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OPTIMAL QUANTIZATION FOR MIXED DISTRIBUTIONS GENERATED

BY TWO UNIFORM DISTRIBUTIONS

ASHLEY GOMEZ, OGLA LOPEZ, AND MRINAL KANTI ROYCHOWDHURY

Abstract. In this paper, for mixed distributions generated by two uniform distributions we
investigate the optimal sets of n-means and the nth quantization errors for all positive integers
n. Some conjectures and open problems are also given.

1. Introduction

The most common form of quantization is rounding-off. Its purpose is to reduce the cardinality
of the representation space, in particular, when the input data is real-valued. It has broad
application in engineering and technology (see [GG, GN, Z]). For mathematical treatment of
quantization one is referred to Graf-Luschgy’s book (see [GL1]).

Let R
d denote the d-dimensional Euclidean space equipped with a metric ‖ · ‖ compatible

with the Euclidean topology. Let P be a Borel probability measure on R
d and α be a finite

subset of R
d. Then,

∫

mina∈α ‖x − a‖2dP (x) is often referred to as the cost, or distortion
error for α with respect to the probability measure P , and is denoted by V (P ;α). Write
Dn := {α ⊂ R

d : 1 ≤ card(α) ≤ n}. Then, inf{V (P ;α) : α ∈ Dn} is called the nth quantization
error for the probability measure P , and is denoted by Vn := Vn(P ). A set α for which the
infimum occurs and contains no more than n points is called an optimal set of n-means. Since
∫

‖x‖2dP (x) < ∞ such a set α always exists (see [AW, GKL, GL1, GL2]). For some recent
work in this direction one can see [CR, DR1, DR2, GL3, L1, R1, R2, R3, R4, R5, R6, RR1].

Let us now state the following proposition (see [GG, GL1]):

Proposition 1.1. Let α be an optimal set of n-means for P , and a ∈ α. Then,
(i) P (M(a|α)) > 0, (ii) P (∂M(a|α)) = 0, (iii) a = E(X : X ∈ M(a|α)), where M(a|α) is

the Voronoi region of a ∈ α, i.e., M(a|α) is the set of all elements x in R
d which are closest to

a among all the elements in α.

Proposition 1.1 says that if α is an optimal set and a ∈ α, then a is the conditional expectation
of the random variable X given that X takes values in the Voronoi region of a. The following
theorem is known.

Theorem 1.2. (see [RR2]) Let P be a uniform distribution on the closed interval [a, b]. Then,
the optimal set n-means is given by αn := {a + 2i−1

2n
(b− a) : 1 ≤ i ≤ n}, and the corresponding

quantization error is Vn := Vn(P ) = (a−b)2

12n2 .

Mixed distributions are an exciting new area for optimal quantization. For any two Borel
probability measures P1 and P2, and p ∈ (0, 1), if P := pP1 + (1 − p)P2, then the probability
measure P is called the mixture or the mixed distribution generated by the probability measures
(P1, P2) associated with the probability vector (p, 1 − p). Let P1 and P2 be two uniform distri-
butions on the two disconnected line segments J1 := [0, 1

3
] and J2 := [2

3
, 1] of equal lengths, and

P be a mixed distribution generated by (P1, P2) associated with a probability vector (p, 1− p).
In this paper, for three different mixed distributions, in Section 2 for p = 1

100
and in Section 3

for p = 2
5
, and for p = 1

1000
, we determine the optimal sets of n-means and the nth quantization

errors for all n ∈ N. Using the similar technique, given in this paper, one can investigate the

2010 Mathematics Subject Classification. 60Exx, 94A34.
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optimal sets of n-means and the nth quantization errors for all n ∈ N for any mixed distribution
P generated by (P1, P2) associated with any probability vectors (p, 1 − p). In this regard, at
the end of Section 3 we give a conjecture Conjecture 3.4, and two open problems Open 3.5
and Open 3.6. Under a conjecture in Section 4, we give a partial answer of the open problem
Open 3.6.

2. Quantization for the mixed distribution P when p = 1
100

Let P1 and P2 be two uniform distributions, respectively, on the intervals given by

J1 := [0,
1

3
], and J2 := [

2

3
, 1].

