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Abstract

In this paper, we introduce a hierarchy of integrable higher order equations of
Camassa-Holm (CH) type, that is, we present infinitely many nonlinear equations
depending on inertia operators which generalize the standard momentum operator
A2 = ∂xx − 1 appearing in the Camassa-Holm equation mt = −mx u − 2mux ,
m = A2(u). Our higher order CH-type equations are integrable in the sense
that they possess an infinite number of local conservation laws, quadratic pseudo-
potentials, and zero curvature formulations. We focus mainly on the fifth order
CH-type equation and we show that it admits pseudo-peakons, this is, bounded
solutions with differentiable first derivative and continuous and bounded second
derivative, but whose higher order derivatives blow up. Furthermore, we investi-
gate the Cauchy problem of our fifth order equation on the real line and prove local
well-posedness for initial conditions u0 ∈ Hs(R), s > 7/2. In addition, we discuss
conditions for global well-posedness in H4(R) as well as conditions causing local
solutions to blow up in a finite time. We finish our paper with some comments on
the geometric content of our equations of CH-type.
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1 Introduction

In this paper we explain how to construct a family of integrable equations which generalize
the celebrated Camassa-Holm (CH) equation (see [5])

mt = −mx u− 2mux , m = uxx − u .

Our main motivation for undertaking this project is the observation that the Camassa-
Holm equation can be understood as an Euler equation for the inertia operator A2 =
∂xx − 1 on the Lie algebra V ect(S1) of the (Fréchet) Lie group Diff(S1), and that, in
turn, the latter equation can be interpreted geometrically as determining geodesics for
a Riemannian metric on Diff(S1) defined via A2 , see for instance [1, 20], the treatise
[18] and also [15]. A similar observation is valid for a group of diffeomorphisms of the
line that is slightly more difficult to describe, see [10]. A natural question which arises is
whether taking different inertia operators An would yield new “Euler equations” which
may be of interest for the theory of fluids and which may determine interesting geometry
on diffeomorphism groups. In the paper [12] Constantin and Kolev answer this question
as follows in the case of V ect(S1) and the (Fréchet) Lie group Diff(S1): the only bi-
Hamiltonian equations (for some natural Poisson structures) arising from inertia operators
An =

∑
(−1)k∂2k

x are the inviscid Burgers equation (k = 0) and the Camassa-Holm
equation (k = 1). However, since inertia operators are quite interesting, as they equip
infinite-dimensional Lie groups with non-trivial (pseudo-)Riemannian geometry (see for
instance [20, 10], the classical paper [1] by Arnold, and also [15]), we cannot help but
wondering if we could go around the Constantin-Kolev result.

Further motivation for our work comes from the fact that the standard Camassa-
Holm hierarchy, see for instance [14, Equation (2.49)] and [21, Theorem 2], is a hierarchy
of nonlocal equations. It is natural to wonder if there exists a local family of equations to
which the CH equation belongs. Rasin and Schiff have explicitly computed a sequence of
generalized symmetries of the CH, see [22, Section 7], and this work can be considered
as providing an answer to the above question, but then we could insist that the members
of our hypothetical family ought to be defined via inertia operators, precisely as the CH
equation.

We observe in this paper that we can generalize the zero curvature formulation of
the Camassa-Holm equation (see [27, 24, 14, 21]) by using some appropriate higher order
operators A2n that can be interpreted as higher order inertia operators, thereby obtaining
partial differential equations which indeed generalize CH in the sense we seek. In turn,
these zero curvature representations allow us to check integrability of the corresponding
“higher order CH-type equations”, not in the sense of being bi-Hamiltonian, but in the
sense of possessing an infinite number of non-trivial local conservation laws. We note
that by proceeding in this way we lose the interpretation of our higher order Ch-type
equations as standard Euler equations but, as we show in the last section of this work,
they do possess interesting geometric content.

Our paper is organized as follows. In Section 2 we introduce the following fifth order
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CH-type equation 
mt = −mxv − 2mvx,
v = u− uxx = (1− ∂2)u = A2(u),
m = v − vxx = (1− ∂2)2u = −A4(u),

(1)

which we derive using the operators A2(u) = u − uxx, and A4(u) = −uxxxx + 2uxx − u.
The expansion of (1) reads

ut − 2uxxt + uxxxxt = −3uux + 4uuxxx − uuxxxxx + 5uxuxx − 2uxuxxxx

−6uxxuxxx + 2uxxxuxxxx + uxxuxxxxx, (2)

We show that (1) admits a Lax pair and an infinite number of non-trivial local conservation
laws as well as its Lie algebra of symmetries. Then in Section 3 Equation (1) is shown
to possess pseudo-peakons, this is, bounded solutions with smooth first derivative and
continuous second derivative, but whose higher order derivatives blow up. Pseudo-peakons
have been observed before in a “fifth order Camassa-Holm equation”, see [19, 30], but
we believe that this is the first time a fifth order integrable equation possessing this kind
of solutions is reported. In Section 4 we discuss local well-posedness of (1) for initial
conditions u0 ∈ Hs(R), s > 7/2, which is to be contrasted with the corresponding result
for standard CH equation (for instance, in [26, Theorem 3.1] local well-posedness of the
Camassa-Holm equation is proven for initial data in Hs(R), s > 3/2). In this section we
also prove a theorem on global well-posedness of (1) in H4(R), and we present conditions
causing local solutions to blow up in a finite time. Finally, in Section 5 we make some
remarks on the geometric meaning of Equation (1) —in particular, we observe that the
operators A2n can indeed be considered as inertia operators— and we introduce our whole
family of higher order Camassa-Holm type equations.

2 Equations of Camassa–Holm type

Let us begin by recalling the following observation about the important Camassa–Holm
equation introduced in [5].

Theorem 1. The compatibility condition of the linear problem

dψ = (Xdx+ Tdt)ψ ,

where ψ = (ψ1, ψ2)t, and

X =
1

2

[
0 λ+ 2m
λ−1 0

]
, T =

1

2

[
−ux −2um+ λu− λ2

−1− uλ−1 ux

]
, (3)

is the Camassa-Holm (CH) equation

mt = −mx u− 2mux , m = uxx − u . (4)
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This theorem appears in [27] and [24]. It is well-known how to obtain quadratic
pseudo-potentials and conservation laws from associated sl(2,R)-valued linear problems,
see [9], Refs. [23, 24] for full details, and Proposition 1 below. We obtain:

Theorem 2. The CH equation (4) admits a quadratic pseudo-potential γ determined by
the compatible equations

m = γx +
1

2λ
γ2 − 1

2
λ , γt =

γ2

2

[
1 +

1

λ
u

]
− uxγ − um+

[
1

2
uλ− 1

2
λ2

]
, (5)

where λ 6= 0 is a parameter. Moreover, Equation (4) possesses the parameter-dependent
conservation law

γt = λ

(
ux − γ −

1

λ
uγ

)
x

. (6)

We can interpret Equations (5) and (6) as determining a “Miura-like” transformation
and a “modified Camassa-Holm” (MOCH) model. This observation is further developed
in [16].

We use (5) and (6) to construct conservation laws for the CH equation. Setting

γ =
∞∑
n=1

γnλ
n/2 and substituting it into (5) we find the conserved densities

γ1 =
√

2
√
m , γ2 = −1

2
ln(m)x , γ3 =

1

2
√

2
√
m

[
1− m2

x

4m2
+ ln(m)xx

]
, (7)

γn+1 = − 1

γ1

γn,x −
1

2γ1

n∑
j=2

γj γn+2−j , n ≥ 3 , (8)

while the expansion γ = λ+
∞∑
n=0

γnλ
−n implies

γ0,x + γ0 = m , γn,x + γn = −(1/2)
n−1∑
j=0

γj γn−1−j , n ≥ 1 . (9)

It is shown in [24] that the local conserved densities γn determined by (7) and (8) corre-
spond to the ones found by Fisher and Schiff in [13] by using an “associated Camassa–
Holm equation”, while (9) generates the local conserved densities u, u2

x+u2, and uu2
x+u3,

and a sequence of nonlocal conservation laws.

