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ABSTRACT Since EEG signal acquisition is non-invasive and portable, it is convenient to be used for
different applications. Recognizing emotions based on Brain-Computer Interface (BCI) is an important
active BCI paradigm for recognizing the inner state of persons. There are extensive studies about emotion
recognition, most of which heavily rely on staged complex handcrafted EEG feature extraction and classifier
design. In this paper, we propose a hybrid multi-input deep model with convolution neural networks (CNNs)
and bidirectional Long Short-termMemory (Bi-LSTM). CNNs extract time-invariant features from raw EEG
data, and Bi-LSTM allows long-range lateral interactions between features. First, we propose a novel hybrid
multi-input deep learning approach for emotion recognition from rawEEG signals. Second, in the first layers,
we use two CNNs with small and large filter sizes to extract temporal and frequency features from each raw
EEG epoch of 62-channel 2-s and merge with differential entropy of EEG band. Third, we apply the adaptive
regularization method over each parallel CNN’s layer to consider the spatial information of EEG acquisition
electrodes. The proposed method is evaluated on two public datasets, SEED and DEAP. Our results show
that our technique can significantly improve the accuracy in comparison with the baseline where no adaptive
regularization techniques are used.

INDEX TERMS EEG, emotion recognition, deep learning.

I. INTRODUCTION
EEG is a complex time-series data used by researchers
to recognize brain activation and implement the acqui-
sition and storage of EEG signals in the clinical and
psychiatric fields. In particular, in the last ten years, EEG
signals are used to reflect the human brain’s activity in the
field of Brain-computer interface (BCI). Automatic recog-
nition of human emotion is an important research area in
human-computer interaction [1]. A perfect ideal BCI can
detect arousal or valence of emotion state through sponta-
neous EEG signals without explicit user feedback [2].

A variety of machine learning techniques and models
are used for EEG-based emotion recognition problems.
Generally, the methods can be described by three proce-
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dures: pre-processing, feature extraction, and classification.
Obviously, the pre-processing procedures prepare data prior
to any further analysis. There are two primary technical
approaches in feature extraction: traditional machine learn-
ing and deep learning methods. The traditional approach
relies on handcrafted characteristics [3]. Due to the high
non-stationarity of EEG signals, the extraction of such fea-
tures is a difficult task and needs an expert’s knowledge.
The more recent studies used multivariate statistical analysis
techniques in the frequency, time-frequency, and nonlinear
domain, and capture handcrafted feature that can represent
EEG characters [4]–[8]. For example, Zheng et al. [4] eval-
uated the performance of different common methods for
feature extraction. They investigated Discriminative Graph
regularized Extreme Learning Machine using differential
entropy features to achieve the best average accuracy.
Yang et al. [5] proposed multiple features for the formation
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of high-dimensional features. Generally, traditional recog-
nition methods usually combined handcrafted features and
shallow models like support vector machines (SVM) and
ensemble learning [9], [10].

The recent development of deep learning-based methods
is becoming dominant to boost the efficiency and generaliz-
ability of EEG applications. It is claimed that deep learning
method addresses the shortcomings of recent approaches,
such as the requirement of a large amount of data [11].
Therefore, deep learning networks have gained substantial
interest from researchers in the literature [12], [13]. Con-
volutional Neural Network is one of most important deep
networks because of its excellent performance in the signal
processing [14]. CNNs allow the extraction of higher level
features from the EEG signal. Recent articles demonstrate
CNN may have promising performance due to its advan-
tages of automatic feature detection. Also, Recurrent Neural
Networks (RNN) as a family of neural networks is used
for processing variable-length sequential data [15]. However,
using deep RNN architectures could lead to the problem
of gradients vanishing or exploding. Recent study showed
that long short-term memory (LSTM) outperform traditional
RNNs substantially [16].