Let f1 and f2 be their respective density functions. Then, f1(x) = 3 if x ∈ [0, 1
3
], and zero

otherwise; and f2(x) = 3 if x ∈ [2
3
, 1], and zero otherwise. The underlying mixed distribution

considered is given by P := pP1 + (1− p)P2, where p = 1
100

. By E(X) we mean the expectation
of a random variable X with distribution P , and V (X) represents the variance of X . By αn(µ),
we denote an optimal set of n-means with respect to a probability distribution µ, and Vn(µ)
represents the corresponding quantization error for n-means. If µ is the mixed distribution P ,
sometimes we denote them by αn instead of αn(P ), and the corresponding quantization error
by Vn instead of Vn(P ).

Proposition 2.1. Let P be the mixed distribution defined by P = pP1 + (1 − p)P2. Then,
E(X) = 1

6
(5− 4p), and V (X) = 1

108
(−48p2 + 48p+ 1).

Proof. We have

E(X) =

∫

xdP = p

∫

xd(P1(x)) + (1− p)

∫

xd(P2(x)) = p

∫

J1

3x dx+ (1− p)

∫

J2

3x dx

yielding E(X) = 1
6
(5− 4p), and

V (P ) =

∫

(x− E(X))2dP = p

∫

(x− E(X))2d(P1(x)) + (1− p)

∫

(x− E(X))2d(P2(x)),

implying V (P ) = 1
108

(−48p2 + 48p+ 1), and thus, the proposition is yielded. �

Remark 2.2. The optimal set of one-mean is the set {1
6
(5 − 4p)}, and the corresponding

quantization error is the variance V := V (X) of a random variable with distribution P :=
pP1 + (1− p)P2. Recall that in our case, p = 1

100
, and then E(X) = 62

75
and V (X) = 461

33750
.

Proposition 2.3. The optimal set of two-means is {0.731517, 0.910506} with quantization error
V2 = 0.005682.

Proof. Let α := {a1, a2} be an optimal set of two-means. Since the points in an optimal set are
the conditional expectations in their own Voronoi regions, without any loss of generality, we can
assume that 0 < a1 < a2 < 1. If 1

3
< a1 < a2 < 2

3
, then the quantization error can be strictly

reduced by moving the point a1 to
1
3
, and a2 to

2
3
, and so, 1

3
< a1 < a2 <

2
3
can not happen. Let

us now discuss all the possible cases:
Case 1. 0 < a1 < a2 ≤

1
3
.

Since the boundary of the Voronoi region is 1
2
(a1 + a2), we have the distortion error as

∫

min
a∈α

(x− a)2dP =

∫
a1+a2

2

0

(x− a1)
2dP +

∫ 1

3

a1+a2
2

(x− a2)
2dP +

∫ 1

2

3

(x− a2)
2dP

=
1

100

∫ 1

2
(a1+a2)

0

3 (x− a1)
2 dx+

1

100

∫ 1

3

1

2
(a1+a2)

3 (x− a2)
2 dx+

99

100

∫ 1

2

3

3 (x− a2)
2 dx

=
81a31 + 81a2a

2
1 − 81a22a1 − 81a32 + 10800a22 − 17856a2 + 7528

10800
,
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the minimum value of which is 3119
12150

and it occurs when a1 =
1
9
, and a2 =

1
3
.

Case 2. 0 < a1 <
1
3
< a2 <

2
3
.

In this case, the boundary 1
2
(a1 + a2) of the Voronoi regions of a1 and a2 must satisfy 0 <

a1 < 1
2
(a1 + a2) < 1

3
, otherwise the quantization error can be strictly reduced by moving the

point a2 to 2
3
. Hence, the distortion error in this case is given by

∫

min
a∈α

(x− a)2dP

=
1

100

∫ 1

2
(a1+a2)

0

3 (x− a1)
2 dx+

1

100

∫ 1

3

1

2
(a1+a2)

3 (x− a2)
2 dx+

99

100

∫ 1

2

3

3 (x− a2)
2 dx

=
81a31 + 81a2a

2
1 − 81a22a1 − 81a32 + 10800a22 − 17856a2 + 7528

10800
,

the minimum value of which is 89
2430

and it occurs when a1 =
2
9
, and a2 =

2
3
.

Case 3. 0 < a1 ≤
1
3
< 2

3
≤ a2.

