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Abstract

We study the problem of minimizing total completion time on parallel ma-
chines subject to varying processing capacity. In this paper, we develop an
approximation scheme for the problem under the data stream model where
the input data is massive and cannot fit into memory and thus can only be
scanned for a few passes. Our algorithm can compute the approximate value
of the optimal total completion time in one pass and output the schedule
with the approximate value in two passes.

Keywords: streaming algorithms, scheduling, parallel machines, total
completion time, varying processing capacity

1. Introduction

In 1980, Baker and Nuttle [4] studied the problem of scheduling n jobs
that require a single resource whose availability varies over time. This model
was motivated by the situations in which machine availability may be tem-
porarily reduced to conserve energy or interrupted for scheduled mainte-
nance. It also applies to situations in which processing requirements are
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stated in terms of man-hours and the labor availability varies over time.
One example application is rotating Saturday shifts, where a company only
maintains a fraction, for example 33%, of the workforce every Saturday.

In 1987, Adiri and Yehudai [1] studied the scheduling problem on single
and parallel machines where the service rate of a machine remains constant
while a job is being processed and may only be changed upon its completion.
A simple application example is a machine tool whose performance is a func-
tion of the quality of its cutters which can be replaced only upon completion
of one job.

In 2016, Hall et. al [12] proposed a new model of multitasking via shared
processing which allows a team to continuously work on its main, or primary
tasks while a fixed percentage of its processing capacity may be allocated to
process the routinely scheduled activities such as administrative meetings,
maintenance work or meal breaks. In these scenarios, a working team can
be viewed as a machine with reduced capacity in some periods for processing
primary jobs. A manager needs to decide how to schedule the primary jobs
on these shared processing machines so as to optimize some performance
criteria. In [12], the authors studied the single machine environment only.
They assumed that the processing capacity allocated to all the routine jobs
is a constant e that is strictly less than 1.

Similar models also occur in queuing system where the number of servers
can change, or where the service rate of each server can change. In [20],
Teghem defined these models as the vacation models and the variable service
rate models, respectively. As Doshi pointed out in [7], queuing systems where
the server works on primary and secondary customers arise naturally in many
computer, communication and production systems. From the point of the
primary customers’ view, the server working on the secondary customers is
equivalent to the server taking a vacation and not being available to the
primary customers during this period.

In this paper, we extend the research on scheduling subject to varying
machine processing capacity and study the problems under parallel machine
environment so as to optimize some objectives. In our model, we allow dif-
ferent processing capacity during different periods and the change of the
processing capacity is independent of the jobs. Although in some aspects
the problems have been intensively studied, such as scheduling subject to
unavailability constraint, this work is targeting on a more general model
compared with all the above mentioned research. This generalized model
apparently has a lot of applications which have been discussed in the above
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literature. Due to historic reasons and different application contexts, differ-
ent terms have been used in literature to refer to similar concepts, including
service rate [1][20], processing capacity [2][5][14], machine capacity[12], shar-
ing ratio[12], etc. In this paper, we will adopt the term processing capacity
to refer to the availability of a machine for processing the jobs.

For the proposed general model, in [9] we have studied some problems
under the traditional data model where all data can be stored locally and
accessed in constant time. In this paper, we will study the proposed model
under the data stream environment where the input data is massive and
cannot be read into memory. Specifically, we study the data stream model of
our problem where the number of jobs is so big that jobs’ information cannot
be stored but can only be scanned in one or more passes. This research, as in
many other research areas, caters to the need for providing solutions under
big data that also emerges in the area of scheduling.

As Muthukrishnan wrote in his paper [18], in the modern world, with
more and more data generated, the automatic data feeds are needed for
many tasks in the monitoring applications such as atmospheric, astronom-
ical, networking, financial, sensor-related fields, etc. These tasks are time
critical and thus it is important to process them in almost real time mode
so as to accurately keep pace with the rate of stream updates and reflect
rapidly changing trends in the data. Therefore, the researchers are facing
the questions under the current and future trend of more demands of data
streams processing: what can we (not) do if we are given a certain amount
of resources, a data stream rate and a particular analysis task?

A natural approach to dealing with large amount of data of these time
critical tasks involves approximations and developing data stream algorithms.
Streaming algorithms were initially studied by Munro and Paterson in 1978
([17]), and then by Flajolet and Martin in 1980s ([8]). The model was for-
mally established by Alon, Matias, and Szegedy in [3] and has received a lot
of attention since then.

In this work our goal is to design streaming algorithms for our proposed
problem to approximate the optimal solution in a limited number of passes
over the data and using limited space. Formally, streaming algorithms are
algorithms for processing the input where some or all of of the data is not
available for random access but rather arrives as a sequence of items and can
be examined in only a few passes (typically just one). The performance of
streaming algorithms is measured by three factors: the number of passes the
algorithm must run over the stream, the space needed and the update time
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of the algorithm.

1.1. Problem Definition

Formally our scheduling model can be defined as follows. There is a set
N = {1, · · · , n} of n jobs and m parallel machines where the processing
capacity of machines varies over time. Each job j ∈ N has a processing
time pj and can be processed by any one of the machines uninterruptedly.
Associated with each machine Mi are li continuous intervals during which the
processing capacity of Mi are αi,1, αi,2, . . ., αi,li , respectively, see Figure 1
for an example. If the machine Mi has full availability during an interval, we

Figure 1: (a) Two machines with varying processing capacity, (b) A schedule of the 5
jobs, where p1 = 1, p2 = p3 = 2, p4 = 3, p5 = 4.

say the machine’s processing capacity is 1 and a job, j, can be completed in
pj time units; otherwise, if the machine Mi’s processing capacity is less than
1, for example α, then j can be completed in pj/α time units.

