrepancies in the structure (lacking hydrogens, removal of
water molecules and ligands, orientation of the various functional groups) were examined
and corrected.

2.3. Molecular Docking

Docking was performed by converting both receptor and ligands file to the .pdbqt for-
mat using AutoDock Tools (v1.5.6, https://autodock.scripps.edu, accessed on 19 December
2021). Molecular docking and calculation of binding affinity were performed using
AutoDock Vina (https://vina.scripps.edu, accessed 19 December 2021) [27]. The results of
molecular docking were visualized using a BIOVIA discovery studio visualizer [26].

3. Results
3.1. Homology Modelling of MRP1

Among the experimentally determined structures of ABC superfamily transport pro-
teins, MRP1 of Bos taurus (PDD ID: 6UY0) was found to be the most appropriate template
for human MRP1. Thus, the 3-dimensional structure of Bos taurus was used as a tem-
plate to predict the structure of human MRP1 (Figure 2). The structure was predicted via
Swiss Model and validated using Ramachandran plot analysis. Our results revealed that
95.70% of the residues were in the favored region where 0.98% were Ramachandran outliers
(Figure 2). These values supported the structural validity of the predicted structure and
were used for molecular docking analysis.

https://autodock.scripps.edu
https://vina.scripps.edu
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Figure 2. (A) Shows the predicted structure of MRP1; (B) Ramachandran map of MRP1; (C) pose of
the docked complex in sphere indicates possible active site for ligand interaction.

3.2. Analysis of Docking Results

The results of docking analysis relating to each drug are mentioned below. The binding
affinities, binding sites, and number of hydrogen bonds are presented in Table 1.

Table 1. Docking and ligand binding affinity, binding sites, and number of H-bonds of MRP1 with
anticancer drugs. *A.a (Amino acids).

Interaction of MRP1 Binding Affinity (kcal/mol) *A.a Residues Forming H-Bond (s)

Paclitaxel −11.3 2 (Asn510, Leu1160)
Doxorubicin −10.0 2 (Gln714, Glu1428)
Topotecan −9.1 2 (Asn510, Ser1163)

Gemcitabine −6.6 6 (Asp951, Lys952, Arg1066, Glu1266,
Glu1269, Thr1270)

Carboplatin −4.8 2 (Leu509, Asn510)
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3.2.1. Paclitaxel Demonstrated Strong Interaction with MRP1

The docking results of Paclitaxel with MRP1 (−11.3 kcal/mol) showed the lowest
binding affinity, demonstrating the strongest interaction among all of the analyzed drugs
(Table 1). The docking results revealed that Paclitaxel forms two hydrogen bond interactions
with the MRP1 protein at each Asn510 and Leu1160 amino acid residue. The results also
showed pi-cation interactions at residue Lys764 (Figure 3).
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3.2.2. Doxorubicin

Our docking analyses of Doxorubicin has predicted the formation of two hydrogen
bond interactions with MRP1 (−10.0 kcal/mol) at the residues Gln714 and Glu1428. Trp653
residue is predicted to form pi–pi stacked interaction with the aromatic ring of Doxorubicin,
and it also formed pi–anion and carbon–hydrogen interaction between the ligand and
MRP1 (Figure 4).
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Figure 4. Predicted binding positions between MRP1 and Doxorubicin. (A) A structural view of
the molecular docking; green dashed lines indicate hydrogen bonds. (B) Predicted doxorubicin
interactions; green dashed lines represent the hydrogen bonds, purple dashed lines represent pi–pi
stacking, blue dashed lines represent pi–anion interaction and gray dashed lines represents carbon
hydrogen bond.
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3.2.3. Topotecan

Our docking analysis of Topotecan has predicted the formation of two hydrogen bond
interactions with MRP1 (−9.1 kcal/mol) at the residues Asn510 and Ser1163. Leu1160
residue is predicted to form pi–alkyl interaction with the aromatic ring of -Topotecan
whereas the Glu1428 residue is predicted to form pi–anion interaction with MRP1 (Figure 5).
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Our docking analysis of Gemcitabine has predicted the formation of two hydrogen
bound interactions with MRP1 (−6.6 kcal/mol) at the residues Asp951, Lys952, Arg1066,
Glu1266, Glu1269, and The1270 (Figure 6) whereas, the Lys952 Arg1075 residue forms
pi–cation interaction.
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of molecular docking; green dashed lines indicate hydrogen bonds. (B) Predicted Gemcitabine interac-
tions; green dashed lines represent hydrogen bonds, pink dashed lines indicate pi–cation interaction.
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3.2.5. Carboplatin

Our docking analysis of Carboplatin has predicted the formation of two hydrogen
bonds with MRP1 protein at the residues Leu509 and Asn510 (Figure 7).
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Figure 7. Predicted binding positions between MRP1 and Carboplatin. (A) A structural view of
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interactions; green dashed lines represent hydrogen bonds.