Let us now introduce our higher order equations of Camassa-Holm type. Our basic
idea is to use m = An(u) for higher order operators An in the matrices (3), instead of
using simply m = (1 − ∂xx)u : we keep the λ-pole structure of the matrices X and T

appearing in (3) — so that, in particular, we expect our equations to be amenable of
analysis via scattering/inverse scattering, see [2] — but we write m = An(u) in X and
we modify T so that the zero curvature equation Xt − Tx + [X,T ] = 0 is equivalent to
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a scalar partial differential equation. Here we work out the case in which An is a fourth
order operator, and we present a general construction in the final section of this paper.

We choose A4(u) = −uxxxx + 2uxx − u and we select

X4 =

[
0 1

2
λ− uxxxx + 2uxx − u

1
2
λ−1 0

]
(10)

and

T4 =
1

2

 −ux + uxxx (−2u+ 2uxx) (−uxxxx + 2uxx − u) + λ (u− uxx)− λ2

−1− u

λ
+
uxx
λ

ux − uxxx

 .

(11)
A straightforward computation shows that the equation

X4,t − T4,x + [X4, T4] = 0

is equivalent to equation (2).
Equation (2) is integrable in the sense of admitting the parameter-depending Lax pair

ψx = X4ψ, ψt = T4ψ and (as we will see momentarily) of possessing an infinite number
of non-trivial local conservation laws; we call either (2) or (1) the integrable fifth-order
CH-type equation.

We now present conservation laws and symmetries of Equation (2) in an explicit form.

Conservation laws
After the classical work [28] (and the geometric reinterpretation of [28] appearing in
[9, 23]), we compute conservation laws using quadratic pseudo-potentials via the following
general proposition:

Proposition 1. Let us assume that a given equation Ξ(x, t, u, . . . ) = 0 is the integrability
condition of an sl(2,R)-valued linear problem Ψx = XΨ and Ψt = TΨ, in which the
matrices X = (Xij) and T = (Tij) depend on x, t, u, finite numbers of derivatives of u,
and (possibly) a parameter λ. Then, the following pair of Riccati equations determines a
quadratic pseudo-potential for Ξ = 0 :

−2 Γx = (−X12 +X21 + 2X11)− 2 Γ(X12 +X21) + Γ2(−X12 +X21 − 2X11)

−2 Γt = (−T12 + T21 + 2T11)− 2 Γ(T12 + T21) + Γ2(−T12 + T21 − 2T11) .

Moreover, the equation Ξ = 0 admits a conservation law with conserved density

X12 +X21 − Γ(−X12 +X21 − 2X11)

and flux
T12 + T21 − Γ(−T12 + T21 − 2T11) .
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In the case of the linear problem determined by (10) and (11), it is convenient to apply
a gauge transformation to the connection X4dx+ T4dt with gauge matrix

R =

[
1 −1
1 1

]
. (12)

We perform this transformation and then we use Proposition 1. We obtain that Equation
(2) admits the quadratic pseudo-potential

∂Γ

∂x
=

1

2
λ− uxxxx + 2uxx − u−

Γ2

2λ
(13)

∂Γ

∂t
=

1

2
(−2u+ 2uxx) (−uxxxx + 2uxx − u) +

1

2
λ (u− uxx)−

1

2
λ2

+ Γ (−ux + uxxx)−
1

2
Γ2
(
−1− u

λ
+
uxx
λ

)
(14)

and the parameter dependent conservation law

−
(

Γ

λ

)
t

=
(
−ux + uxxx − Γ

(
−1− u

λ
+
uxx
λ

))
x
. (15)

Expansion in powers of λ as in (7)–(9) yields a sequence of non-trivial local conservation
laws. In full detail, we proceed as follows. We adopt the concise form (1) of the CH-type
equation (2), this is,

mt + 2vxm+ vmx = 0 ,

where v = u− uxx and m = v − vxx = u− 2uxx + uxxxx. Then, setting Γ =
∑∞

n=1 γnλ
n/2

and replacing into (13) we obtain

γ1 =
√

2
√
−m (16)

γ2 =
−γ1,x

γ1

=
1

2
ln(| −m|)x (17)

γ3 =
1

2
√

2
√
−m

(
1− 1

4

m2
x

m2
− ln(| −m|)xx

)
(18)

γn =
−1

γ1

γn,x −
1

γ1

∑
γkγn+2−k , n ≥ 3 . (19)

On the other hand, setting now Γ = λ +
∑∞

n=0 γ̃nλ
−n and substituting into (13) we

find

γ̃0,x + γ̃0 = −m (20)

γ̃n,x + γ̃n = −1

2

n−1∑
k=0

γ̃kγ̃n−1−k . (21)

Equation (20) yields the conserved density γ̃0 = −uxxx + uxx + ux − u. In order to find
further densities we note that Equation (15) means not only that the functions γ̃n are
conserved densities, but also that so are the functions γ̃n + γ̃n,x. From (21) we obtain∫

(γ̃1 + γ̃1,x)dx = −1

2

∫
γ̃2

0dx = −1

2

∫
(u2

xxx + 3u2
xx + 3u2

x + u2)dx , (22)
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in which we have eliminated total derivatives and also all boundary terms that appear
after using integration by parts. Thus,

u2
xxx + 3u2

xx + 3u2
x + u2 (23)

is a local conserved density for (2). This density will be important for our analysis of the
global well-posedness of (2), see Theorems 6, 7, and 8 below. Further conserved densities
arising from (21) are non-local expressions. For example, taking n = 2 in (21) we find∫

(γ̃2 + γ̃2,x)dx = −
∫
γ̃0γ̃1dx ,

this is, after integration by parts,∫
(γ̃2 + γ̃2,x)dx = −

∫
(uxx − ux)γ̃1,xdx+

∫
u(γ̃1,x + γ̃1)dx

=

∫
(uxxx − uxx)γ̃1dx−

1

2

∫
u(−uxxx + uxx + ux − u)2dx . (24)

We can check that all conserved densities γk, k odd, which are included in (16)–(19)
are non-trivial. Indeed, it is clear that γ1 and γ3 determine non-trivial conservation laws.
Now, if we expand γ5 we obtain the summand −γ2

3/γ1. This function contains a term
depending only on −m, and not on derivatives of m. Thus, it is impossible for γ5 to
be a total derivative. In general, we argue thus: we consider the density −γn+1 so that
we do not worry about signs. This density will be equal to γn,x/γ1 plus a sum of terms
of the form γkγn+2−k. If n + 1 is odd, this sum decomposes into two pieces: the first
summand is of the form +γeven indexγeven index, and the second summand is of the form
+γodd indexγodd index. This second sum always contains a term depending only on −m and
not on derivatives of m, and therefore −γn+1 must be a non-trivial conserved density.

Remark 1. The foregoing computations suggest that Equation (2) has different ana-
lytic properties than the standard Camassa-Holm equation, even though it arises as the
compatibility condition of a linear problem having the same pole structure as the linear
problem (3) associated with the CH equation. In fact, while expansion in powers of λn/2

of the density Γ of (15) yields conservation laws which are similar to the ones appearing
in (7)–(8), we lose one local density if we expand in powers of λ−n : In the case of the fifth
order CH-type equation (2) we obtain (24) instead of a density similar to the conserved
density u(u2

x + u2) arising in the Camassa-Holm case, see (9) and [24].