In this case, the Voronoi region of a1 does not contain any point from J2, if it does, then we
must have 1

2
(a1 + a2) >

2
3
implying a2 >

4
3
− a1 ≥

4
3
− 1

3
= 1, which is a contradiction as a2 < 1.

Similarly, we can show that the Voronoi region of a2 does not contain any point from J1. This
yields the fact that

a1 = E(X : X ∈ J1) =
1

6
, and a2 = E(X : X ∈ J2) =

5

6
,

with distortion error
∫

min
a∈α

(x− a)2dP =
1

100

∫ 1

3

0

3(x−
1

6
)2 dx+

99

100

∫ 1

2

3

3(x−
5

6
)2 dx =

1

108
.

Case 4. 1
3
< a1 ≤

2
3
< a2.

In this case, the boundary 1
2
(a1 + a2) of the Voronoi regions of a1 and a2 must satisfy 2

3
<

1
2
(a1 + a2) < a2 < 1, otherwise the quantization error can be strictly reduced by moving the

point a1 to 1
3
. Hence, the distortion error in this case is given by

∫

min
a∈α

(x− a)2dP

=
1

100

∫ 1

3

0

3 (x− a1)
2 dx+

99

100

∫ 1

2
(a1+a2)

2

3

3 (x− a1)
2 dx+

99

100

∫ 1

1

2
(a1+a2)

3 (x− a2)
2 dx

=
8019a31 + 27 (297a2 − 788) a21 − 9 (891a22 − 1580) a1 − 8019a32 + 32076a22 − 32076a2 + 7528

10800
,

the minimum value of which is 1
150

and it occurs when a1 =
2
3
, and a2 =

8
9
.

Case 5. 2
3
< a1 < a2 < 1.

In this case, the distortion error is given by
∫

min
a∈α

(x− a)2dP

=
1

100

∫ 1

3

0

3 (x− a1)
2 dx+

99

100

∫ 1

2
(a1+a2)

2

3

3 (x− a1)
2 dx+

99

100

∫ 1

1

2
(a1+a2)

3 (x− a2)
2 dx

=
8019a31 + 27 (297a2 − 788) a21 − 9 (891a22 − 1580) a1 − 8019a32 + 32076a22 − 32076a2 + 7528

10800
,

the minimum value of which is 0.005682 and it occurs when a1 = 0.731517, and a2 = 0.910506.
Comparing the distortion errors obtained in all the above possible cases, we see that the

distortion error in Case 5 is smallest. Thus, the optimal set of two-means is {0.731517, 0.910506}
with quantization error V2 = 0.005682, which is the proposition. �
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Proposition 2.4. Optimal set of three-means is {1
6
, 3
4
, 11
12
} with quantization error V3 =

103
43200

.

Proof. Let α = {a1, a2, a3} be an optimal set of three-means. Proposition 1.1 implies that if α
contains a point from the open interval (1

3
, 2
3
), it cannot contain more than one point from the

open interval (1
3
, 2
3
). First, we assume that α contains one point from J1, and two points from

J2. Then, 0 < a1 ≤ 1
3
< 2

3
≤ a2 < a3 < 1 yielding the fact that the Voronoi region of a1 does

not contain any point from J1, and the Voronoi region of a2, and so of a3 cannot not contain
any point from J1. This yields a1 =

1
6
, a2 =

3
4
, and a3 =

11
12

with distortion error
∫

min
a∈α

(x− a)2dP =
1

100

∫ 1

3

0

3(x−
1

6
)2 dx+

99

100

∫ 5

6

2

3

3(x−
3

4
)2 dx+

99

100

∫ 1

5

6

3(x−
11

12
)2 dx

yielding
∫

min
a∈α

(x− a)2dP =
103

43200
.