In this paper, we introduce a multi-input deep model
with CNNs and Bidirectional Long Short-term Memory
(Bi-LSTM). Bi-LSTM is a two-way LSTM that incorporates
the LSTM forwarding direction and the reverse path. In our
model, each individual parallel input, at the first layers, con-
sists of two CNNs with small and large filters. Also, for each
segment, we extract five frequency bands of EEG signals.
Since the experimental results indicate that the gamma and
beta band (roughly beta: 14-30 Hz, gamma: 31-50 Hz) is
suitable for EEG-based emotion classification, we calcu-
lated differential entropy for two bands of frequency. Finally,
CNN’s features are integrated with differential entropy fea-
ture.We applied the adaptive regularizationmethod over each
parallel CNN’s layer to consider the spatial information of
EEG acquisition electrodes.

In summary, the major contributions of this paper are:

• A multi-input deep learning CNN+BiLSTM architec-
ture to perform the classification of raw signals from
EEG channels with differential entropy for the two band
of frequencies.

• An approach with the ability to extract temporal EEG
patterns as well as frequency components simultane-
ously, which leads to improvement of the performance
of our model.

• Adjusting the regularization parameter of the model
adaptively to utilize the unnecessary channels and pre-
vent overfitting.

The rest of this paper is organized as following: In
section II, we describe the research methodology by eluci-
dating our presented deep learning model. In Section III,
we explain the model training and prediction algorithm.
In section IV, we present the results of our analysis. Finally,

Section V and VI draws the discussion of this work and con-
clusion, respectively.

II. MATERIALS AND METHODS
In this section, we first describe the SEED and DEAP dataset
and the pre-processing procedures. Then, we introduce our
model in details. Finally, we explain the training parameters
used in our model.

A. DATASET AND DATA PREPARATION
1) SEED
SEED is a electroencephalogram signal data measured during
the emotional experiment. The dataset was collected from
15 subjects (7 males and 8 females) while showing them
15 chinese movie clip. The focus of the dataset is on three
specific emotions: positive, neutral and negative. Therefore,
there are 45 trials in the database. Each scalp EEG signal was
collected with the standard 10-20 system by 62- channel and
downsampled to 200Hz sampling rate. Also, a bandpass fre-
quency filter of 0-75 Hz was applied to remove physiological
noises [17].

2) DEAP
The DEAP dataset includes 40 channels of peripheral physio-
logical signals from 32 participants (16males and 16 females)
when watching 40 one-minute music videos. Among the
40 trials for each subject, various signals were recorded as
40-channel data. The first 32 channels are EEG signals, and
the last 8 channels are autonomous physiological signals.
After watching the video, participants marked each video in
terms of the levels of arousal, valence, like/dislike, domi-
nance, and familiarity. Valence is the scale used for this work.
It ranges from one (low) to nine (high), and scales are divided
into three parts to construct positive, neutral, and negative
labels in accordance with the SEED dataset. Emotions are
categorized negative if the valence rating is smaller than 3;
neutral if valence rating is smaller than 7 and greater than 3;
and positive if valence rating is greater than 7 [18].

B. PREPROCESSING
To remove noise and the artifacts, the EEG data is
pre-processed with a bandpass filter between 0.3 to 50 Hz.
After Noise removal, we separate the EEG segments corre-
sponding toMovi-clip and remove excess parts includingHint
of start, Self-assessment, and Rest. The length of EEG sig-
nals collected after removing extra fragments are 3300 clean
epochs for one experiment as explained in [19]. Finally, EEG
data in each channel is divided into 2s segments without
overlap. Each segment is standardized to unit variance and
zero mean.

C. ARCHITECTURE DESIGN
As shown in Figure 1, our new architecture is made up of
four sequential main parts, including representation learning,
feature reduction, sequence learning and classification.
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FIGURE 1. Architecture of the proposed model for emotion recognition.

In representation learning part, the model is trained to extract
features from each of raw single-channel EEG epochs, both
manually and automatically. Second part is reducing the num-
ber of features to prevent heavy computation. Third part is
sequence learning, which provides temporal information with
the Bi-LSTM block. The last part is classification unit which
labels the emotions to Positive, Negative and Neutral. The
details of each part are given below.

1) REPRESENTATION LEARNING
This structure uses all the spatial, temporal and frequency
information of EEG signals. For each raw single channel 2-s
EEG epochs, we apply two CNNs with small and large filter
sizes at the first layers. The idea of having filters with dif-
ferent sizes comes from the context of signal processing that
offers trade-off between temporal and frequency precision
and resolution. Namely, the frequency resolution is defined
by the number of samples in the time series, and the temporal
resolution is always defined by the data sampling rate, and
does not depend on the length of the time windows. Thus,
small and large filter sizes are best to extract temporal and
frequency features respectively [20], [21].