Symmetries
Now we compute symmetries for (2). Interestingly, the Lie algebra of point symmetries of
this equation is much richer than the CH Lie algebra of point symmetries. We obtain the
following result with the help of GeM, see [8], and the MAPLE built-in package PDEtools:

Proposition 2.
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• The Lie algebra of point symmetries of Equation (2) is generated by the vector fields

V1 =
∂

∂x
, V2 =

∂

∂t
, V3F = F (t)ex

∂

∂u

and

V4G = G(t)e−t
∂

∂u
, V5 = t

∂

∂t
− u ∂

∂u
,

in which F (t) and G(t) are arbitrary smooth functions.

• The Lie algebra structure of point symmetries of Equation (2) is determined by the
commutator table

V1 V2 V3F V4G V 5

V 1 0 0 V3F −V4G 0
V 2 0 V3Ft V4Gt V2

V 3 0 0 −V3 (−tFt+F )

V 4 0 −V4(tGt+G)

V 5 0

The existence of symmetries V1 and V2 prompts us to look for solutions of the form
u(x, t) = f(x+ct). We easily find u(x, t) = A ect+x+B e−ct−x−c, which is not a travelling
wave. We consider “weak forms” of travelling waves in the next section.

Remark 2. It is proven in [24] that the Camassa-Holm equation admits the nonlocal
symmetry V = γ exp(δ/λ) ∂/∂u, in which γ satisfies (5) and δ is a potential of the
conservation law (6). Also, it is observed in [25] that a nonlocal symmetry of the same
form as V allows one to classify all integrable equations belonging to a one-parameter
family of equations admitting quadratic pseudopotentials and conservation laws (see [25,
Theorem 6.6]). Thus, we wonder if Equation (2) — being integrable and generalizing
the Camassa-Holm equation — admits a symmetry similar to V . In fact, this is not so:
computations carried out with the help of the MAPLE packages DifferentialGeometry and
JetCalculus tell us that it is not possible to choose L ∈ R so that V = γ exp(L δ) ∂/∂u
— in which γ solves (13), (15) and δ is a potential of the conservation law (15) — be a
symmetry of (2). More generally we can prove:

Proposition 3. The fifth order CH-type equation (2) does not admit a non-trivial
nonlocal symmetry of the form V = f(γ, δ) ∂/∂u, in which γ is a solution to (13)
and (15), and δ is a potential of the conservation law (15).

Proof. The method of proof is standard, and so we only sketch its main points. We
use the MAPLE packages DifferentialGeometry and JetCalculus in order to carry
out our computations.
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Let ∆ be the left hand side of Equation (2). We consider a vector V as in the
enunciate of the proposition and we compute the Lie derivative

Lpr(V )∆ ,

in which pr(V ) is the fifth prolongation of V . This derivative depends on higher
derivatives of γ and δ. We get rid of these derivatives using the four compatible
equations (13), (15), δx = γ, δt = λ(ux−uxxx)−λγ−(u−uxx)γ, and their differential
consequences. We obtain a long expression which depends only of x-derivatives of u;
in fact, the highest x-derivative that appears in this expression is uxxxxxxx. We will
call this expression (and the ones obtained from it as explained below) E, simply.
Differentiating E with respect to uxxxxxxx and then differentiating the resulting
expression with respect to u, we obtain the necessary condition

fγγ = 0

for V to be a symmetry, this is, f(γ, δ) = f1(δ)γ+f2(δ). Replacing into E, differenti-
ating with respect to uxxxxxxx, and then differentiating the resulting expression with
respect to ux, yield the new necessary condition f1(δ) = C1 exp(3δ/λ). Replacing
this constraint into E and differentiating with respect to uxxxxxxx once again, we
find that our next necessary condition is C1 = 0. We replace this new constraint
into E and differentiate the resulting expression with respect to uxxxxxx and to ux.
We obtain the new necessary condition f2(δ) = C3 + C4 exp(2δ/λ). Replacing one
last time into E and differentiating with respect to uxxxxxx, we obtain the conditions
C3 = C4 = 0, so that if a vector field V = f(γ, δ) ∂/∂u were a symmetry of (2),
then the function f had to vanish identically.

3 Pseudo-peakons

In this section we study solutions to the fifth order CH-type equation (1). As pointed out
after Proposition 2, we can find explicit solutions rather easily. Besides the elementary
solution already reported therein, we can check, for instance, that

u(x, t) =
(
c1 e

−2x + c2 e
−2xx+ c3 + c4 x

)
ex−d(t) ,

in which c1, . . . , c4 are constant numbers and d(t) is an arbitrary function of t, solves (1).
This function u(x, t) is not a solution to the standard Camassa-Holm equation. The main
goal of this section is to show that, much more interestingly, the integrable Equation (1)
admits pseudo-peakon and multi-pseudo-peakon solutions, as anticipated in Section 1.

Casting the regular travelling wave setting ξ = x − ct in the CH-type equation (1),
through a lengthy computation we obtain the following single pseudo-peakon solution:

u =
c

2
e−|ξ|(1 + |ξ|) , ξ = x− ct , (25)
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Figure 1: The single pseudo-peakon solution
(25)

 

Figure 2: The peaked second derivative (26)

which looks like a peakon since there are absolute-value functions involved. But, this
function in spirit has continuous derivatives up to the second order,

u′ = − c
2
e−|ξ|ξ , u′′ =

c

2
e−|ξ|(|ξ| − 1) , (26)

which show us that the solution u is differentiable, with continuous and bounded second
order derivative, but whose third order derivative blows up (see Figures 1 and 2).

We can also compute multi-pseudo-peakon solutions. They are of the form

u =
N∑
j=1

pj(t)

2
e−|x−qj(t)|(1 + |x− qj(t)|) , (27)

where pj(t), qj(t) satisfy the following canonical Hamiltonian dynamical system

q̇j =
∂H

∂pj
, (28)

ṗj = −∂H
∂qj

, (29)

with Hamiltonian function:

H =
1

2

N∑
i,j=1

pipje
−|qi−qj | . (30)

Now we make the crucial observation that (28)–(30) coincides exactly with the finite-
dimensional peakon dynamical system of the CH equation, see [5]. This fact allows us to
have a full picture of multi-pseudo-peakon solutions, as we show momentarily.

First, let us calculate explicitly 2-pseudo-peakons. WhenN = 2, we have the 2−pseudo-
peakon equations below:

p1,t = p1p2 sgn(q1 − q2) e−|q1−q2| ,
p2,t = p1p2 sgn(q2 − q1) e−|q1−q2| ,
q1,t = p1 + p2 e

−|q1−q2| ,
q2,t = p2 + p1 e

−|q1−q2| ,

(31)
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Figure 3: The two pseudo-peakon interaction
plotted in 3D for negative time t.

Figure 4: The two pseudo-peakon interaction
plotted in 3D for all times.

which can be solved with the following explicit solutions:{
p1(t) = −p2(t) = A coth(At),
q1(t) = −q2(t) = ln cosh(At),

(32)

where A is an arbitrary constant. Thus, the 2-pseudo-peakon solution of the fifth order
CH-type equation (1) is given by

u(x, t) =
p1(t)

2
e−|x−q1(t)|(1 + |x− q1(t)|) +

p2(t)

2
e−|x−q2(t)|(1 + |x− q2(t)|)

=
A

2
coth(At)

[
e−|x−ln cosh(At)|(1 + |x− ln cosh(At)|)− e−|x+ln cosh(At)|(1 + |x + ln cosh(At)|)

]
,

(33)

where cosh(At) = eAt+e−At

2
, and coth(At) = eAt+e−At

eAt−e−At . If we fix time t = cosh−1 e
A

and we

select A = 2
coth(cosh−1 e)

, the above 2-pseudo-peakon solution reads as the following simplest

form

u(x, t) = e−|x−1|(1 + |x− 1|)− e−|x+1|(1 + |x + 1|),

which we may plot in a 2D picture for the two pseudo-peakon interaction (see Figure 3).