Since V3 is the quantization error for three-means, we have V3 ≤
103

43200
= 0.00238426. If a3 <

2
3
,

then

V3 ≥
99

100

∫ 1

2

3

3(x−
2

3
)2 dx =

11

300
> V3,

which is a contradiction. Hence, we can assume that 2
3
< a3. Suppose that a2 <

2
3
. Then,

V3 ≥

∫

J3

min
a∈α

(x− a)2dP =

∫

J3

min
a∈{a2,a3}

(x− a)2dP ≥

∫

J3

min
a∈{ 2

3
,a3}

(x− a)2dP

implying

V3 ≥
99

100

∫ 1

2
(a3+

2

3
)

2

3

3(x−
2

3
)2 dx+

99

100

∫ 1

1

2(a3+
2

3)
3(x− a3)

2 dx

= −
11(81a33 − 270a23 + 288a3 − 100)

1200
,

the minimum value of which is 11
2700

and it occurs when a3 =
8
9
. Notice that 11

2700
= 0.00407407 >

V3, which leads to a contradiction. Hence, we can assume that 2
3
≤ a2 < a3 < 1. Notice that

for 2
3
≤ a2 < a3 < 1, the Voronoi region of a2 does not contain any point from J1. Suppose that

2
3
≤ a1. Then,

V3 >
1

100

∫ 1

3

0

3(x−
2

3
)2 dx =

7

2700
= 0.00259259 > V3,

which leads to a contradiction. So, we can assume that a1 <
2
3
. Suppose that 1

3
< a1 <

2
3
. Then,

we must have 2
3
< 1

2
(a1 + a2) < a2 < a3 < 1 yielding the distortion error as

∫

min
a∈α

(x− a)2dP

=
1

100

∫ 1

3

0

3 (x− a1)
2 dx+

99

100

∫ 1

2
(a1+a2)

2

3

3 (x− a1)
2 dx+

99

100

∫ 1

2
(a2+a3)

1

2
(a1+a2)

3 (x− a2)
2 dx

+
99

100

∫ 1

1

2
(a2+a3)

3 (x− a3)
2 dx

=
1

10800

(

8019a31 + 27(297a2 − 788)a21 − 9(891a22 − 1580)a1 − 8019a33 − 8019(a2 − 4)a23

+ 8019(a22 − 4)a3 + 7528
)

the minimum value of which is 137
33750

, and it occurs when a1 =
2
3
, a2 =

4
5
, and a3 =

14
15
. Notice that

137
33750

= 0.00405926 > V3, and thus a contradiction arises. Hence, we can assume that a1 ≤ 1
3
.
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Thus, as described before, we deduce that a1 = 1
6
, a2 = 3

4
, and a3 = 11

12
, and the quantization

error for three-means is V3 =
103

43200
. Thus, the proof of the proposition is complete. �

Lemma 2.5. For n ≥ 3 let αn be an optimal set of n-means for P . Then, αn ∩ J1 6= ∅ and
αn ∩ J2 6= ∅.

Proof. By Proposition 2.4, the lemma is true for n = 3. Let us now prove the lemma for n ≥ 4.
The distortion error due to the set β := {1

6
, 2
3
+ 1

18
, 2
3
+ 3

18
, 2
3
+ 5

18
} is given by

∫

min
a∈β

(x− a)2dP =

∫

J1

(x−
1

6
)2dP +

∫

J2

min
a∈(β\{ 1

6
})
(x− a)2dP =

1

900
.

Since Vn is the quantization error for n-means, where n ≥ 4, we have Vn ≤ 1
900

= 0.00111111.
For n ≥ 4, let αn := {a1, a2, · · · , an} be an optimal set of n-means for P such that 0 < a1 <

a2 < · · · < an < 1. If an < 2
3
, then

Vn >

∫

J2

(x−
2

3
)2dP =

11

300
= 0.0366667 > Vn,

which leads to a contradiction. Hence, we can assume that an ≥ 2
3
, i.e., αn ∩ J2 6= ∅. We now

show that αn ∩ J1 6= ∅. If 1
2
≤ a1, then

Vn >

∫

J1

(x−
1

2
)2dP =

13

10800
= 0.0012037 > Vn,

which yields a contradiction. Hence, we can assume that a1 < 1
2
. Assume that 1

3
≤ a1 < 1

2
.

Then, by Proposition 1.1, we must have 1
2
(a1 + a2) >

2
3
yielding a2 >

4
3
− a1 ≥

4
3
− 1

2
= 5

6
, and

so,

Vn >

∫

J1

(x−
1

3
)2dP +

∫

[ 2
3
, 5
6
]

(x−
1

2
)2dP =

2681

21600
= 0.12412 > Vn,

which leads to a contradiction. Hence, we can assume that a1 <
1
3
, i.e., αn ∩ J1 6= ∅. Thus, the

proof of the lemma is complete. �

Lemma 2.6. An optimal set of four-means does not contain any point from the open interval
(1
3
, 2
3
).