In our proposed model, each two 1D-CNN layers followed
by a max-pooling layer to down-sample the input represen-
tation. 1D-CNNs consists of three main parameter: a filter
size, the number of filters, and a stride size. We adjusted
the parameters to extract temporal and frequency informa-
tion from the EEG. Namely, since we want to analyze the
signal between the ranges of 2-50 Hz, the window must be
at least 500-20ms long. For two cycles, the length of time
segments need to have at least 8 points(EEG Sampligrate =
200, Minimum window size for two cycles of capturing =
2×20ms, therefore 200×2×20ms= 8 points are required).
We can’t use three or more cycles, because it fails to catch
higher-frequency transient behavior. In our dataset, there are
2-s EEG epochs {xch1, xch2, . . . , xch62} from 62-channel EEG.
For each EEG channel, we use two large-filter and small-filter
CNNs to extract f ln and f sn features from the xn.

2) DIFFERENTIAL ENTROPY FEATURE
Entropy is a quantity that measures the disorder of a system.
The entropy features has been successfully applied to expand

research of EEG signals. We use an efficient frequency
domain feature with the concept of entropy called differential
entropy. Differential entropy performs signal decomposition
on the original signal to extract useful information. The pre-
vious research [5] indicated that the gamma and beta band
(beta: 14-30 Hz, gamma: 31-50 Hz) is suitable for EEG-based
emotion classification. We calculate the differential entropy
of two frequency band of 62 channels, and create features
with 124 dimensions for each segment. Differential entropy
is defined as follows:

h(X ) = −
∫
X
f (x)log(f (x))dx (1)

h(X ) = 1/2log(2eπσ 2) (2)

hgamma = 1/2log(2eπσ 2
gamma) (3)

hbeta = 1/2log(2eπσ 2
beta) (4)

where the time series X is the Gaussian distributionN (µ, σ 2).
Finally, the moving average filter with window length 20s
were applied to smooth the feature sequence [17].

3) FEATURE REDUCTION
This unit is a neural network that could help to improve
the speed and reliability of computing. At the end of fea-
ture extraction, the outputs of CNN’s parts are concatenated
with Differential Entropy feature and followed by feature
reduction networks in order to select and reduce the space
of feature.

4) SEQUENCE LEARNING
Since EEG signals contain temporal dynamic information,
we apply two layers Bi-LSTM cells to extract temporal infor-
mation. We denote F = {fn}Nn=1 be the set of extracted
feature corresponding to the n-th epoch of emotion data with
label Y = {yn}Nn=1. As shown in Fig. 2, Bi-LSTM can be
regarded as a Forward LSTM (Fw-LSTM) and a Backward
LSTM (Bw-LSTM). Assume Ff = F represents Forward
target feature sequence and yn represents the final prediction
value, we calculate the prediction sequence as follows: yn =
LSTM (Ffn ) where LSTM represents a function that processes
sequences of features by using the input gates, forget gates
and output gates in the memory block. The output of the
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FIGURE 2. Structure of Bi-LSTM in the sequence learning Unit of the
proposed model.

LSTM layer can be calculated as follows:

it = σ (Wqiqt +Whiht−1 +WciCt−1 + bi) (5)

ft = σ (Wqf qt +Whf ht−1 +Wcf Ct−1 + bf ) (6)

ot = ftCt−1 + it tanh(Whcht−1 + bc) (7)

ot = σ (Wqoqt +Whoht−1 +WcoCt−1 + bo) (8)

The LSTM function is computed as follows:

ht = ot tanh(ct ) = LSTM (ht−1, xt ) (9)

where σ is the logistic sigmoid function, and t, i, f , o, and c
are time step, the input gate, the forget gate, the output gate,
and cell activation vectors, respectively. The W terms are
weight matrices and the b terms are bias vectors. Similarly,
we calculate the backward sequence by input Fb = {fn}1n=N .
We then calculate the hidden vector h by concatenating hn
in forward and backward path. The output of the Sequence
Learning unit is based on the hidden vector h as follows:

yn = Whh+ bh (10)

where Wh and bh are the weight matrix and bias vector,
respectively.