The objective is to minimize the total completion time of all jobs. For any
schedule S, let Cj(S) be the completion time of the job j in S. If the context
is clear, we use Cj for short. The total completion time of the schedule S is∑

1≤j≤nCj.
In this paper, we study our scheduling problem under data stream model.

The goal is to design streaming algorithms to approximate the optimal so-
lution in a limited number of passes over the data and using limited space.
Using the three-field notation introduced by Graham et al. [11], our problem
is denoted as Pm, αi,k | stream |

∑
Cj; if for all intervals, the processing

capacity is greater than or equal to a constant α0, 0 < α0 ≤ 1, our problem
is denoted as Pm, αi,k ≥ α0 | stream |

∑
Cj.

1.2. Literature Review

We first review the related work under the traditional data model. The
first related work is done by Baker and Nuttle [4] in 1980. They studied
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the problems of sequencing n jobs for processing by a single resource to
minimize a function of job completion times subject to the constraint that
the availability of the resource varies over time. Their work showed that a
number of well-known results for classical single-machine problems can be
applied with little or no modification to the corresponding variable-resource
problems. Adiri and Yehudai [1] studied the problem on single and parallel
machines with the restrictions such that if a job is being processed, the service
rate of a machine remains constant and the service rate can be changed only
when the job is completed. In 1992, Hirayama and Kijima [13] studied this
problem on single machine where the machine capacity varies stochastically
over time.

In 2016, Hall et. al. in [12] studied similar problems in multitasking
environment, where a machine does not always have the full capacity for
processing primary jobs due to previously scheduled routine jobs. In their
work, they assume there is a single machine whose processing capacity is
either 1 or a constant e during an interval. They showed that the total com-
pletion time can be minimized by scheduling the jobs in non-decreasing order
of the processing time, but it is unary NP-Hard for the objective function of
total weighted completion time.

Another widely studied model is scheduling subject to machine unavail-
ability constraint where the machine has either full capacity, or zero capacity
so no jobs can be processed. Various performance criteria and machine en-
vironments have been studied under this model, see the survey papers [19]
and [15] and the references therein. Among the results, for the objective
of minimizing total completion time on parallel machines, the problem is
NP-hard.

Other scheduling models with varying processing capacity are also studied
in the literature where variation of machine availability are related with the
jobs that have been scheduled. These models include scheduling with learning
effects (see the survey paper [14] by Janiak et al. and the references therein),
scheduling with deteriorating effects (see the paper [5] by Cheng et al.), and
interdependent processing capacitys (see the paper [2] by Alidaee et al. and
the references therein), etc.

In our model, there are multiple machines, the processing capacity of
each machine can change between 0 and 1 from interval to interval and the
capacity change can happen while a job is being processed. The goal is to
find a schedule to minimize total completion time. In [9] we have showed
that there is no polynomial time approximation algorithm unless P = NP
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if the processing capacities are arbitrary for all machines. Then for the
problem where the sharing ratios on some machines have a constant lower
bound, we analyzed the performance of some classical scheduling algorithms
and developed a polynomial time approximation scheme when the number
of machines is a constant.

We now review the related work under the data stream model. Since the
streaming algorithm model was formally established by Alon, Matias, and
Szegedy in [3], it has received a lot of attention. While streaming algorithms
have been studied in the field of statistics, optimization, and graph algorithms
(see surveys by Muthukrishnan [18] and McGregor [16]) and some research
results have been obtained, very limited research on streaming algorithms ([6]
[10]) has been done in the field of sequencing and scheduling so far. For the
proposed model, in [10] we developed a streaming algorithm for the problem
with the objective of makespan minimization.

1.3. New Contribution

In this paper, we present the first efficient streaming algorithm for the
problem Pm, αi,k ≥ α0 | stream |

∑
Cj . Our streaming algorithm can

compute an approximation of the optimal value of the total completion time
in one pass, and output a schedule that approximates the optimal schedule
in two passes.

2. A PTAS for Pm, αi,j ≥ α0 | stream |
∑
Cj

In this section, we develop a streaming algorithm for our problem when
the processing capacities on all machines have a positive constant lower
bound, that is, Pm, αi,k ≥ α0 | stream |

∑
Cj. The algorithm is a PTAS and

uses sub-linear space when m is a constant.
At the conceptual level, our algorithm has the following two stages:

Stage 1: Generate a sketch of the jobs while reading the input stream.

Stage 2: Compute an approximation of the optimal value based on
the sketch.