Proof. Let α := {a1, a2, a3, a4}, where 0 < a1 < a2 < a3 < a4 < 1, be an optimal set of four-
means. As mentioned in the proof of Lemma 2.5, we have V4 ≤

1
900

= 0.00111111. Suppose that
a2 ≤

2
3
. Then,

V4 >
99

100

∫ 1

2(a3+
2

3)

2

3

3(x−
2

3
)2 dx+

99

100

∫ 1

2
(a3+a4)

1

2(a3+
2

3)
3 (x− a3)

2 dx+
99

100

∫ 1

1

2
(a3+a4)

3 (x− a4)
2 dx

=
11 (−81a34 + 324a24 − 324a4 + 27a23 (3a4 − 2)− 9a3 (9a

2
4 − 4) + 100)

1200

the minimum value of which is 11
7500

, and it occurs when a3 =
4
5
and , a4 =

14
15

implying

V4 >
11

7500
= 0.00146667 > V4,

which leads to a contradiction. Thus, we can assume that 2
3
< a2, and so 2

3
< a2 < a3 < a4.

Again, by Lemma 2.5, we see that a1 <
1
3
. Hence, an optimal set of four-means does not contain

any point from the open interval (1
3
, 2
3
), which is the lemma. �

Remark 2.7. Proceeding in the similar way as Lemma 2.6, we can show that the optimal set
of five-means does not contain any point from the open interval (1

3
, 2
3
).
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Proposition 2.8. For n ≥ 3 let αn be an optimal set of n-means for P . Then, αn does not
contain any point from the open interval (1

3
, 2
3
). Moreover, the Voronoi region of any point in

αn ∩ J1 does not contain any point from J2, and the Voronoi region of any point in αn ∩ J2 does
not contain any point from J1.

Proof. By Proposition 2.4, Lemma 2.6 and Remark 2.7, the proposition is true for n = 3, 4, 5.
We now prove the proposition for n ≥ 6. Let αn := {a1, a2, · · · , an}, where n ≥ 6, be an optimal
set of n-means. Without any loss of generality, we can assume that 0 < a1 < a2 < · · · < an < 1.
Let us now consider the set of six points β := {1

6
, 7
10
, 23
30
, 5
6
, 9
10
, 29
30
}. By routine calculation, the

distortion error due to the set β is given by
∫

min
a∈β

(x− a)2dP =
1

100

∫

J1

(x−
1

6
)2dP1 +

99

100

∫

J2

min
b∈(β\{ 1

6
})
(x− b)2dP2 =

31

67500
,

and so, V6 ≤
31

67500
= 0.000459259. Since Vn is the quantization error for six-means with n ≥ 6,

we have Vn ≤ V6 ≤ 0.000459259. By Lemma 2.5, we know that a1 <
1
3
and an > 2

3
. Let k be the

largest positive integer such that ak ≤ 1
3
. For the sake of contradiction, assume that αn contains

a point from the open interval (1
3
, 2
3
). Then, by Proposition 1.1, we must have ak+1 ∈ (1

3
, 2
3
),

and 2
3
≤ ak+2. The following two cases can arise:

Case 1. 1
3
< ak+1 ≤

1
2
.

Then, the Voronoi region of ak+1 must contain points from J2, i.e.,
1
2
(ak+1+ak+2) ≥

2
3
implying

ak+2 ≥
4
3
−ak+1 ≥

4
3
− 1

2
= 5

6
, otherwise the quantization error can be strictly reduced by moving

the point ak+1 to 1
3
. Then,

Vn ≥

∫

[ 2
3
, 5
6
]

(x−
5

6
)2dP =

11

2400
= 0.00458333 > Vn,

which is a contradiction.
Case 2. 1

2
≤ ak+1 <

2
3
.