Remark 3. The plots below show 2-pseudo-peakons in 3D. Figure 4 shows a 3D interac-
tional dynamics of the 2-pseudo-peakon solution for all times. Figure 5 and Figure 6 show
a 3D interactional dynamics of the two-pseudo-peakon solution for the negative times and
the positive times, respectively. During the interaction of two-pseudo-peakons, it follows
from the explicit solution (33) that the solution u suddenly crashes to zero when the time
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Figure 5: The two pseudo-peakon interaction
plotted in 3D for negative time t.

Figure 6: The two pseudo-peakon interaction
plotted in 3D for positive time t.

t passes from negative to positive via t = 0. After the time t = 0, the two-pseudo-peakon
solution continues travelling from left to right, but the amplitudes already flipped along
with the time (see Figure 5 and Figure 6 for details).

Now we consider multi-pseudo-peakons in full generality. It is known that the Hamil-
tonian system (28)–(30) —that in our context will be called the multi-pseudo-peakon
system— is completely integrable in the Liouville sense. This fact is discussed in [5] and
fully studied by Calogero and Françoise in [4]. Since the Hamiltonian (30) is not con-
tinuously differentiable, we cannot conclude that the trajectories of the system are given
by quadratures via the Arnold-Liouville theorem. However, in the papers [2, 3] Beals,
Sattinger and Szmigielski are able to solve the Hamiltonian system (28)–(30) via inverse
spectral methods and continued fractions. More precisely we have, after the summary
appearing in [6, Theorem 2.1]:

Theorem 3. The solutions of the Hamiltonian system

dxj
dτ

=
∂H

∂mj

,
dmj

dτ
= −∂H

∂xj
, H(x1, · · · , xN ,m1, · · · ,mN) =

1

4

N∑
j,k=1

mjmke
−2|xj−xk|

(34)
are given by

xj =
1

2
log

(
1 + yj
1− yj

)
, mj = gj(1− y2

j ) , (35)

in which

yj = 1−
∆2
N−j

∆0
N−j+1

, gj =
(∆0

N−j+1)2

∆1
N−j+1 ∆1

N−j
.
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The functions ∆l
k(τ) are given by

∆l
k = det(Ai+j+l(τ))k−1

i,j=1 , Ak(τ) =
N∑
j=0

(−λj)k aj(τ) , a0(τ) =
1

2
, λ0 = 0 ,

with d
dτ
aj(τ) = −2aj(τ)

λj
and λj 6= 0 for j ≥ 1.

In this theorem we assume that the numbers λj are all distinct and have the same sign,
and that the initial conditions aj(0) are positive, see [6, p. 158].

Now, in order to obtain solutions to the system (28)–(30), we apply the symplectic
transformation xj 7→ (1/2) qj, mj 7→ 2pj. Then, the Hamiltonian appearing in (34)
becomes (30), and trajectories of (34) map onto trajectories of (28)–(30). We adjust the
time evolution by setting t = 2τ and we are ready: replacing qj(t) and pj(t) into our
formula (27) we obtain explicit expressions for N -pseudo-peakons.

4 The Cauchy problem for the CH-type equation

In this section we consider the Cauchy problem for the fifth order CH-type equation (1).
We rewrite (1) as{

mt + 2 (u− uxx)xm+ (u− uxx)mx = 0,
m = −A4(u) = (1− ∂2

x)
2u = u− 2uxx + uxxxx .

(36)

The operator (1− ∂2
x)
−2 can be expressed by

(1− ∂2
x)
−2f = G ∗ f =

∫
R
G(x− y)f(y)dy

for any f ∈ L2(R) with G = 1
4
(1 + |x|)e−|x|. It follows

u(x, t) = G ∗m =
1

4

∫
R
(1 + |x− ξ|)e−|x−ξ|m(ξ, t)dξ

=
1

4
e−x

∫ x

−∞
(1 + x− ξ)eξm(ξ, t)dξ +

1

4
ex
∫ +∞

x

(1− x+ ξ)e−ξm(ξ, t)dξ.

(37)

Then,

ux(x, t) = −1

4
e−x

∫ x

−∞
(1 + x− ξ)eξm(ξ, t)dξ +

1

4
ex
∫ +∞

x

(1− x+ ξ)e−ξm(ξ, t)dξ

+
1

4
e−x

∫ x

−∞
eξm(ξ, t)dξ − 1

4
ex
∫ +∞

x

e−ξm(ξ, t)dξ
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and

uxx(x, t) =
1

4
e−x

∫ x

−∞
(1 + x− ξ)eξm(ξ, t)dξ +

1

4
ex
∫ +∞

x

(1− x+ ξ)e−ξm(ξ, t)dξ

−1

2
e−x

∫ x

−∞
eξm(ξ, t)dξ − 1

2
ex
∫ +∞

x

e−ξm(ξ, t)dξ. (38)

(37) minus (38), we have

(u− uxx)(x, t) =
1

2
e−x

∫ x

−∞
eξm(ξ, t)dξ +

1

2
ex
∫ +∞

x

e−ξm(ξ, t)dξ. (39)

Differentiating u− uxx with respect to x, we have

(ux − uxxx)(x, t) = −1

2
e−x

∫ x

−∞
eξm(ξ, t)dξ +

1

2
ex
∫ +∞

x

e−ξm(ξ, t)dξ. (40)

4.1 Local well-posedness and blow-up scenario

Firstly, we present the local well-posedness theorem for the CH type equation (36).

Theorem 4. Let u0 ∈ Hs(R) with s > 7
2
. Then there exist a T > 0 depending on ‖u0‖Hs,

such that the CH type equation (36) has a unique solution

u ∈ C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)).

Morever, the map u0 ∈ Hs → u ∈ C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)) is continuous.

The proof (via Kato’s theory) is similar to the ones appearing in [11] and [26, Section
3]. To make the paper concise, we would like to omit the details.

The maximum value of T in Theorem 4 is called the lifespan of the solution. If T <∞,
that is,

lim
t→T−

‖u‖Hs =∞ ,

we say the solution blows up in finite time. Let us present the precise blow-up scenario.

Theorem 5. Assume that u0 ∈ H4(R) and let T be the maximal existence time of the
solution u(x, t) to the CH type equation (36) with the initial data u0(x), then the corre-
sponding solution of the CH type equation (36) blows up in finite time if and only if

lim
t→T

inf
x∈R
{(ux − uxxx)(x, t)} = −∞.

Proof. By direct calculation, we have ‖u‖2
H4 ≤ ‖m‖2

L2 ≤ 3‖u‖2
H4 . Multiplying (36) by m,

direct calculation we have

d

dt

∫
R
m2dx = −2

∫
R

2 (−uxx + u)xm
2 + (−uxx + u)mxmdx

≤ −3 inf
x∈R
{ux − uxxx}

∫
R
m2dx.
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If
inf
x∈R
{ux − uxxx} ≥ −M,

then

d

dt

∫
R
m2dx ≤ 3M

∫
R
m2dx.

By using the Gronwall inequality,

‖m‖2
L2 ≤ e3M‖m0‖2

L2 .

Therefore the H4-norm of the solution is bounded on [0, T ). On the other hand, by the
Sobolev’s embedding ‖ux− uxxx‖L∞ ≤ ‖u‖H4 . This inequality tells us that if H4-norm of
the solution is bounded, then the L∞-norm of ux − uxxx is bounded. We have completed
the proof of Theorem 5.

4.2 Global existence and blow up phenomena

In this subsection, firstly, we establish a sufficient condition that guarantees the global
existence of the solution to CH type equation (36). We give the particle trajectory as{

qt(x, t) = (u− uxx)(q(x, t), t), 0 < t < T, x ∈ R,
q(x, 0) = x, x ∈ R, (41)

where T is the lifespan of the solution. Taking derivative (41) with respect to x, we obtain

dqt(x, t)

dx
= qtx = ((ux − uxxx)qx)(q(x, t), t), t ∈ (0, T ).