In the following two subsections, we will describe each stage in detail.
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2.1. Stage 1: Sketch Generation from the Input Stream

In this step we read the job input stream N = {i : 1 ≤ i ≤ n} and
generate a sketch of N using rounding technique. The idea of the procedure
in this stage is to split the jobs into large jobs and small jobs and round the
processing time of the large jobs so that the number of distinct processing
times is reduced. Specifically, the sketch is a set of pairs where each pair
contains a rounded processing time and the number of jobs with this rounded
processing time. Let pmax = maxj∈N pj. The sketch of N can be formally
defined as follows:

Definition 1. Given the error parameter ε and the lower bound of processing
capacity of the machines α0, let NL = {j ∈ N : pj ≥ εα0

3n2pmax} denote the set
of large jobs. Let τ = εα0

15
, for each job j of NL, we round up its processing

time such that if pj ∈ [(1 + τ)k−1, (1 + τ)k), then its rounded processing time
is rpk =

⌊
(1 + τ)k

⌋
. We denote the sketch of N by N ′L = {(rpk, nk) : k0 ≤

k ≤ k1}, where nk is the number of jobs whose rounded processing time is
rpk and k0 and k1 are the integers such that εα0

3n2pmax ∈ [(1 + τ)k0−1, (1 + τ)k0)
and pmax ∈ [(1 + τ)k1−1, (1 + τ)k1) respectively.

When n and pmax are known before reading the job stream, one can
generate the sketch from the job input stream with the following simple
procedure: Whenever a job j is read, if it is a small job, skip it and continue.
Otherwise, it is a large job. Suppose that pj ∈ [(1 + τ)k−1, (1 + τ)k), we
update the pair (rpk, nk) by increasing nk by 1, where rpk =

⌊
(1 + τ)k

⌋
.

In reality, however, n and pmax may not be obtained accurately without
scanning all the jobs. Meanwhile, in many practical scenarios, the estimation
of n and pmax could be obtained based on priori knowledge. Specifically, an
upper bound of n, n′, could be given such that n ≤ n′ ≤ c1n for some c1 ≥ 1;
and a lower bound of pmax, p

′
max, could be given such that 1 ≤ p′max ≤

pmax ≤ c2p
′
max for some c2 ≥ 1. Depending on whether n′ and p′max are

known beforehand, we have four cases: (1) both n′ and p′max are known; (2)
only p′max is known; (3) only n′ is known; (4) neither n′ nor p′max is known.

For all four cases, we can follow the same procedure below to get the
sketch of the job input stream. The main idea is as we read each job j, we
dynamically update the maximum processing time, pcurMax, the total number
of jobs, ncur, the threshold of processing time for large jobs, pminL, and the
sketch if needed. For convenience, in the following procedure we treat ∞ as
a number, and 1/∞ as 0.

7



Algorithm for constructing sketch N ′L

1. Let τ = εα0

15

2. if n′ is not given, set n′ =∞

3. if p′max is not given, set p′max = 1

4. pminL = max{ εα0

3(n′)2
p′max, 1},

5. Initialize pcurMax = 0, ncur = 0, and N ′′L = ∅

6. Construct N ′′L while repeatedly reading next pj

6.a. ncur = ncur + 1

6.b. If pj > pcurMax

pcurMax = pj

if pminL <
εα0

3(n′)2
· pcurMax, pminL = εα0

3(n′)2
· pcurMax

6.c. If pj ≥ pminL

6.c.1 rp =
⌊
(1 + τ)k

⌋
where pj ∈ [(1 + τ)k−1, (1 + τ)k)

6.c.2 if there is a tuple (rpk, nk) ∈ N ′′L where rpk = rp,

6.c.3 then update nk = nk + 1

6.c.4 else

N ′′L = N ′′L ∪ {(rp, 1)}

7. pmax = pcurMax, n = ncur, pminL = εα0

3n2pmax

8. Let N ′L = {(rpk, nk) : (rpk, nk) ∈ N ′′L, and rpk > pminL}

While the above procedure can be used for all four cases, we need different
data structures and implementations in each case to achieve time and space
efficiency. For cases (1) and (2) where p′max is known, since 1 ≤ p′max ≤
pmax ≤ c2p

′
max for some constant c2, there are at most log1+τ c2p

′
max distinct

rounded processing times, and thus we can use an array to store N ′′L. For
cases (3) and (4) where no information about p′max is known, we can use a
B-tree to store the elements of N ′′L. Each node in the tree corresponds to
an element (rpk, nk) with rpk as the key. With pcurMax being dynamically
updated, there are at most log1+τ pcurMax distinct rounded processing times,
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and thus at most log1+τ pcurMax nodes in the B-tree at any time. As each job
j is read in, we may need to insert a new node to B-tree. If pj > pcurMax,
pcurMax needs to be updated and so does pminL, which is the threshold of
processing time for large jobs. Hence the nodes with the key less than pminL
should be removed. To minimize the worst case update time for each job,
each time when a new node is inserted, we would delete the node with the
smallest key if it is less than pminL.

The following lemma gives the space and time complexity for computing
sketch N ′L from the job input stream for all four cases.

Lemma 2. Let α0 and ε be real numbers in (0, 1]. We can compute the sketch
N ′L of job input stream in one pass with the following performance:

1. Given both an upper bound n′ for n and a lower bound p′max for pmax
such that n ≤ n′ ≤ c1n and 1 ≤ p′max ≤ pmax ≤ c2p

′
max for some c1 and

c2, then it takes O(1) update time and O( 1
εα0

min(log n+log c1c2
εα0

, log pmax+
log c2)) space to process each job from the stream.

2. Given only a lower bound p′max for pmax where 1 ≤ p′max ≤ pmax ≤
c2p
′
max, then it takes O(1) update time and O( 1

εα0
(log pmax + log c2))

space to process each job in the stream.