Then, we must have 1
2
(ak + ak+1) ≤

1
3
implying ak ≤ 2

3
− ak+1 ≤

2
3
− 1

2
= 1

6
, and so

Vn ≥

∫

[ 1
6
, 1
3
]

(x−
1

6
)2dP =

1

21600
= 0.0000462963 > Vn,

which leads to a contradiction.
By Case 1 and Case 2, we deduce that αn does not contain any point from the open interval

(1
3
, 2
3
). Thus, 2

3
≤ ak+1. To complete the proof, assume that the Voronoi region of ak contains

points from J2. Then, 1
2
(ak + ak+1) > 2

3
implying ak+1 > 4

3
− ak ≥ 4

3
− 1

3
= 1, which is a

contradiction. Similarly, we can show that if the Voronoi region of ak+1 contains points from J1,
then a contradiction arises. Thus, the proof of the proposition is complete. �

We are now ready to prove the following theorem.

Theorem 2.9. For n ≥ 3 let αn be an optimal set of n-means for P . Let card(αn ∩ J1) = k.
Then, αn contains k elements from J1, and (n − k) elements from J2, i.e., αn(P ) = αk(P1) ∪
αn−k(P2) with quantization error

Vn(P ) =
1

324

( 1

k2
+

2

(n− k)2

)

.

Proof. By Proposition 2.8, we have αn ∩ J1 6= ∅ and αn ∩ J2 6= ∅. Thus, there exist two
positive integers n1 and n2 such that card(αn ∩ J1) = n1, and card(αn ∩ J2) = n2. Again, by
Proposition 2.8, αn does not contain any point from the open interval (1

3
, 2
3
), and so we have

n = n1 + n2. Hence, by taking n1 = k, we see that αn contains k elements from J1, and (n− k)
elements from J2. Again, by Proposition 2.8, we know that the Voronoi region of any point in
αn ∩ J1 does not contain any point from J2, and the Voronoi region of any point from αn ∩ J2
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does not contain any point from J1. This implies the fact that αn(P ) = αk(P1)∪ αn−k(P2), and
the corresponding quantization error is given by

Vn(P ) =
1

100
Vk(P1) +

99

100
Vn−k(P2) =

1

10800

( 1

k2
+

99

(n− k)2

)

.

Thus, the proof of the theorem is complete. �

Remark 2.10. Let k be the positive integer as stated in Theorem 2.9. By Theorem 1.2, αk(P1)
and αn−k(P2) are known. Thus, once k is known, we can easily determine the optimal sets of
n-means and the nth quantization errors for all n ∈ N with n ≥ 3. For n ≥ 3, consider the real
valued function

F (n, x) =
1

10800

( 1

x2
+

99

(n− x)2

)

defined in the domain 1 ≤ x ≤ n − 1. Notice that F (n, x) is concave upword, and so F (n, x)
attains its minimum at a unique x in the interval [1, n− 1]. Thus, we can say that for a given
positive integer n ≥ 3, there exists a unique positive integer k for which F (n, k) is minimum if
x ranges over the positive integers in the interval [1, n− 1].

Remark 2.11. For n ≥ 3 let us write

V (j, n− j) :=
1

100
Vj(P1) +

99

100
Vn−j(P2),

where 1 ≤ j ≤ n−1. For a given n let k := k(n) be the positive integer as stated in Theorem 2.9.
Then, we have Vn = V (k, n− k). Notice that

Vn = V (k, n− k) = min{V (j, n− j) : 1 ≤ j ≤ n− 1}.

Moreover, if we order the elements of the set {V (j, n− j) : 1 ≤ j ≤ n− 1} in a sequence as

{V (1, n− 1), V (2, n− 2), · · · , V (n− 1, 1)}

then V (k, n − k) is the kth term in the sequence. Using this fact, for a given n we can easily
determine the value of the positive integer k as follows: Define the function

(1) f : N → N such that f(n) = k,

where k is the unique positive integer such that

Vn := V (k, n− k) = min{V (j, n− j) : j ∈ N, 1 ≤ j ≤ n− 1}.

For a given positive integer n, once k := k(n) is known, using Theorem 1.2 and Theorem 2.9,
we can determine the optimal set of n-means and the corresponding quantization error.

In the following example, we calculate the values of k for different values of n. For such
calculations we have used Mathematica.

Example 2.12. Recall the function f defined by (1). Then, we see that

{f(n)}∞n=3 = {1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,

7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, · · · .}.