3.3. Residue Frequencies

Further, we confirmed our docking results using BIOVIA discovery studio visualizer
which predicted that the residue Asn510 participated in the highest number of interactions
with the analyzed drugs. Moreover, the maximum frequency of the residue interaction was
observed with Paclitaxel, Topotecan, and Carboplatin.

3.4. Alignment of Ligands with MRP1 to Predict the Various Binding Sites/Position on Full
Protein Structure

We used BIOVIA discovery studio visualizer to align the different ligands with MRP1
in order to reveal the ligand binding sites and its spatial position at MRP1 protein, as shown
in Figure 8. Our alignment comparison analysis shows that Paclitaxel and Topotecan bind
TMD1 and TMD2 respectively, while Doxorubicin exclusively interacts with NBD1 and
NBD2 of MRP1. However, Carboplatin binding site was found in TMD1 only. Interestingly,
Gemcitabine was found to interact with six amino acid residues of MRP1 but notably, most
of the binding residues (Asp951, Lys952, Glu1266, Glu1269, Thr1270) were located at loops
of MRP1 except one residue (Arg1066) which was positioned at TMD2. Of note, Paclitaxel,
Topotecan, and Carboplatin interact with a common amino acid residue (Asn510) in TMD1
of MRP1 protein.
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Figure 8. (I): Schematic diagram depicts topology of protein of MRP1. (II): Represents alignment of the structural 
position of MRP1 protein with respect to ligands binding sites depicting with different color; II A Shows the interaction 
of Doxorubicin with MRP1 in NBD1 (pink) and NBD2 (purple), II B,C illustrates the binding of Topotecan and 

Figure 8. (I): Schematic diagram depicts topology of protein of MRP1. (II): Represents alignment of
the structural position of MRP1 protein with respect to ligands binding sites depicting with different
color; II A Shows the interaction of Doxorubicin with MRP1 in NBD1 (pink) and NBD2 (purple),
II B,C illustrates the binding of Topotecan and Paclitaxel with MRP1 in TMD1 (red) and TMD2
(yellow) respectively, II D demonstrates the interaction of Carboplatin with MRP1 in TMD1 (red),
and II E represents the binding sites of Gemcitabine with TMD2 (yellow) and loop (black) of MRP1.
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4. Discussion