3. Given only an upper bound n′ for n such that n ≤ n′ ≤ c1n, then it
takes O(log( 1

εα0
) + min(log(log n + log c1

εα0
)), log log pmax) update time,

and O( 1
εα0

min(log n+log c1
εα0
, log pmax)) space to process each job in the

stream.

4. Given no information about n and pmax, then it takes O(log( 1
εα0

+

log log pmax)) update time, and O( 1
εα0

log pmax) space to process each
job in the stream.

Proof. We give the proof for four cases separately as follows:
Case 1: Both n′ and p′max are given such that n ≤ n′ ≤ c1n, and 1 ≤ p′max ≤
pmax ≤ c2p

′
max for some c1 > 1 and c2 > 1.

From the algorithm, the processing time of a large job is at most c2p
′
max and

at least pminL = max{ εα0

3(n′)2
p′max, 1}. Thus, the number of distinct processing

times after rounding is at most n′′ = min(log1+τ
c2·3(n′)2
εα0

, log1+τ c2p
′
max). We
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use an array of size n′′ to store the elements of N ′′L and we have

n′′ = min(log1+τ
c2·3(n′)2
εα0

, log1+τ c2p
′
max)

= log1+τ min( c2·3(n
′)2

εα0
, c2pmax)

≤ log1+τ min(
c2·3c21n2

εα0
, c2pmax)

= O( 1
τ

min(log n+ log c1c2
εα0

, log pmax + log c2))

= O( 1
εα0

min(log n+ log c1c2
εα0

, log pmax + log c2)).

It is easy to see that the update time for each job is O(1) time.

Case 2: Only p′max, p
′
max ≤ pmax ≤ c2p

′
max, is given.

From the algorithm, the processing time of a large job is between pminL = 1
and c2p

′
max, thus the number of distinct processing time in N ′′L is at most

n′′ =
⌊
log1+τ c2p

′
max

⌋
≤
⌊
log1+τ c2pmax

⌋
= O( 1

εα0
(log pmax + log c2)).

With the array of n′′ elements to store the elements of N ′′L, the update
time for each job is O(1).

Case 3: Only n′, n ≤ n′ ≤ c1n, is given.
We use a B-tree to store the elements of N ′′L. Since n′ is given, we can

calculate pminL based on the updated pcurMax, pminL = max{ εα0

3(n′)2
pcurMax, 1}.

So the number of nodes in the B-tree is bounded by pcurMax

pminL
, which is

min(log1+τ
3n′2

εα0
, log1+τ pmax)) = log1+τ (min(3n

′2

εα0
, pmax))

≤ log1+τ (min(
3c21n

2

εα0
, pmax))

= O( 1
τ

min(log n+ log
c1
εα0

, log pmax))

= O( 1
εα0

min(log n+ log c1
εα0
, log pmax)).

For each large job, we need to perform at most three operations: a search
operation, possibly an insertion and a deletion. The time for each operation
is at most the height of the tree:

log(O( 1
εα0

min(log n+ log c1
εα0
, log pmax)))

= O(log( 1
εα0

) + min(log(log n+ log c1
εα0

), log log pmax))

Case 4: No information about pmax and n is known beforehand. We still

use B-tree as Case 3. However, without information of n, pminL is always 1,
the total number of nodes stored in the B-tree is at most O(log1+τ pmax) =
O( 1

εα0
log pmax). The update time is thus O(log(log1+τ pmax)) = O(log 1

εα0
+

log log pmax).
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2.2. Stage 2: Approximation Computation based on the Sketch

In this stage, we will find an approximate value of the minimum total com-
pletion time for our scheduling problem based on the sketch N ′L = {(rpk, nk) :
k0 ≤ k ≤ k1} that is obtained from the first stage. The idea is to assign large
jobs in the sketch N ′L group by group in SPT order to m machines where
group k, k0 ≤ k ≤ k1, corresponds to pair (rpk, nk) in sketch N ′L. After all
groups of jobs are scheduled, we find the minimum total completion time
among the remaining schedules, and return an approximate value.

To schedule each group of jobs, we perform two operations:
Enumerate: enumerate all assignments of the jobs in the group to
m machines that satisfy certain property, and
Prune: prune the schedules so that only a limited number of schedules
are kept.

During the Enumerate operation, we enumerate the assignments of nk
jobs from group k to m machines using (δ,m)-partition as defined below.

Definition 3. For two positive integers b and m, and a real δ > 0, a (δ,m)-
partition of b is an ordered tuple (b1, b2, · · · , bm) such that each bi is non-
negative integer, b =

∑
1≤i≤m bi, and there are at least (m− 1) integers bi is

either 0 or b(1 + δ)qc for some integer q.

For example, for δ = 1, to schedule a group of b = 9 jobs to m = 3
machines, we enumerate those assignments corresponding to (1, 3)-partitions
of 9. From the definition, some examples of (1, 3)-partitions of 9 are {2, 2, 5},
{0, 9, 0}, {0, 1, 8}. Corresponding to the partition {2, 2, 5}, we schedule 2 jobs
on the first machine, 2 jobs on the second machine and the remaining 5 jobs
on the last machine. By definition, {2, 2, 5} and {2, 5, 2} are two different
partitions corresponding to two different schedules.