Therefore {
qx = exp{

∫ t
0
(ux − uxxx)(q, s)ds}, 0 < t < T, x ∈ R,

qx(x, 0) = 1, x ∈ R,

which is always positive before the blow-up time. Therefore, the function q(x, t) is an
increasing diffeomorphism of the line before blow-up. In fact, direct calculation yields

d

dt
(m(q(x, t), t)qbx) = [mt(q) + (ux − uxxx)(q, t)mx(q) + 2(ux − uxxx)(q, t)m(q)]q2

x = 0.

Hence, the following identity can be proved:

m(q(x, t), t)q2
x = m0(x), 0 < t < T, x ∈ R. (42)

From (42), we know that if the initial data m0(x, t) ≥ 0, then m(q(x0, t), t) ≥ 0. Before
going to our main results, we recall the useful conservation law which was found in Section
2 ∫

R
(u2 + 3u2

x + 3u2
xx + u2

xxx)dx =

∫
R
(u2

0 + 3u2
0x + 3u2

0xx + u2
0xxx)dx := E2

0 . (43)
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Theorem 6. Suppose that u0 ∈ H4(R), and m0 = (1−∂2
x)

2u0 does not change sign. Then
the corresponding solution to the CH-type equation (36) exists globally.

Proof. From (42), we known that m(x, t) also does not change sign. By Theorem 5, we
only need to bounded (ux − uxxx)(x, t). For m0 ≥ 0, by (39) and (40), we obtain

(ux − uxxx)(x, t) + (u− uxx)(x, t) = ex
∫ +∞

x

e−ξm(ξ, t)dξ ≥ 0.

It follows

(ux − uxxx)(x, t) ≥ −(u− uxx)(x, t)

≥ −
∫
R
u2 + 3u2

x + 3u2
xx + u2

xxxdx = −E2
0 .

Similarly, for m0 ≤ 0, we have

(ux − uxxx)(x, t) ≥ (u− uxx)(x, t) ≥ −E2
0 .

The proof of Theorem 6 is completed.

Theorem 7. Suppose that u0 ∈ H4(R), and there exists x0 ∈ R such that m0(x) ≤ 0
on (−∞, x0] and m0(x) ≥ 0 on [x0,∞). Then the corresponding solution to the CH-type
equation (36) exists globally.

Proof. From (42), we known that m(x, t) ≤ 0 on (−∞, q(x0, t)] and m(x, t) ≥ 0 on
[q(x0, t),∞). For the points x ∈ (−∞, q(x0, t)], we have

(ux − uxxx)(x, t) = (u− uxx)(x, t)− e−x
∫ x

−∞
eξm(ξ, t)dξ ≥ (u− uxx)(x, t).

For the points x ∈ [q(x0, t),∞), we have

(ux − uxxx)(x, t) = −(u− uxx)(x, t) + ex
∫ +∞

x

e−ξm(ξ, t)dξ ≥ −(u− uxx)(x, t).

It means for any x ∈ R, we have

(ux − uxxx)(x, t) ≥ −‖u− uxx‖L∞ ≥ −E2
0 ,

where we have used the conservation law (43). Then, we complete the proof of Theorem
7.

Theorem 8. Assume that u0 ∈ H4(R) and there exists x0 ∈ R such that

(u0x − u0xxx)(x0) < −E0√
2
, (44)

where E0 is defined in (43), then the corresponding solution u(x, t) to CH type equation
(36) blows up at a finite time T bounded by

T ≤ 1

−1
2
(u0x − u0xxx)(x0) +

E2
0

2(u0x−u0xxx)(x0)

.
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Remark 4. Due to u0x being bounded by the conservation law E0 with ‖u0x‖L∞ ≤
‖u0x‖H1√

2
≤ E0√

2
, the condition (44) holds true only if u0xxx(x0) >

√
2E0.

Proof. Let

I(t) =
1

2
e−q(x0,t)

∫ q(x0,t)

−∞
exm(x, t)dx

and

II(t) =
1

2
eq(x0,t)

∫ +∞

q(x0,t)

e−xm(x, t)dx.

From (39) and (40), we have

(u− uxx)(q(x0, t), t) = I(t) + II(t)

and

(ux − uxxx)(q(x0, t), t) = −I(t) + II(t).

Differential (ux − uxxx)(q(x0, t), t) with respect to t,

d

dt
(ux − uxxx)(q(x0, t), t) = − d

dt
I(t) +

d

dt
II(t). (45)

Then, we estimate d
dt
I(t).

d

dt
I(t) =

1

2
(u− uxx)m(q(x0, t), t)−

1

2
(u− uxx)e−q(x0,t)

∫ q(x0,t)

−∞
exm(x, t)dx

+
1

2
e−q(x0,t)

∫ q(x0,t)

−∞
exmt(x, t)dx.

The third term in the right hand side can been estimated as

1

2
e−q(x0,t)

∫ q(x0,t)

−∞
exmt(x, t)dx

= −1

2
e−q(x0,t)

∫ q(x0,t)

−∞
ex((u− uxx)mx + 2(u− uxx)xm)(x, t)dx

= −1

2
e−q(x0,t)

∫ q(x0,t)

−∞
ex(((u− uxx)m)x + (u− uxx)xm)(x, t)dx

= −1

2
(u− uxx)m(q(x0, t), t) +

1

2
e−q(x0,t)

∫ q(x0,t)

−∞
ex(((u− uxx)m)− (u− uxx)xm)(x, t)dx

= −1

2
(u− uxx)m(q(x0, t), t) +

1

2
e−q(x0,t)

∫ q(x0,t)

−∞
ex
(
(u− uxx)2 − (u− uxx)(u− uxx)xx

−(u− uxx)x(u− uxx) + (u− uxx)x(u− uxx)xx) dx

= −1

2
(u− uxx)m(q(x0, t), t)−

1

2
(u− uxx)(u− uxx)x +

1

4
(u− uxx)2

x

+
1

2
e−q(x0,t)

∫ q(x0,t)

−∞
ex
(

(u− uxx)2 +
1

2
(u− uxx)2

x

)
dx.
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It follows that

d

dt
I(t) = −1

2
(u− uxx)e−q(x0,t)

∫ q(x0,t)

−∞
exm(x, t)dx− 1

2
(u− uxx)(u− uxx)x +

1

4
(u− uxx)2

x

+
1

2
e−q(x0,t)

∫ q(x0,t)

−∞
ex
(

(u− uxx)2 +
1

2
(u− uxx)2

x

)
dx

= −1

2
(u− uxx)2 +

1

4
(u− uxx)2

x +
1

2
e−q(x0,t)

∫ q(x0,t)

−∞
ex
(

(u− uxx)2 +
1

2
(u− uxx)2

x

)
dx.

Note that ∫ q(x0,t)

−∞
ex
(
(u− uxx)2 + (u− uxx)2

x

)
dx

≥ 2

∫ q(x0,t)

−∞
ex(u− uxx)(u− uxx)xdx

≥ eq(x0,t)(u− uxx)2(q(x0, t), t)−
∫ q(x0,t)

−∞
ex(u− uxx)2dx,

which yields that∫ q(x0,t)

−∞
ex
(

(u− uxx)2 +
1

2
(u− uxx)2

x

)
dx ≥ 1

2
eq(x0,t)(u− uxx)2(q(x0, t), t).

Therefore,

d

dt
I(t) ≥ −1

4
(u− uxx)2(q(x0, t), t) +

1

4
(u− uxx)2

x(q(x0, t), t). (46)

Similarity,

d

dt
II(t) = −1

2
(u− uxx)m(q(x0, t), t) +

1

2
(u− uxx)eq(x0,t)

∫ +∞

q(x0,t)

e−xm(x, t)dx

+
1

2
eq(x0,t)

∫ +∞

q(x0,t)

e−xmt(x, t)dx.