5) CLASSIFICATION
Finally, we predict the label of each emotion EEG segment
by softmax. The softmax layer is used as the output layer
and give the probabilities of the each classes is computed as
follows:

Y ′n = P(c | f (xn, c)) =
exp(fi(xn, c))∑c
i=1 exp(fi(xn, c))

(11)

where P(c | f (xn, c)) is the probability of the EEG segment
xn labeled as class c, given the real value calculated by our
model. We train the model by minimizing the cross-entropy
error [22]:

w=argmin

 1
N

N∑
j=1

Yjlog(Y ′j )+ (1+ Yj)log(1− Y ′j )

 (12)

6) ADAPTIVE REGULARIZATION
Adaptive regularization method aims to find variant features
and reduce weight distribution in layers. In other words,
adaptation regularization strategy is actually a trade-off
between information of different electrodes with variant spa-
tial resolution that preserved both unnecessary and necessary
electrodes in emotion recognition problem. This algorithm
consists of three alternating steps: training model, calculat-
ing the variance of extracted features from the individual
convolution layers, and update regularization parameters.
Therefore, the adaptive model iteratively changes the hyper-
parameters between the adaptive layer and the former layer.
In this section, we investigate the adaptive regularization
approach in the general formulation. The goal is to adjust
the regularization parameters of CNN’s layer adaptively.
Specifically, the outputs of represents learning unit denoted

with {fi}
Nch
i=1, where fi = f li || f

s
i , with the length of R =

64(2×32=CNNs feature). Tominimize the distance, we uses
the standard deviation:

σfi =

√∑R
r=1(fr,i − fr )2

R
(13)

6i =

N∑
l=1

σfi,l (14)

where {fi}
Nch
i=1 =

{
f li || f

s
i

}Nch
i=1 is the output of represents

learning unit (with the length of R = 64).

We define 6 = {6i}
Nch
i=1 where 6i is total distribution

of pairs large and small CNNs unit. We apply L1 penalty
and L2 penalty terms to the kernel weights for each parallel
convolutional layers. A general form of the regularization
methods is as follows:

min

{
1
N

N∑
n=1

l(Yn, f (Xn))

}
+ λi ‖f ‖k (15)

where l(., .) is a loss function, and λi is the regularization
parameter of pairs large and small CNNs unit. When f is in
the linear form and the loss function is square loss, fk is the
norm of the coefficient of linear model. In this paper λ is the
tuning parameter which adapted as follows:

λi = λ0
6

max(6)
(16)

where λi in the [0, 1), then λ0 is a constant value smaller than
one.

D. TRAINING ALGORITHM
Our training algorithm is developed based on iterative back-
propagation to adjust the network weights (see Algorithm),
while applying the adaptive regularization method over each
parallel CNNs layer to consider the spatial information of
EEG acquisition electrodes. The algorithm trains the model
iteratively until performance does not improve for a fixed
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Algorithm 1 Transfer Learning With Adaptive Regulariza-
tion Parameters

Input: train_data, model = multi_input_CNN_LSTM,
batch_size = 128, learning_rate = 0.0005, decay =
0.5 Model Training
3: while accuracy is improved, do training:

for subject in train_data do:
for batch in subject do:
model = model(batch,decay, learning_rate)
save model weights

4: for channel in sum (variance(model( train_data))):
L1_norm(two last layer) = λchannel

5: Update model
6: load model weights
7: Continue training
Output : model

number of training epochs. Then, the variance of CNNs rep-
resentation of all available channels is estimated on the train-
ing data and is used to adjust the regularization penalty, λ,
adaptively. In line 5 of the Algorithm, the model weights
gets updated and fine-tuned on the whole model weights, and
learning rates decreases after each fine-tune.