During the Prune operation, we remove some schedules so that only a
limited number of schedules are kept. Let S be a schedule of the jobs on
m machines, we use Pi(S) to denote the total processing time of the jobs
assigned to machine Mi in S; and use σi(S) to denote the total completion
time of the jobs scheduled to Mi in S. The schedules are pruned so that no
two schedules are “similar”, where “similar” schedules are defined as follows.

Definition 4. Two schedules S1, S2 are “similar” with respect to a given
parameter δ if for every 1 ≤ i ≤ m, Pi(S1) and Pi(S2) are both in an interval
[(1 + δ)x, (1 + δ)x+1) for some integer x, and σi(S1) and σi(S2) are both in an
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interval [(1 + δ)y, (1 + δ)y+1) for some integer y. We use S1
δ
≈ S2 to denote

S1 and S2 are “similar” with respect to δ.

Our complete algorithm for stage 2 is formally presented below in which
the Enumerate and Prune operations are performed in Step (3.b) and (3.c),
respectively.

Algorithm for computing the approximate value
Input: N ′L = {(rpk, nk) : k0 ≤ k ≤ k1}
Output: An approximate value of the minimum total completion time for
jobs in N

Steps

1. let δ be a positive real such that δ < ε·α0

24(k1−k0+1)

2. Uk0−1 = ∅

3. Compute Uk, k0 ≤ k ≤ k1, which is a set of schedules of jobs from the
groups k0 to k

3.a let Uk = ∅
3.b for each (δ,m)-partition of nk

for each schedule Sk−1 ∈ Uk−1
schedule the jobs of the group k to the end of Sk−1 based

on the partition and let the new schedule be Sk

Uk = Uk ∪ {Sk}

3.c prune Uk by repeating the following until Uk can’t be reduced

if there are two schedules S1 and S2 in Uk such that S1
δ
≈ S2

Uk = Uk \ {S2}

4. Let S ′ ∈ Uk1 be the schedule that has the minimum total completion
time, σ(S ′) = Σ1≤i≤mσi(S

′).

5. return (1+ε/3)(1+ε/15)σ(S ′) as an approximate value of the minimum
total completion time of the jobs in N .

12



Before we analyze the performance of the above procedure, we first con-
sider a special case of our scheduling problem: all jobs have equal processing
time and there is a single machine that has the processing capacity at least
α0 at any time. Suppose that the jobs are continuously scheduled on the
machine. The following lemma shows how the total completion time of these
jobs changes if we shift the starting time of these jobs and/or insert addi-
tionally a small number of identical jobs at the end of these jobs.

Lemma 5. Let Sx be a schedule of x identical jobs of processing time p
starting from time t0 on a single machine whose processing capacity is at
least α0 at any time. Then we have the following cases:

(1) x · t0 + x(1+x)
2

p ≤ σ(Sx) ≤ x · t0 + x(1+x)
2·α0

p.

(2) If we shift all jobs in Sx so the first job starts at (1 + δ)t0 and get a
new schedule S1

x, then σ(S1
x) ≤ (1 + δ

α0
)σ(Sx).

(3) If we add additional bxδc identical jobs at the end of Sx and get a new
schedule S2

x, then its total completion time is σ(S2
x) ≤ (1 + 3δ

α0
)σ(Sx).

(4) Let S3
x be a schedule of (x + bxδ′c) identical jobs of processing time p

starting from time (1 + δ′′)t0 then σ(S3
x) ≤ (1 + δ′′

α0
)(1 + 3δ′

α0
)σ(Sx)

Proof. We will prove (1)-(4) one by one in order.

(1) First it is easy to see that x · t0 + x(1+x)
2

p is the total completion time
of the jobs when the machine’s processing capacity is always 1, which
is obviously a lower bound of σ(Sx). When the machine’s processing
capacity is at least α0, then it takes at most p/α0 time to complete

each job, thus the total completion time is at most x · t0 + x(1+x)
2·α0

p.

(2) When we shift the jobs so that the first job starts δt0 later, then the
completion time of each job is increased by at most δt0

α0
. Therefore,

σ(S1
x) ≤ σ(Sx) + x · δ·t0

α0
≤ (1 + δ

α0
)σ(Sx) .

(3) Suppose the last job in Sx completes at time t. Then t ≤ t0 + xp
α0

.
When we add additional bxδc jobs starting from t, by (1), the total
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completion time of the additional jobs is at most (xδ · t + xδ(1+xδ)
2·α0

p).
Therefore,

σ(S2
x) ≤ σ(Sx) + xδ · t+ xδ(1+xδ)

2·α0
p

≤ σ(Sx) + xδ · (t0 + xp
α0

) + δ
α0

x(1+xδ)
2

p

≤ σ(Sx) + δ
α0

(x · t0 + x(1+x)
2

p) + xδ · xp
α0

≤ σ(Sx) + δ
α0
σ(Sx) + 2δ

α0
σ(Sx)

≤ (1 + 3δ
α0

)σ(Sx) .

(4) Follows from (2) and (3).

Now we analyze the performance of our algorithm. In step 3.b, we only
consider the schedules of the nk jobs corresponding to (δ,m)-partitions. Let
S be any schedule of the jobs in sketch N ′L, we will show that at the end of
step 3.b there is a schedule Sδ ∈ Uk that is δk-close to S. Let ni,k(S) be the
number of jobs from group k that are scheduled on machine Mi in S. The
δk-close schedule to S is defined as follows.