Platinum and taxane-based regimen is considered as the foremost choice for the
treatment of OC patients [28]. However, multiple evidence show that the initial platinum-
based chemotherapy appears to respond well to the early stages of OC, but prolonged
exposure can lead to an increase in relapse cases. Thus advanced stages of tumor often fail
to respond to the same line of treatment due to the emergence of MDR phenotype [28–30].
Notability, the development of MDR has been extensively associated with chemotherapeutic
failure which consequently causes a rise in death rate to 90% in the advanced stages of
OC patients [11]. Studies have demonstrated that the higher expression of MRP1 has a
critical role in conferring drug resistance in OC [31,32]. In this perspective, MRP1 seems to
be an ideal candidate to study with respect to ligand–protein interaction. Investigation of
interaction between MRP1 and its substrate will shed some light on the binding affinity and
specificity of protein-ligands in order to predict the least interacting drugs to MRP1 that
may eventually serve as potential anticancer drugs to overcome the multidrug resistance
in OC [32,33]. In the present study, we determined the binding site of MRP1 with various
anti-cancers drugs using in silico methods to reveal the binding affinity as well as the
potential interaction sites in MRP1. Our ligands–MRP1 protein alignment analysis revealed
that Paclitaxel and Topotecan bind to TMD1 and TMD2 respectively. However, Carboplatin
binding site was found in TMD1 only. Notably, Gemcitabine interacts with five amino
acid residues (Asp951, Lys952, Glu1266, Glu1269, Thr1270) that lie in the loops of MRP1
except one amino acid (Arg1066) residue which binds to TMD2. In contrast, Doxorubicin
binding position was observed exclusively at NBD1 and NBD2 of MRP1. Interestingly,
Paclitaxel, Topotecan, and Carboplatin binding was involved with a common interacting
amino acid residue (Asn510) that lies in TMD1 of MRP1 protein. The analysis of molecular
docking revealed Paclitaxel has the highest binding affinity with MRP1 protein as shown
in Table 1 and hence, signifies Paclitaxel as a preferable substrate of MRP1 Thus, Paclitaxel
might not be considered as a suitable option for the treatment of MRP1-overexpressed
OC patients. Paclitaxel is known as the most effective anti-cancer drug against OC, but
its effectiveness reduced by the emergence of MDR phenotype often arise due to the
overexpression of MRP1 in this cancer [34–36]. Remarkably, our findings also validate
the above notions that Paclitaxel may not serve as a best choice in MRP1-overexpressed
OC. On the other hand, Doxorubicin was found to be in second place in terms of the
highest binding affinity after Paclitaxel with MRP1. Our docking analysis suggests that
Doxorubicin is the most likely as a good substrate of MRP1 and hence it could not be
considered as the best choice to treat overexpressed MRP1 OC patients. Our present
observation further substantiates with the previous findings, where Doxorubicin was
initially considered as a useful anticancer drug in many types of cancer especially, in breast
and ovarian cancer but its wide use has been limited due to the growing concern of the
reduced efficacy in MDR cancer background [37–39]. The docking analysis also showed
that the binding affinity of Topotecan (−9.1 kcal/mol), Gemcitabine (−6.6 kcal/mol), and
Carboplatin (−4.8 kcal/mol) ranked as third, fourth, and fifth, respectively as shown in
Table 1. Interestingly, Topotecan and Carboplatin were found to be interacting with two
amino acids each with the involvement of two hydrogen bonds as shown in Figures 5 and 7,
while the Gemcitabine having the second lowest binding affinities with MRP1 showed to
interact with 6 amino acids residue with a total of 6 hydrogen bond formation as shown
in Figure 6. Of note, the binding affinity of Topotecan was observed to be −9.1 kcal/mol
which implies that Topotecan interacts weakly as compared to Paclitaxel (−11.3 kcal/mol)
and Doxorubicin (−10.0 kcal/mol), thus it appears to serve as a better option for second line
of chemotherapeutic drug as compared to Paclitaxel and Doxorubicin. However, Topotecan
use has been limited due to MDR-associated drug resistance and toxicity [40]. Our findings
matched with the previous observation where, Lee et al. 2020 have demonstrated that
a combination of Topotecan with Cisplatin as a second line of palliative chemotherapy
could be more effective in platinum-sensitive recurrent OC even though of having severe
hematological and neutropenia toxicity [41].
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Of note, our findings also illustrate that Gemcitabine and Carboplatin showed least
binding affinity, which suggests that both drugs may poorly bind with MRP1 suggesting
that both the anticancer drugs are not good substrates of MRP1. Hence, Gemcitabine
and Carboplatin may serve as better chemotherapeutic options to overcome the MRP1-
facilitated drug resistance. Our findings are also parallel with other studies where it
has been suggested that Gemcitabine might be a potential treatment choice for platinum-
resistant OC patients [42]. Interestingly, clinical studies carried out by Berg et al., 2019
and Lorusso et al., 2006 reported that Gemcitabine could be an effective and reliable
chemotherapeutic drug for the treatment of platinum sensitive as well as resistant recurrent
OC either alone or in combination with Carboplatin. Another study also conducted by
Pfisterer et al. 2006 suggested that combination of Gemcitabine and Carboplatin consid-
erably enhances progression-free survival and response rate without affecting quality of
life for patients with platinum-sensitive recurrent OC [42–44]. Similarly, studies have
proposed that a combinatorial approach of Gemcitabine along with platinum (Carboplatin
or cis-platin) could be applied to treat platinum-resistant and recurrent OC which sub-
stantially improves the health of patients [44–48]. Further, combining Gemcitabine and
platinum altogether have been suggested in breast cancer therapy in order to provide
maximum clinical potential of these drugs. In parallel, our findings also suggested that
Gemcitabine and platinum combination might be helpful to improve chemotherapeutic
response to platinum-sensitive and relapse OC having MRP1 phenotype. Interestingly,
alongside with conventional chemotherapeutic treatment, poly (ADP-ribose) polymerase
(PARP) inhibitors also need to be considered in multidrug resistance OC patients in order
to improve progression-free survival [3]. Thus, combination of platinum-based therapy
and PARP inhibitors might be adopted as future treatment modalities in order to improve
the efficacy of therapy especially in multidrug resistance OC patients. The chemotherapy
resistance mechanisms have not been well studied in silico with regard to full protein of
MRP1 and its substrates specificities in OC. Therefore, further research efforts are needed
to identify the key ligand–protein (Chemotherapeutic drugs-MRP1) interactions with more
anti-cancer drugs and MRP1 inhibitors.

The association between expression and functions of MRP1 with SNPs also needed
to be considered in further studies as it may affect protein expression or function in order
to get more insight toward determining high potency of such anticancer drugs. MRP1
gene polymorphism might be an indicator of the chemotherapeutic response in advanced
OC. Thus, this approach certainly adds an extra leap toward exploiting and addressing
selectivity of such chemotherapeutic agents to tackle drug resistance issues, as well as
provides beneficial information pertaining to the discovery and design of novel and potent
anticancer drugs that could possibly overwhelm MDR phenotype often associated with
relapse cases of many cancers including OC.

5. Conclusions

In the current study, MRP1 was analyzed for docking against several anticancer drugs
such as, Paclitaxel, Gemcitabine, Carboplatin, Doxorubicin, and Topotecan which are
usually used to treat advanced stage ovarian cancer, to understand drug–target interactions.
The 3D structure of MRP1 was modelled and docked to the drugs by using ADV. Our
result showed that Paclitaxel has the highest binding affinity with MRP1, and it may be
the substrate for MRP1. Carboplatin exhibits least binding affinity, which represents that it
binds weakly with MRP1. Thus, Carboplatin appears to be more effective against MRP1.
In conclusion, our findings suggest the possible use of Gemcitabine in combination with
Carboplatin which may serve as a promising chemotherapeutic strategy for overcoming
MDR in the relapse OC cases.
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