In fact,

{f(n)}5011n=4985 = {886, 886, 886, 887, 887, 887, 887, 887, 887, 888, 888, 888, 888, 888, 889, 889, 889,

889, 889, 889, 890, 890, 890, 890, 890, 890, 891}.
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3. Quantization for the mixed distribution P when p = 2
5
, and p = 1

1000

Let P1 and P2 be two uniform distributions, respectively, on the intervals given by

J1 := [0,
1

3
], and J2 := [

2

3
, 1].

Let P := pP1 + (1 − p)P2 be the mixed distribution generated by (P1, P2) associated with the
probability vector (p, 1 − p), where 0 < p < 1. For n ∈ N let αn be an optimal set of n-means
for P . Using the similar techniques as given in the previous section, we can show that if p = 2

5
,

then

α1 = {
17

30
} with V1 =

313

2700
, α2 = {

1

6
,
5

6
} with V2 =

1

108
, α3 = {

1

6
,
3

4
,
11

12
} with V3 =

11

2160
,

α4 = {
1

12
,
1

4
,
3

4
,
11

12
} with V4 =

1

432
, and so on.

On the other hand, if p = 1
1000

, then we see that

α1 = {
1249

1500
} with V1 = 0.00970326,

α2 = {0.74824116, 0.91608039} with V2 = 0.0026610135,

α3 = {0.719398, 0.831639, 0.94388} with V3 = 0.00134412,

α4 = {0.704407, 0.788862, 0.873317, 0.957772} with V4 = 0.00087869,

α5 = {
1

6
,
17

24
,
19

24
,
7

8
,
23

24
} with V5 = 0.000587384 and so on.

Remark 3.1. By the results in Section 2 and Section 3, we see that for p = 1
100

and p = 1
1000

the optimal sets of two-means do not contain any point from J1, but for p = 2
5
it contains a

point from J1. Moreover, we see that for p = 1
100

and p = 2
5
the optimal sets of three-means

contain points from J1, but for p = 1
1000

, the optimal set of three-means, and four-means do not
contain any point from J1. Using the similar technique as given in Section 2, it can be shown
that Lemma 2.5 and Proposition 2.8, and Theorem 2.9 are also true here for p = 2

5
and p = 1

1000
.

The main difference is that for p = 1
100

they are true for all n ≥ 3, but for p = 2
5
, they are true

for all n ≥ 2, on the other hand, for p = 1
1000

they are true for all n ≥ 5.

The function f : N → N, defined in (1), is also true here under the condition that V (j, n− j)
in this section is defined as follows:

V (j, n− j) :=

{

2
5
Vj(P1) +

3
5
Vn−j(P2) if p = 2

5
,

1
1000

Vj(P1) +
999
1000

Vn−j(P2) if p = 1
1000

where 1 ≤ j ≤ n − 1. Now, we give the following two examples which are analogous to
Example 2.12 given in the previous section.

Example 3.2. For p = 2
5
, we have

{f(n)}∞n=2 = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, · · · .}.

In fact,

{f(n)}5011n=4985 = {2324, 2325, 2325, 2326, 2326, 2327, 2327, 2328, 2328, 2329, 2329, 2329, 2330, 2330,

2331, 2331, 2332, 2332, 2333, 2333, 2334, 2334, 2335, 2335, 2336, 2336, 2336}.

Example 3.3. For p = 1
1000

, we have

{f(n)}∞n=5 = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4,

4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 · · ·}.
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In fact,

{f(n)}5011n=4985 = {453, 453, 454, 454, 454, 454, 454, 454, 454, 454, 454, 454, 454, 455, 455,

455, 455, 455, 455, 455, 455, 455, 455, 455, 456, 456, 456}.

Let us now give the following conjecture and the open problems.

Conjecture 3.4. Let P1 and P2 be two uniform distributions defined on any two closed intervals
[a, b] and [c, d], where a < b < c < d. Let P := pP1 + (1 − p)P2 be a mixed distribution
generated by (P1, P2) associated with any probability vector (p, 1 − p), where 0 < p < 1.
Then, we conjecture that for each probability vector (p, 1− p) there exists a positive integer N
such that for all n ≥ N , the optimal sets αn contain points from both the intervals [a, b] and
[c, d], and do not contain any point from the open interval (b, c). This yields the fact that if
card(αn ∩ [a, b]) = k := k(n), then αn contains k elements from [a, b], and (n− k) elements from
[c, d], i.e., αn(P ) = αk(P1) ∪ αn−k(P2) for all n ≥ N with quantization error

Vn(P ) =
1

108

( p

k2
+

1− p

(n− k)2

)

.