Definition 6. Let k be an integer such that k0 ≤ k ≤ k1. We say a schedule
Sδ is a δk-close schedule to S if for the jobs in group k, the following
conditions hold: (1) In Sδ, the schedule of jobs from the group k form a
(δ,m) partition of nk; (2) For at least m − 1 machines, either ni,k(Sδ) = 0
or
⌈
log1+δ ni,k(Sδ)

⌉
=
⌈
log1+δ ni,k(S)

⌉
.

By definition, if Sδ is δk-close to S, then ni,k(Sδ) ≤ (1 + δ)ni,k(S) for all i,
1 ≤ i ≤ m.

The following lemma shows that there is always a schedule Sδ ∈ Uk at
the end of step 3.b that is δk-close to S.

Lemma 7. For any schedule S, there exists a δk-close schedule Sδ ∈ Uk at
the end of step 3.b that is δk-close to S.

Proof. The existence of Sδ can be shown by construction. We initialize Sδ
to be any schedule from Uk−1. Then we schedule the jobs from group k to
Mi, starting from i = 1. Suppose there are ni,k(S) > 0 jobs scheduled on
Mi in S, and (1 + δ)q−1 < ni,k(S) ≤ (1 + δ)q for some integer q ≥ 0, then if
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there are less than b(1 + δ)qc jobs unscheduled in this group, assign all the
remaining jobs to machine Mi; otherwise, assign b(1 + δ)qc jobs to machine
Mi and continue to schedule the jobs of this group to the next machine.

It is easy to see that the constructed schedule of jobs from group k form
a (δ,m)-partition that would be added to Uk in step 3.b. By definition, the
constructed schedule Sδ is a δk-close schedule to S .

We now analyze step 3.c of our algorithm where “similar” schedules are
pruned after a group of jobs in N ′L are scheduled. We will need the following
notations:

σi,k(S): the total completion time of jobs from group k that are
scheduled on Mi in S.
Ti,k(S): the largest completion time of the jobs from group k that
are scheduled on Mi in S.
Pi,k(S): the total processing time of jobs from group k that are
scheduled to machine Mi in S.

For any optimal schedule S∗ of the jobs in N ′L, let S∗k be the partial sched-
ule of jobs from groups k0 to k with the processing time at most rpk in S∗.
Our next lemma shows that there is a schedule Sk ∈ Uk that approximates
the partial schedule S∗k .

Lemma 8. For any optimal schedule S∗ of the jobs in N ′L, let S∗k be the partial
schedule in S∗ of the jobs from groups k0 to k. Let µ = k1 − k0 + 1, then
after some schedules in Uk are pruned at step (3.c), there exists a schedule
Sk ∈ Uk such that

(1) Pi(Sk) ≤ (1 + δ)k−k0+2Pi(S
∗
k) for 1 ≤ i ≤ m, and

(2) σi(Sk) ≤ (1 + δ)k−k0+1(1 + 2µδ
α0

)(1 + 3δ
α0

)σi(S
∗
k) for 1 ≤ i ≤ m.

Proof. We prove by induction on k. First consider k = k0. By Lemma 7,
at the end of step 3.b there is a schedule Sδk0 ∈ Uk0 that is δk0-close to
S∗k0 , and ni,k0(S

δ
k0

) ≤ (1 + δ)ni,k0(S
∗
k0

) for all i, 1 ≤ i ≤ m which implies
pi,k0(S

δ
k0

) ≤ (1 + δ)pi,k0(S
∗
k0

). In both schedules Sδk0 and S∗k0 , the jobs are
scheduled from time 0 on each machine, by Lemma 5 Case (3), for each
machine Mi, we have σi(S

δ
k0

) ≤ (1 + 3δ
α0

)σi(S
∗
k0

). If Sδk0 is pruned from Uk0 at

step 3.c, then there must be a schedule Sk0 such that Sk0 ∈ Uk0 and Sδk0
δ
≈ Sk0 ,

so for each machine Mi, 1 ≤ i ≤ m, we have

Pi(Sk0) ≤ (1 + δ)Pi(S
δ
k0

) ≤ (1 + δ)2Pi(S
∗
k0

) = (1 + δ)k−k0+2Pi(S
∗
k0

)
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and

σi(Sk0) ≤ (1 + δ)σi(S
δ
k0

) ≤ (1 + δ)(1 + 3δ
α0

) = (1 + δ)k−k0+1(1 + 3δ
α0

)σi(S
∗
k0

).

Assume the induction hypothesis holds for some k ≥ k0. So after sched-
ules in Uk are pruned, there is a schedule Sk in Uk that satisfies the inequalities
(1) and (2). Now by the way that we construct schedules and by Lemma 7,
in Uk+1, there must be a schedule Sδk+1 ∈ Uk+1 that is the same as Sk for
the jobs from groups k0 to k, and is δk+1-close to S∗k+1 for the jobs of group
(k + 1).