E. TRAINING PARAMETERS
We use the ADAM optimizer with default parameters
of framework (learning rate set on lr=0.0005, learning
decay=0.5 and decay rate of the first and the secondmoments
ADAM: β1 = 0.9 and β2 = 0.999) to model training. The
model is trained using the training set with the mini-batch
size of 120. For the 1D-CNNs in representation learning
part, we consider small and large windows size according
to the guideline provided in relevant section. For instance,
the size of the large windows in the first layer was set to
kernel_size = 25 (because it can capture several cycles
from higher-frequency i.e. 50Hz), and its stride size is set
to 5 (because, sampling rate is Fs = 200 and importance
higher-frequency transient behavior band belongs to emotion
is less than 50, then we choose minimum step of Fs/4 =
50 to capture cycles of higher-frequency). The use of stride
may minimize the number of parameters, and it can reduce
the cost of computing, and can also obtain a comparable
complexity of model. Also, the small window size set to
kernel_size = 10 to detect temporal EEG patterns. In each
block, we use several sequence layer to allow the extraction of
higher level features from the EEG signal. At the end of fea-
ture extraction, the outputs of CNN’s parts are concatenated
with Differential Entropy Feature and obtain 4092 features
(62 × 2 × 32 = electrods × small&large_blocks ×
1DCNNs_features + 124 =differential entropy of two fre-
quency band extract from 62 channels) and follows by feature
reduction in order for selecting by two layers neural networks.
In the sequence learning part, the unit of the Bi-LSTM is set
near size of the feature reduction output part, which is 256.

III. RESULTS
The performance results of the proposed method using SEED
and DEAP datasets are presented in this section. The classifi-
cation confusion matrices obtained from the test set of SEED
dataset are illustrated in Figure 3. Each row and column
represent the number of 2-s EEG emotion segments classified
by the target emotion and our model predicted label, respec-
tively. The diagonal of the table represents the percentage of
epochs that our model classified the emotion correctly.

In Figure 4, we show the effect of the adaptive reg-
ularization on the final contribution of each electrode.
In this figure, each bar represents 6 of each elec-
trode as described in section 2.3.6. The comparison of
the two charts clarifies that a set of electrodes like
{T7,T8,TP7,FC5,FPZ ,F7,F3,FC3,O1, . . .} have more
influence on the output of the activation layer. Adaptive
regularization strategy optimizes the usage of information
of different electrodes with a variant spatial resolution that
preserved both unnecessary and necessary electrodes in the
emotion recognition problem. From these results, we can see
that our method has the ability to smooth the weight of each
parallel CNN’s layer by considering the spatial information
of EEG acquisition electrodes. In order to evaluate the static
functional connectivity between the channels, and track their
changes over time [23], we calculate the spatial correlation
between all the features extracted from amulti-channel signal
f= {f1, f2, . . . , fc} of parallel network, where c is the number
of channels and fc = fsc‖fl c. For this purpose, we randomly
select two samples from SEED dataset, and we calculate the
correlation between features with and without regularization
techniques. The result of this analysis is presented in Fig 5.

We also compare the accuracy of our proposed methods
with state-of-the-art methods that are applied on 10-fold cross
validation of SEED and DEAP database. The result of this
analysis is presented in Table 1.

IV. DISCUSSION
We propose the deep learning model that utilizes a com-
bination of differential entropy features and automatically
extracted from CNNs to recognize the emotion from raw
EEGs. The proposed model makes the features of each class
more conspicuous and efficient. The proposed structure for
CNN’s have the ability to extract temporal EEG patterns
and frequency components, simultaneously. Also, according
the recent literature in emotion recognition, beta and gamma
bands aremore related to emotion recognition. Sowe selected
just the differential entropy features of two relevant bands.
Also we added an adaptive regularization technique to use
all the unnecessary channels and prevent overfitting of the
model.

Based on specification of the input, we design a hybrid
parallel neural network of 1D-CNN and handcrafted features.
The parallel architecture allows the identification of the most
statistically significant features and automates the extraction
of spatial information related to the channel position in EEG
signals. Consequently, we apply an adaptive regularization
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FIGURE 3. The confusion matrices of the proposed models applied on the test set of
(a) SEED and (b) DEAP datasets. The left table represents the result from the model
without adaptive regularization, and right table represents the result from the
model with adaptive regularization.