The third term in the right hand side can been estimated as

1

2
eq(x0,t)

∫ +∞

q(x0,t)

e−xmt(x, t)dx

=
1

2
(u− uxx)m(q(x0, t), t)−

1

2
(u− uxx)(u− uxx)x −

1

4
(u− uxx)2

x

−1

2
eq(x0,t)

∫ ∞
q(x0,t)

e−x
(

(u− uxx)2 +
1

2
(u− uxx)2

x

)
dx.
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It follows that

d

dt
II(t) =

1

2
(u− uxx)eq(x0,t)

∫ +∞

q(x0,t)

e−xm(x, t)dx

−1

2
(u− uxx)(u− uxx)x −

1

4
(u− uxx)2

x

−1

2
eq(x0,t)

∫ ∞
q(x0,t)

e−x
(

(u− uxx)2 +
1

2
(u− uxx)2

x

)
dx.

By same argument, we have∫ ∞
q(x0,t)

e−x
(

(u− uxx)2 +
1

2
(u− uxx)2

x

)
dx ≥ 1

2
e−q(x0,t)(u− uxx)2(q(x0, t), t).

Therefore

d

dt
II(t) ≤ 1

4
(u− uxx)2(q(x0, t), t)−

1

4
(u− uxx)2

x(q(x0, t), t). (47)

Inserting (46) and (47) into (45), we have

d

dt
(ux − uxxx)(q(x0, t), t)

= (u− uxx)2(q(x0, t), t)−
1

2
(u− uxx)2

x(q(x0, t), t)

−1

2
e−q(x0,t)

∫ q(x0,t)

−∞
ex
(

(u− uxx)2 +
1

2
(u− uxx)2

x

)
dx

−1

2
eq(x0,t)

∫ ∞
q(x0,t)

e−x
(

(u− uxx)2 +
1

2
(u− uxx)2

x

)
dx. (48)

Combining the above estimates into (48), we obtain

d

dt
(ux − uxxx)(q(x0, t), t) ≤

1

2
(u− uxx)2(q(x0, t), t)−

1

2
(uuxx)

2
x(q(x0, t), t). (49)

By the fact ‖f‖2
L∞ < 1

2
‖f‖2

H1 , we have

‖u− uxx‖2
L∞ <

1

2
‖u− uxx‖2

H1 =
1

2
E2

0 .

Let ϕ(t) = (ux − uxxx)(q(x0, t), t), we can rewrite (49) as

ϕ′(t) ≤ −1

2
ϕ2(t) +

1

4
E2

0 .

We complete the proof of Theorem 8 by using the hypothesis of the theorem and a
standard argument on the Riccati type equations.
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Theorem 9. Assume that u0 ∈ H4(R) and there exists x0 ∈ R such that m0(x0) =
(1− ∂2

x)
2u0(x0) = 0,∫ x0

−∞
exm0(x, t)dx > 0 and

∫ ∞
x0

e−xm0(x, t)dx < 0, (50)

then the corresponding solution u(x, t) to CH type equation (36) blows up in finite time.

Proof. Thanks to (42), we obtain m(q(x0, t), t) = 0 for all t in its lifespan. The inequality
(49) is also correct in this proof. The initial condition (50) means that (u0−u0xx)x(x0, t) <
0 and (u0 − u0xx)

2
x(x0, t) > (u0 − u0xx)

2(x0, t). We claim that (u0 − u0xx)x(q(x0, t), t) is
decreasing, (u − uxx)2

x(q(x0, t), t) > (u − uxx)2(q(x0, t), t) for all t ≥ 0. Suppose not, i.e.
there exists a t0 such that (u − uxx)

2
x(q(x0, t), t) > (u − uxx)

2(q(x0, t), t) on [0, t) and
(u− uxx)2

x(q(x0, t0), t0) ≤ (u− uxx)2(q(x0, t0), t0). Recall (46) and (47), we get on [0, t0)

d

dt
I(t) ≥ −1

4
(u− uxx)2(q(x0, t), t) +

1

4
(u− uxx)2

x(q(x0, t), t) ≥ 0

and

d

dt
II(t) ≤ 1

4
(u− uxx)2(q(x0, t), t)−

1

4
(u− uxx)2

x(q(x0, t), t) ≤ 0.

It follows from the continuity property of ODEs that

(u− uxx)2(q(x0, t), t)− (u− uxx)2
x(q(x0, t), t) = 4I(t)II(t) < 4I(0)II(0) < 0,

for all t > 0, this implies that t0 can be extended to the infinity. This is a contradiction.
So the claim is true. By using (46) and (47) again, we get

d

dt
[(u− uxx)2

x − (u− uxx)2](q(x0, t), t)

= − d

dt

{∫ q(x0,t)

−∞
exm(x, t)dx×

∫ +∞

q(x0,t)

e−xm(x, t)dx

}
= 4

d

dt
[I(t)II(t)]

= 4
d

dt
I(t)× II(t) + 4

d

dt
II(t)× I(t)

≥ −[(u− uxx)2
x − (u− uxx)2](q(x0, t), t)II(t) + [(u− uxx)2

x − (u− uxx)2](q(x0, t), t)I(t)

= −(u− uxx)x(q(x0, t), t)[(u− uxx)2
x − (u− uxx)2](q(x0, t), t), (51)

where we have used (u− uxx)x(q(x0, t), t) = −I(t) + II(t). Recall (49), it follows

(ux − uxxx)(q(x0, t), t)

≤
∫ t

0

1

2
[(u− uxx)2(q(x0, s), s)− (u− uxx)2

x(q(x0, s), s)]ds− (ux − uxxx)(x0, 0).

(52)
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Substituting (52) into (51), it yields

d

dt
[(u− uxx)2

x − (u− uxx)2](q(x0, t), t) ≥
1

2
[(u− uxx)2

x − (u− uxx)2](q(x0, t), t)

×
{∫ t

0

[(u− uxx)2
x − (u− uxx)2](q(x0, s), s)ds+ 2(ux − uxxx)(x0, 0)

}
.

(53)

Before completing the proof, we need the following technical lemma.

Lemma 1. [29] Suppose that Ψ(t) is twice continuously differentiable satisfying{
Ψ′′(t) ≥ C0Ψ′(t)Ψ(t), t > 0, C0 > 0,
Ψ(t) > 0, Ψ′(t) > 0.

(54)

Then Ψ(t) blows up in finite time. Moreover, the blow up time can be estimated in terms
of the initial datum as

T ≤ max

{
2

C0Φ(0), Φ(0)
Φ′(0)

}
.

Let Ψ(t) =
∫ t

0
[(u− uxx)2

x − (u− uxx)2](q(x0, s), s)ds+ 2(ux − uxxx)(x0, 0), then (53) is
an equation of type (54) with C0 = 1

2
. The proof is completed by applying Lemma 1.

5 Final Remarks

In this final section we collect three different remarks: first, we introduce the (2n + 1)th
order CH-type equations, n ≥ 1; second, we discuss the relation of these equations with the
geometry of the diffeomorphism group Diff(S1); third, we connect our class of equations
with the geometry of pseudo-spherical surfaces.