Then for each machine Mi we have

Pi(S
δ
k+1) = Pi(Sk) + Pi,k+1(S

δ
k+1)

≤ (1 + δ)k−k0+2Pi(S
∗
k) + (1 + δ)Pi,k+1(S

∗
k+1)

≤ (1 + δ)k−k0+2Pi(S
∗
k+1)

And compared with S∗k+1, on each machine Mi, the first job from group (k+1)

group in Sδk+1 is delayed by at most
Pi(Sk)−Pi(S∗k)

α0
≤ (1+δ)k−k0+2−1

α0
· Pi(S∗k). By

Lemma 5 Case (4), for the jobs from group k + 1 on each machine Mi, we

have σi,k+1(S
δ
k+1) ≤ (1 + (1+δ)k−k0+2−1

α0
)(1 + 3δ

α0
)σi,k+1(S

∗
k+1) and

σi(S
δ
k+1)

= σi(Sk) + σi,k+1(S
δ
k+1)

≤ σi(Sk) + (1 + (1+δ)k−k0+2−1
α0

)(1 + 3δ
α0

) · σi,k+1(S
∗
k+1)

≤ σi(Sk) + (1 + (1+δ)µ−1
α0

)(1 + 3δ
α0

) · σi,k+1(S
∗
k+1)

≤ σi(Sk) + (1 + 2µδ
α0

)(1 + 3δ
α0

) · σi,k+1(S
∗
k+1)

≤ (1 + δ)k−k0+1(1 + 2µδ
α0

)(1 + 3δ
α0

)(σi(S
∗
k) + (1 + 2µδ

α0
)(1 + 3δ

α0
) · σi,k+1(S

∗
k+1)

≤ (1 + δ)k−k0+1(1 + 2µδ
α0

)(1 + 3δ
α0

) · (σi(S∗k) + σi,k+1(S
∗
k+1))

≤ (1 + δ)k−k0+1(1 + 2µδ
α0

)(1 + 3δ
α0

) · σi(S∗k+1)

Then after the “similar” schedules are pruned in our procedure, there is a
schedule Sk+1 that is “similar” to Sδk+1, so for each machines Mi(1 ≤ i ≤ m)
we have

Pi(Sk+1) ≤ (1 + δ)Pi(S
δ
k+1) ≤ (1 + δ)(k+1)−k0+2Pi(S

∗
k+1)
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and

σi(Sk+1) ≤ (1 + δ)σi(S
δ
k+1) ≤ (1 + δ)(k+1)−k0+1(1 + 2µδ

α0
)(1 + 3δ

α0
)σi(S

∗
k+1).

This completes the proof.

After all groups of jobs are scheduled, our algorithm finds the schedule S ′

that has the smallest total completion time among all generated schedules,
and then returns the value (1 + ε/3)(1 + ε/15)σ(S ′). In the following we will
show that the returned value is an approximate value of the optimal total
completion time for the job set N .

Lemma 9. Let S∗ be the optimal schedule for jobs in N , (1 + ε/3)(1 +
ε/15)σ(S ′) ≤ (1 + ε)σ(S∗).

Proof. We first construct a schedule of jobs in N based on the schedule S ′ of
jobs in the sketch N ′L using the following two steps:

1. Replace each job in S ′ with the corresponding job from N , let the
schedule be S ′′

2. Insert all small jobs from N \NL to M1 starting at time 0 to S ′′, and
let the schedule be S

For each job j with processing time (1+τ)k−1 ≤ pj < (1+τ)k, its rounded
processing time is rpk =

⌊
(1 + τ)k

⌋
≥ pj, so when we replace rpk with pj to

get S ′′, the completion time of each job will not increase, and thus the total
completion time of jobs in S ′′ is at most that of S ′. That is, σ(S ′′) ≤ σ(S ′).

All the small jobs have processing time at most εα0

3n2pmax, so the total
length is at most n · εα0

3n2pmax. Inserting them to M1, the completion time of
the last small job in S is at most n·pmax εα0

3n2 · 1α0
, and the other jobs’ completion

time is increased by at most n · εα0

3n2pmax · 1
α0

. The total completion time of
all the jobs is at most

σ(S) ≤ σ(S ′′)+n2· εα0

3n2pmax· 1α0
≤ σ(S ′′)+ ε

3
σ(S ′′) ≤ (1+ ε

3
)σ(S ′′) ≤ (1+ ε

3
)σ(S ′).

By Lemma 8, there is a schedule Sk1 ∈ Uk1 that corresponds to the
schedule of the large jobs obtained from S∗. Furthermore, σ(Sk1) ≤ (1 +

17



δ)µ(1 + 2µδ
α0

)(1 + 3δ
α0

)σ(S∗k1) where µ = k1 − k0 + 1 = log1+τ
3n2

εα0
. For schedule

S ′, we have σ(S ′) ≤ σ(Sk1). Thus,

σ(S) ≤ (1 + ε
3
)σ(S ′)

≤ (1 + ε
3
)(1 + δ)µ(1 + 2µδ

α0
)(1 + 3δ

α0
)σ(S∗k1)

≤ (1 + ε
3
)(1 + 2µδ

α0
)(1 + 2µδ

α0
)(1 + 3δ

α0
)σ(S∗)

≤ (1 + ε
3
)(1 + ε

12
)2(1 + 3ε

24µ
)σ(S∗) plug in δ = εα0

24µ
and µ = log1+τ

3n2

εα0

≤ (1 + ε
3
)(1 + ε

12
)2(1 + ε

8
)σ(S∗)

≤ (1 + ε)) · σ(S∗)

Lemma 10. The Algorithm in stage 2 runs in

O((k1 − k0 + 1)(mlog1+δ n)(m−1)(log1+δ

∑
pj

α0
)m(log1+δ(n

∑
pj

α0
))m)

time using O((log1+δ

∑
pj

α0
)m(log1+δ(n

∑
pj

α0
))m)) space.