FIGURE 4. Effect of adaptive regularization technique on the contribution
of each channel. Each bar represents a channel and the y-axis shows 6i
for each channel.

method to exploited the time-frequency information involved
in each channel, and remove the bias related to the correlation
of the channel position. Therefore, the method extracts a
wide range of features related to EEG signal patterns and
overcomes the influence of channel correlation. According
to Figure 5, the correlation between some electrodes is sig-
nificantly higher than other electrodes, which means some
brain parts may be more synchronized with other brain parts.
Also, it shows that some areas may be responsible for the

generation of particular emotion. The correlation values are
between 0 and 1, in which 0 means that fi and fj are com-
pletely uncorrelated while 1 means completely correlated.
Comparing two correlation matrix in Figure 5 shows that the
pair-wise correlation between the features are reduced after
the regularization techniques. It shows that the adaptation
regularization strategy establishes a trade-off between the
information from functional connectivity and regions, and it
focuses on finding silent features for emotion recognition.

Table 1 shows a brief summary and performance compar-
ison of our method and other emotion recognition methods.
These methods are deep learning models and used the same
evaluation method. Zheng and Lu [24] extracted differential
entropy features from multichannel EEG data and applied
a Deep Belief Network (DBN) for emotion recognition on
the SEED dataset. They identified the weight distributions
of the trained DBN models, and they selected more impor-
tant frequency bands and channels selected according to the
tendency of the network. At last, they trained DBN with
the profile of just 12 channels and evaluated the results.
Recently, Chen Wei et al. [25] utilized simple recurrent units
network and ensemble learning and obtained accuracy of
78.8% on the SEED dataset which is 2.74% low than our
results. They applied highly complex systems for classifi-
cation and feature engineering. Wang et al. [26] proposed
a multichannel EEG emotion recognition method based on
phase-locking value (PLV) graph convolutional neural net-
works (P-GCNN). Their P-GCNN model consists of the
PLV-based graph signals construction, graph convolutional
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FIGURE 5. Correlation matrix between feature of two randomly selected subjects of SEED data set under
the same emotional EEG signal. This figure shows the correlation matrix (A) with the regularization
technique and (B) without regularization technique.

TABLE 1. Summary of performance of state-of-the-art methods on SEED and DEAP datasets.

operation, graph pooling operation, Relu activation, and the
full connection. This method led to an average accuracy of
84.35% on SEED and 73.31% on DEAP dataset. Although
their performance is better than our proposed method, they
need the large time series of EEG signal before calculating the
PLV. Therefore, their model have computational complexity
and also unexpected ability for online calculation. Moreover,
they are using handicraft features that may be reduce the
generalizability of the model.

The methods presented in [27], [28] has certain limita-
tions including the number of emotion states considered,
which result in higher accuracy. In general, the accuracy
for the binary class prediction is higher than the multi-class
prediction due to removing the complexity of the outcome.
In [29]–[31] features were computed in multi-domain (time,
wavelet, and frequency) from EEG signals and set of stable
features are identified for emotion recognition. Although
some studies have reported higher performance, it is impor-
tant to note that they extract a large number of features and
perform extra pre-processing, such as reducing number of

classes or removing subjects from the datasets. Also, select-
ing the hand engineering features and electrodes could not be
efficient for developing an emotion recognition system, and
decreases model generalizability.

In our model, all components of feature extraction, feature
reduction, and classification are merged and compute in the
parallel processes, which enhances computational efficiency.
In comparison to other models, our model achieves compara-
ble classification performance. Moreover, the result shows by
using proposed adaptive regularization technique, all chan-
nels are utilized which may prevent overfitting of the model,
and therefore more generalizable with better performance.

V. CONCLUSION
The proposed architecture in this paper is based on com-
bination of deep learning and differential entropy. We used
small and large features to capture heterogeneous features
representing temporal and frequency resolution of signals.
Also, we used adaptive regularization to remove the bias from
the model, and select more effective electrodes to classify
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emotions. The proposed method is parallelizable, hence com-
putationally efficient. For future studies, we suggest using
this model on independent datasets or leave-one-out cross
validation to assess the generalizability of the model.
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