5.1 Higher order Camassa-Holm type equations

In this subsection we consider differential operators A2n of order 2n and define m =
A2n(u). Specifically, we choose the operators

A2n = (−1)n+1∂2n
x + 2

n−1∑
k=1

(−1)n+1−k ∂2(n−k)
x − 1 , (55)

B2n =
n−1∑
k=0

(−1)n−k ∂2(n−k)−1
x ,

C2n =
n−1∑
k=0

(−1)n−k ∂2(n−k−1)
x .
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We consider the matrices

X2n =

[
0 1

2
λ+ A2n(u)

1
2
λ−1 0

]
(56)

and

T2n =

 1
2
B2n(u) C2n(u)A2n(u)− 1

2
λC2n(u)− 1

2
λ2

−1

2
+

1

2λ
C2n(u) −1

2
B2n(u)

 . (57)

A straightforward computation allows us to check that the equation

X2n,t − T2n,x + [X2n, T2n] = 0

is equivalent to the (2n+ 1)-order equation of Camassa-Holm type

A2n,t(u)− 2C2n(u)xA2n(u)− C2n(u)A2n(u)x = 0 . (58)

Proposition 1 allows us to compute quadratic pseudo-potentials and conservation laws.
Indeed, after applying a gauge transformation to X2ndx + T2ndt with gauge matrix (12)
and using Prop. 1, we obtain the Riccati equation

∂Γ

∂x
=

1

2
λ+ A2n(u)− Γ2

2λ
, (59)

a corresponding equation for Γt, and the conserved density −Γ/λ. It follows by expanding
Γ as in (7)–(9) that Equation (58) is integrable. We will consider its pseudo-peakon
solutions and Cauchy problem elsewhere.

5.2 Camassa-Holm type equations and Diff(S1)

In this subsection we connect the (periodic case of the) Camassa-Holm type equations
with the geometry of Diff(S1), the Fréchet Lie group of diffeomorphisms of the circle.
We recall some basic facts on the geometry of this group (some of them already mentioned
in Section 1) following the exposition appearing in [15]:

We set G = Diff(S1) and we write its Lie algebra as g = V ect(S1), see [18]. We also
denote by g′ the dual of g, and by 〈 , 〉 : g×g′ → R the pairing that induces such a duality.
Given a linear map A : g→ g′ we define the R-bilinear mapping ( · | · )A : g× g→ R as
( X | Y )A = 〈 X,AY 〉 whenever X and Y are in g. If such a bilinear map is symmetric
and non-degenerate, we say that A is an inertia operator. In this case, we define an
adjoint representation with respect to A by

( ad(X)Y | Z )A = −( Y | adA(X)Z )A (60)

for all X, Y, Z in g.
Let us fix an inertia operator A : g→ g′. This operator induces a (pseudo-)Riemannian

metric on G: we let rγ be the right translation by γ ∈ G, and we denote by rγ∗ : TσG→
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Tσ(γ)G the induced map on the tangent bundle. We define the (pseudo-)Riemannian
metric induced by A as

( ξ | τ )A(γ) = ( rγ−1∗ξ | rγ−1∗τ )A (61)

for all τ, ξ ∈ TγG. Now let us consider a smooth curve { γ(t) | t ∈ T } in G, where
T is an open interval in R, and let γ̇(t) ∈ Tγ(t)G, t ∈ T , be its velocity vector. Then,
rγ(t)−1∗γ̇(t) = X(t) is in g, and we get a curve { X(t) | t ∈ T } in g. The Euler equation
for X(t) is

d

dt
X(t) = −adA(X(t))X(t) . (62)

Euler’s equation determines geodesics on G with respect to the (pseudo-)Riemannian
metric (61), see [1] and also [10, 20]: if X(t) solves (62), then the curve γ(t) determined
by rγ(t)−1∗γ̇(t) = X(t) is a geodesic on G.

Let x in [0, 2π[ be the standard coordinate in S1. Every smooth vector field on S1 can
be written as X(x)∂x, where X : S1 → R is a smooth function. The Lie bracket between
X = X(x)∂x and Y = Y (x)∂x is given by [X, Y ] = (X Yx −Xx Y )(x) ∂x. We complexify
g = Vect(S1), that is we set

Vect(S1)C = g⊕ i g = Vect(S1)⊕ iVect(S1) ,

where i =
√
−1. Thus if z = ei x, then { ln = zn∂x | n ∈ Z } is a basis for Vect(S1)C, i.e.

for every complex vector field of the form X(x)∂x we have a Fourier decomposition

X(x) =
∑
n∈Z

Xnz
n , Xn ∈ C .

We note that if we set Ln = iln, the collection { Ln | n ∈ Z } is also a basis for
Vect(S1)C and that if we extend the Lie bracket linearly to Vect(S1)C we have the relations
[Lm, Ln] = (m− n)Lm+n, m,n ∈ Z.

There is a non-degenerate, positive-definite, L2− inner product on g: if X = X(x)∂x
and Y = Y (x)∂x, then

〈X , Y 〉 =

∫
S1

X(x)Y (x)d x .

We use this product to single-out a convenient dual space g′ as in the beginning of this
subsection. Extending such a product complex-linearly to Vect(S1)C we have

〈lm , ln〉 = 2πδm,−n = −〈Lm , Ln〉 , (m,n) ∈ Z2 .

We fix a finite sequence of real numbers c = {ck}Nk=0 for some N ∈ N and we set

Ac =
N∑
k=0

(−1)kck ∂
2k
x . (63)
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We observe that

( X | Y )Ac = 〈X , AcY 〉 =
N∑
k=0

ck 〈∂kxX , ∂kxY 〉 = 〈AcX , Y 〉

for every X and Y , and therefore in terms of the basis for Vect(S1)C we have

( lm | ln )Ac =
N∑
k=0

(−1)kck m
knk〈lm , ln〉 = 2πδm,−n

N∑
k=0

ck m
2k ,

for m,n 6= 0, while ( l0 | ln )Ac = c0〈∂x, zn∂x〉 = 2πc0δn,0. It follows easily that a symmetric
operator Ac is an inertia operator if and only if ( lm | l−m )Ac is different from zero for
every m in Z.

We are ready to study the geometric interpretation of our equations (58) . First of all,
we note that our operators A2n introduced in (55), are indeed inertia operators. We write
A2n as

A2n = (−1)n(−1)∂2n
x +

n−1∑
j=1

(−1)j(−2)∂2j
x − 1 ,

so that, using the notation introduced in (63) we have c0 = −1, cj = −2 for j = 1, · · · , n−
1, cn = −1. Then, ( l0 | l0 )Ac 6= 0 , ( l±1 | l±1 )Ac 6= 0, and for m 6= 0,±1,

n∑
k=0

ck m
2k = −1−m2n − 2

(
m2n − 1

m2 − 1
− 1

)
= 1−m2n − 2

m2n − 1

m2 − 1

which is clearly not zero as well. Now we compute adA2n using (60); we use “ ′ ” to
indicate derivative with respect to x:

〈[X, Y ], A2n(Z)〉 =

∫
S1

(XY ′ −X ′Y )A2n(Z)dx = −
∫
S1

Y [(XA2n(Z))′ +X ′A2n(Z)] dx

= −〈Y, (XA2n(Z))′ +X ′A2n(Z)〉 = −〈Y,A2nA
−1
2n {(XA2n(Z))′ +X ′A2n(Z)}〉 ,

so that (60) yields

adA2n(X)Z = A−1
2n {(XA2n(Z))′ +X ′A2n(Z)} = A−1

2n {2X ′A2n(Z) +XA2n(Z)′} . (64)

This formula implies that Equation (62) in the case n = 1 is precisely the Camassa-Holm
equation, while the case n = 2 gives the equation

(−∂4
x + 2∂2

x − 1)Xt − 2XxXxxxx + 4XxXxx − 3XXx −XXxxxxx + 2XXxxx = 0 ,

which is not our fifth order CH-type equation (2). In order to find (2) in the present
framework we write it as in (36), this is,

2 (−Xxx +X)xm+mt + (−Xxx +X)mx = 0 , m = A4(X) . (65)
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Comparing (65) and (64), we see that our fifth order CH-type equation can be written,
in geometrical terms, as

d

dt
X = −adA4(A2(X)) ·X .

This equation is a Hamiltonian equation with respect to the standard Poisson bracket on
g′ with Hamiltonian function

H(X) = −1

2

∫
S1

(X2 +X2
x)dx .

More generally, Equation (64) implies that our (2n + 1)th order CH-type equation (58)
can be written as

d

dt
X = adA2n(C2n(X)) ·X .