Proof. For each rounded processing time rpk and for each of (m−1) machines,
the number of possible jobs assigned is either 0, or

⌊
(1 + δ)l

⌋
, 1 ≤ l ≤

log1+δ nk, so there are O(log1+δ n) values. The remaining jobs will be assigned
to the last machine. There are at most O(m(log1+δ n)m−1) ways to assign
the jobs of a group to the m machines.

For each schedule in Uk, the largest completion time is bounded by L =∑
1≤j≤n pj/α0, and its total completion time is bounded by nL. Since we only

keep non-similar schedules, there are at most O((log1+δ L)m(log1+δ nL)m)
schedules.

Combining Lemma 2, Lemma 9, and Lemma 10, we get the following
theorem.

Theorem 11. Let α0 and ε be a real in (0, 1]. For Pm, αi,k ≥ α0 | stream |∑
Cj, there is a one-pass (1 + ε)-approximation scheme with the following

time and space complexity:

1. Given both an upper bound n′ for the number of jobs n and a lower
bound p′max for the largest processing time of job pmax such that n ≤
n′ ≤ c1n and 1 ≤ p′max ≤ pmax ≤ c2p

′
max for some c1 and c2, then it

takes O(1) update time and O( 1
εα0

min(log n+log c1c2
εα0

, log pmax+log c2))
space to process each job from the stream.
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2. Given only a lower bound p′max for pmax where 1 ≤ p′max ≤ pmax ≤
c2p
′
max, then it takes O(1) update time and O( 1

εα0
(log pmax + log c2))

space to process each job in the stream.

3. Given only an upper bound n′ for n such that n ≤ n′ ≤ c1n, then it
takes O(log( 1

εα0
) + min(log(log n + log c1

εα0
)), log log pmax) update time,

and O( 1
εα0

min(log n+log c1
εα0
, log pmax)) space to process each job in the

stream.

4. Given no information about n and pmax, then it takes O(log( 1
εα0

+

log log pmax)) update time, and O( 1
εα0

log pmax) space to process each
job in the stream.

5. After processing the input stream, to compute the approximation value,
it takes

O(εα0 · ( 360
ε2α2

0
log n

εα0
)3m · (m log n)m−1 · (log

∑
pj

α0
· log

n
∑
pj

α0
)m)

time using O((log n
εα0

)2m(log(
∑
pj

α0
) log(n

∑
pj

α0
))m) .

Note that our algorithm only finds an approximate value for the optimal
total completion time, and it does not generate the schedule of all jobs. If the
jobs can be read in a second pass, we can return a schedule of all jobs whose
total completion time is at most (1+ε)σ(S∗) where S∗ is an optimal schedule.
Specifically, after the first pass, we store ni,k(S

′), 1 ≤ i ≤ m, k0 ≤ k ≤ k1,
which is the number of large jobs from group k that are assigned to machine
Mi in S ′. Based on the selected schedule S ′, we get ti,k that is the starting
time for jobs from group k, k0 ≤ k ≤ k1, on each machine Mi, 1 ≤ i ≤ m.
We add group k0 − 1 that includes all the small jobs and will be scheduled
at the beginning on machine M1, that is, initially t1,k0−1 = 0. For all t1,k,
k0 ≤ k ≤ k1, we update it by adding n εα0

3n2
pmax
α0

. In the second pass, for each
job j scanned, if it is a large job and its rounded processing time is rpk for
some k0 ≤ k ≤ k1, we schedule it to a machine Mi with ni,k(S

′) > 0 at
ti,k and then update ni,k(S

′) by decreasing by 1 and update ti,k accordingly;
otherwise, job j is a small job, and we schedule this job at t1,k0−1 on machine
M1 and update t1,k0−1 accordingly. The total space needed in the second
pass is for storing ti,k and ni,k(S

′) for 1 ≤ i ≤ m and k0 ≤ k ≤ k1, which is
O(m(k1 − k0 + 1)) = O( m

εα0
log n

εα0
).
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Theorem 12. There is a two-pass (1+ε)-approximation streaming algorithm
for Pm, αi,k ≥ α0 | stream |

∑
Cj. In the first pass, the approximate value

can be obtained with the same metrics as Theorem 11; and in the second pass,
a schedule with the approximate value can be returned with O(1) processing
time and O( m

εα0
log n

εα0
) space for each job.

3. Conclusions

In this paper we studied a generalization of the classical identical parallel
machine scheduling model, where the processing capacity of machines varies
over time. This model is motivated by situations in which machine availabil-
ity is temporarily reduced to conserve energy or interrupted for scheduled
maintenance or varies over time due to the varying labor availability. The
goal is to minimize the total completion time.

We studied the problem under the data stream model and presented the
first streaming algorithm. Our work follows the study of streaming algo-
rithms in the area of statistics, graph theory, etc, and leads the research
direction of streaming algorithms in the area of scheduling. It is expected
that more streaming algorithms based big data solutions will be developed
in the future.

Our research leaves one unsolved case for the studied problems: Is there
a streaming approximation scheme when one of the machines has arbitrary
processing capacities? For the future work, it is also interesting to study
other performance criteria under the data stream model including maximum
tardiness, the number of tardy jobs and other machine environments such as
uniform machines, flowshop, etc.
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