Open 3.5. Let P := pP1 + (1− p)P2 be the mixed distributions generated by the two uniform
distributions P1 and P2 defined on the closed intervals [0, 1

3
] and [1

3
, 2
3
] associated with the

probability vectors (p, 1 − p). It is still not known whether there is any probability vector
(p, 1 − p), or what is the range of p, for which an optimal set α2 of two-means for the mixed
distributions P will contain a point from the open interval (1

3
, 2
3
), and an optimal set α3 of

three-means will contain points from [0, 1
3
] and [2

3
, 1], and also from the open interval (1

3
, 2
3
).

If the answer of the above open problem comes in the negative, then it leads to investigate
the following open problem.

Open 3.6. It is still not known whether there is a set of values of a, b, c, d, and p, where
a < b < c < d and 0 < p < 1, such that if P := pP1 + (1 − p)P2 is the mixed distribution
generated by the two uniform distributions P1 and P2 defined on the closed intervals [a, b] and
[c, d] associated with the probability vector (p, 1 − p), then an optimal set α2 of two-means for
the mixed distributions P will contain a point from the open interval (b, c), and an optimal set
α3 of three-means will contain points from [a, b] and [c, d], and also from the open interval (b, c).

Conjecture 3.7. We conjecture that the answer of the open problem Open 3.5 will be negative.

4. Observation

Under Conjecture 3.7, in this section, we try to give a partial answer of the open problem
‘Open 3.6’. Let us choose the two closed intervals as follows:

[a, b] = [0,
7

15
] and [c, d] = [

8

15
, 1].

Let P1 and P2 be the uniform distributions defined on the closed intervals [a, b] and [c, d]. Then,
the density functions f1 and f2 of the uniform distributions P1 and P2 are, respectively, given
by f1(x) =

15
7
if x ∈ [0, 7

15
], and zero otherwise; and f2(x) =

15
7
if x ∈ [ 8

15
, 1], and zero otherwise.

We now give the following two propositions.

Proposition 4.1. Let p = 51
500

, and let P := pP1+(1− p)P2 be the mixed distribution generated
by the two uniform distributions P1 and P2 defined on the closed intervals [a, b] and [c, d]. Then,
an optimal set α2 of two-means for the mixed distribution P contains a point from the open
interval (b, c).

Proof. Proceeding in the similar way as Proposition 2.3, we see that an optimal set of two-
means for the mixed distribution P := pP1 + (1 − p)P2, where p = 51

500
, is given by α2 :=

{0.488570, 0.829523} with quantization error V2 = 0.0179722. Since b < 0.488570 < c <

0.829523 < d, the assertion of the proposition follows. �



10 Ashley Gomez, Ogla Lopez, and Mrinal Kanti Roychowdhury

Proposition 4.2. Let p = 225
500

, and let P := pP1+(1− p)P2 be the mixed distribution generated
by the two uniform distributions P1 and P2 defined on the closed intervals [a, b] and [c, d]. Then,
an optimal set α3 of three-means for the mixed distribution P contains points from [a, b] and
[c, d], and also from the open interval (b, c).

Proof. Proceeding in the similar way as Proposition 2.4, we see that an optimal set of three-
means for the mixed distribution P := pP1 + (1 − p)P2, where p = 225

500
, is given by α3 :=

{0.174089, 0.522267, 0.840756} with quantization error V3 = 0.00985931. Since a < 0.174089 <

b < 0.522267 < c < 0.840756 < d, the assertion of the proposition follows. �

Remark 4.3. Notice that the two mixed distributions P := pP1 + (1 − p)P2 considered in
Proposition 4.1 and Proposition 4.2 are different. It is worthwhile to investigate whether the
two mixed distributions can be same, in other words, whether there is a mixed distribution
P := pP1 + (1 − p)P2, where P1 and P2 are two uniform distributions on two different closed
intervals [a, b] and [c, d] associated with a probability vector (p, 1 − p) with a < b < c < d and
0 < p < 1, for which the open problem ‘Open 3.6’ is true.
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