This equation is also Hamiltonian; the corresponding Hamiltonian function is

H(X) =
1

2

∫
S1

(X2 + (∂xX)2 + · · ·+ (∂n−1
x X)2 )dx .

5.3 Camassa-Holm type equations and classical theory of sur-
faces

The very construction of Equation (65) —and more generally of (58)— as the integrability
condition of an sl(2,R)-valued over-determined linear problem implies that (65) (resp.
(58)) describes surfaces of constant Gaussian curvature K = −1 in the following sense,
see Chern and Tenenblat’s [9] or the later review [25]:
If ω1 = (X2n 21 + X2n 12)dx + (T2n 21 + T2n 12)dt, ω2 = 2X2n 11dx + 2T2n 11dt, and ω3 =
(X2n 21 −X2n 12)dx+ (T2n 21 − T2n 12)dt, in which X2n and T2n are given by (56) and (57)
and X2n ij, T2n ij denote the (i, j) entry of X2n and T2n respectively, then

dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3, and dω3 = ω1 ∧ ω2 (66)

whenever u(x, t) solves (58). If ω1(u(x, t))∧ω2(u(x, t)) 6= 0, these structure equations say
that the domain of u(x, t) has the structure of a surface of constant Gaussian curvature
equal to −1, with metric (ω1)2 + (ω2)2 and connection one–form ω12 = ω3.

The importance of this observation is that the methods used in Section 2 for obtaining
conservation laws and pseudo-potentials originate within the geometry of pseudo-spherical
surfaces, as noted by Chern and Tenenblat in [9]. Later papers on these topics are [23, 25],
and [24] for the particular case of the Camassa-Holm equation.

A recent endeavour within the theory of equations describing pseudo-spherical sur-
faces is to investigate local isometric immersions into E3 of the pseudo-spherical surfaces
described intrinsically by solutions of equations such as (58). It is a classical result that
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every pseudo-spherical surface can be locally immersed in E3, and that the existence of
such immersion is due to the fact that one can find further one-forms

ω13 = aω1 + b ω2 , ω23 = b ω1 + c ω2 ,

satisfying the equations

dω13 = ω12 ∧ ω23 , dω23 = −ω12 ∧ ω13 , a c− b2 = −1 . (67)

Generally speaking, the functions a, b, c are determined by solving differential equations,
and therefore it is quite surprising that (for one-forms associated to differential equations
describing pseudo-spherical surfaces) in some cases they can be expressed in closed form
as functions of the independent variables and of a finite number of derivatives of the
dependent variable u, see for instance [7, p. 1650021-4]. Even more, it has been noticed
that in some important instances (e.g. the Degasperis-Procesi equation), the functions
a, b, c depend only on the independent variables x, t, see [7, Theorem 1.1], while (up to a
technical condition) it is not possible to find functions a, b, c depending on x, t and at most
a finite number of derivatives of u in the case of the Camassa-Holm equation. Thus, it is
very natural to ask whether or not we can find functions a, b, c depending on finite order
jets for our equations (58). Our first result concerns the fifth order CH-type equation (2).

Proposition 4. 1. The fifth order CH-type equation (2) describes pseudo-spherical
surfaces with associated one-forms

ω1 =

(
λ

2
−m+

1

2λ

)
dx+

(
vm+

λv

2
− λ2

2
− 1

2
− v

2λ

)
dt , ω2 = −vxdt , (68)

ω3 =

(
−λ

2
+m+

1

2λ

)
dx+

(
−vm− λv

2
+
λ2

2
− 1

2
− v

2λ

)
dt (69)

in which
v = u− uxx , m = v − vxx .

2. There are no functions a, b, c depending only on independent variables x, t such that
the one forms ω1, ω2, ω12 = ω3 given by (68), (69) and

ω13 = aω1 + b ω2 , ω23 = b ω1 + c ω2

satisfy the structure equations (66) and (67).

Proof. Item 1 is a straightforward computation: we simply note that Equation (2) can
be written as in (1), that is, as the system

− 2mvx −mx v = mt , v = u− uxx , m = v − vxx , (70)

and we check that the one-forms appearing in (68) and (69) satisfy the structure equations
(66). Item 2 is proven by a strategy similar in spirit to the one used in the proof of



27

Proposition 3: let us assume that there exist functions a, b, c depending only on x, t such
that Equations (67) hold. We write down (67) and we obtain two equations that have
to be satisfied identically whenever u(x, t) solves (70), the first one corresponding to
dω13 = ω12 ∧ ω23 and the second one corresponding to dω23 = −ω12 ∧ ω13. We will simply
call them Equations M and N respectively. The sketch that follows has been checked
using MAPLE 2021:

Taking derivatives of M with respect to vx and then with respect to m we get a(x, t) =
c(x, t). Replacing into M and taking derivative with respect to vx we find bx = 0, while
replacing a(x, t) = c(x, t) into N and then differentiating with respect to vx and m yields
b = 0. Replacing into N once again gives us cx = 0, and then replacing into M we find
ct = 0. Now we use the Gauss equation ac− b2 = −1 and we conclude that a, b, c cannot
exist.

Now we consider Equations (58) in full generality. In order to study the local immer-
sion problem we proceed differently than in the interesting paper [7]. Instead of trying to
find one-forms ω13 and ω23 satisfying (67) directly, we simply construct a rather explicit
local immersion, taking advantage of the following observation appearing in [17]:

Lemma 2. There exists a local diffeomorphism Ψ : V ⊆ R2 → W , where W is a subset
of the Poincaré upper half plane, and a smooth function µ such that

Ψ∗θ1 = cosµω1 + sinµω2

Ψ∗θ2 = − sinµω1 + cosµω2

Ψ∗θ3 = ω3 + dµ

where

θ1 =
dx

t
, θ2 =

dt

t
, θ3 =

dx

t
.

The one-forms θ1, θ2 give the standard metric on the Poincaré upper half plane (here-
after denoted by H) ds2 = θ1 ⊗ θ1 + θ2 ⊗ θ2, and θ3 is the corresponding connection one-
form. The proof of this lemma is in [17, pp. 90-91]. Now we note that H can be immersed
into E3 explicitly. A well known immersion is given by the function F : U ⊆ H → E3,
U = {(x, t) ∈ H : t > 1}, with

F (x, t) = (f(t) cosx , f(t) sinx , g(t)) ,

where

f(t) =
1

t
g(t) = ln

(√
t
2 − 1 + t

)
−

√
t
2 − 1

t
.

Thus, a local isometric immersion from the pseudo-spherical structure on V induced by
our Ch-type equation (58) into E3 is given by the composition Φ = F ◦ Ψ. Certainly,
this immersion is in principle highly “nonlocal”, since it depends on the diffeomorphism
Ψ that is found by means of the Frobenius theorem, see [17, p. 91]. However, we believe
that this nonlocality is interesting in its own right:
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The first and third equations appearing in Lemma 2 imply that we can obtain the
function µ via the Pfaffian system

cosµω1 + sinµω2 = ω3 + dµ .

The change of variables Γ = tan(µ/2) transforms this equation into the Riccati system

2dΓ = (ω1 − ω3) + 2Γω2 − Γ2(ω1 + ω3) ,

and using the explicit expressions for the one-forms ωi, i = 1, 2, 3, appearing at the
beginning of this subsection we obtain that this system is equivalent to

2Γx = λ+ 2A2n(u)− 1

λ
Γ2

and an equation for Γt which we will not write down. This equation for Γx is precisely the
quadratic pseudo-potential equation (59) determining local conservation laws for the CH-
type equation (58)! Also, we can check that if we write Ψ(x, t) = (φ(x, t), ψ(x, t)), then
ln(ψ) is a potential for the local conservation laws of (58), while φ is a further potential
depending on ψ.

Thus, local isometric immersions of our CH-type equations are, essentially, constructed
via their local conservation laws.
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