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ABSTRACT 86 

Motivation: We compiled a global database of long-term riverine fish surveys from 46 regional 87 

and national monitoring programs as well as individual academic research efforts upon which 88 

numerous basic and applied questions in ecology and global change research can be explored. 89 

Such spatially- and temporally-extensive datasets have been lacking for freshwater systems 90 

compared to terrestrial ones. 91 

Main types of variables contained: The database includes 11,386 time-series of riverine fish 92 

community catch data, including 646,270 species-specific abundance records together with 93 

metadata related to geographic location and sampling methodology of each time-series. 94 

Spatial location and grain: The database contains 11,072 unique sampling locations (stream 95 

reach), spanning 19 countries, 5 biogeographic realms, and 402 hydrographic basins worldwide. 96 

Time period and grain: The database encompasses the period 1951–2019. Each time-series is 97 

composed of a minimum of two yearly surveys (mean = 8 years) and represents a minimum time 98 

span of 10 years (mean = 19 years). 99 

Major taxa and level of measurement: The database includes 944 species of ray-finned fishes 100 

(Class Actinopterygii). 101 

Software format: .csv 102 

Main conclusion: Our collective effort provides the most comprehensive long-term community 103 

database of riverine fishes to date. This unique database should interest ecologists who seek to 104 

understand the impacts of human activities on riverine fish biodiversity, and model and predict 105 

how fish communities will respond to future environmental change. Together, we hope it will 106 

promote advances in macroecological research in the freshwater realm. 107 

KEYWORDS: species abundance; biodiversity; conservation; freshwater streams and rivers; 108 

Actinopterygii; temporal trends; worldwide   109 
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1| INTRODUCTION 110 

Increasing awareness of the ongoing biodiversity crisis has motivated global initiatives to 111 

compile large-scale datasets of population and community abundance records that have been 112 

consistently sampled through recent times (Pereira & Cooper, 2006). Included among these are 113 

the Global Population Dynamics Database (Inchausti & Halley, 2001), the Living Planet Index 114 

database (Loh et al., 2005), and more recently, the BioTIME database (Dornelas et al., 2018). 115 

These databases have proven extremely useful and allowed major advancements in ecological 116 

research (e.g. Kendall, Prendergast, & Bjørnstad, 1998; Sibly, Barker, Denham, Hone, & Pagel, 117 

2005; Butchart et al., 2010; Dornelas et al., 2014); however, they remain highly biased towards 118 

terrestrial and marine assemblages (e.g. only 0.50% of the records concern riverine fishes in 119 

BioTIME, the most recent of these initiatives). This is unfortunate as effective strategic plans for 120 

conserving water resources that support human well-being and ecosystem integrity rely on access 121 

to comprehensive, pertinent, quantitative information regarding the status and trends of riverine 122 

biodiversity over regional to continental scales (Tickner et al., 2020). 123 

Long-term studies of riverine species are limited because they require highly specialized 124 

and time-consuming sampling methods. Furthermore, rivers in remote areas are often difficult to 125 

access (Olden et al., 2010; Radinger et al., 2019). Nevertheless, over the past few decades, large-126 

scale policies have been enacted in response to the rapid degradation of freshwater resources, 127 

such as the Water Framework Directive in the EU (Hering, Verdonschot, Moog, & Sandin, 2004) 128 

and the Clean Water Act in the USA (Paulsen et al., 2008), which require countries to monitor 129 

and evaluate the biological integrity of surface waters through time to adopt quality standards 130 

that restore and maintain ecological integrity (Kuehne, Olden, Strecker, Lawler, & Theobald, 131 

2017). Beyond these official national and regional monitoring programs, the temporal dynamics 132 

of riverine systems and their fish communities have also been assessed through various 133 

independent, though often local in extent, academic research programs (e.g. Gido, 2017; 134 

Matthews & Matthews, 2017). All of these institutional and academic monitoring efforts have 135 

produced considerable freshwater fish temporal data that remain largely inaccessible to the 136 

broader scientific community due to the inherent difficulty in gathering and harmonizing field 137 

data from disparate institutions and sampling protocols (Buss et al., 2015). 138 
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To fill this important gap, we here present RivFishTIME, a compiled and curated 139 

database of long-term (≥ 10 years) surveys of riverine fish communities at a fine spatial (stream 140 

reach) and taxonomic (species) resolution, using data mining approaches to harmonize existing 141 

but currently fragmented biomonitoring data sets. Riverine fish are extremely diverse in spite of 142 

the small surface they inhabit on Earth: they represent about 40% of all known fish species while 143 

occupying <1% of available aquatic habitat (“the freshwater fish paradox” sensu Lévêque, 144 

Oberdorff, Paugy, Stiassny, & Tedesco, 2008 and Tedesco, Paradis, Lévêque, & Hugueny, 145 

2017). However, they are also among the most threatened taxonomic groups on Earth because of 146 

the convergence between the high concentration of biodiversity and the many pressures resulting 147 

from human uses of freshwater resources and habitat change (Reid et al., 2019; Tickner et al., 148 

2020). The RivFishTIME database provides a unique opportunity to understand the rate, 149 

magnitude, and geography of biodiversity trends, and to identify opportunities to mitigate human 150 

impacts on riverine systems (Pereira & Cooper, 2006; Anderson, 2018). Due to the paucity of 151 

spatially- and temporally-extensive datasets in freshwater compared to terrestrial systems 152 

(Heino, 2011), RivFishTIME should also help ecologists close the gap between these two 153 

systems and to address a wider range of taxa in unraveling large-scale spatio-temporal 154 

biodiversity patterns. 155 

 156 

2| METHODS 157 

2.1| Data acquisition 158 

We gathered time-series of fish community abundance data for riverine (lotic) ecosystems, 159 

broadly defined as freshwater bodies that are continually or intermittently flowing. We tried to 160 

the extent possible to exclude wetlands and brackish habitats (salinity > 0.5 ‰). Note, however, 161 

that due to the complex nature of the datasets, we do not guarantee that sites are located on free-162 

flowing river segments (i.e. natural condition without impoundment, diversion, or other 163 

modification of the waterway). We used the following criteria for data inclusion: (1) the location 164 

of the sampling sites is known and consistent through time, (2) the sampling protocol is known 165 

and consistent through time, (3) the sampling survey sought to quantify all species in the fish 166 
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community according to well-established protocols, (4) species-specific abundances are available 167 

for each survey, (5) surveys at a given site were conducted over a period of at least 10 years, and 168 

(6) at least two yearly surveys with non-null abundance are available. We considered abundance 169 

measures derived from direct fish counts, catch-effort indexes such as relative abundances (%) 170 

and catch per unit effort (CPUE), abundance classes, as well as statistically estimated 171 

abundances (e.g. Leslie method; Ricker, 1975). 172 

 To identify potential datasets, we used Google Search, Google Scholar and Dataset 173 

Search with different combinations of the keywords “time series”, “fish”, “abundance”, 174 

“stream”, “river”, “freshwater”, “community”, “temporal”, and “monitoring” or “monitoring 175 

program”. We screened the scientific as well as the grey literature to identify studies involving 176 

temporal datasets of fish communities and conducted similar searches in data repositories such as 177 

Dryad (https://datadryad.org/stash) and FigShare (https://figshare.com/). We also conducted 178 

targeted searches for national and regional monitoring programs by adding country names to the 179 

previous keywords. For the European Union, we further used the EuMon database as a reference 180 

to identify fish monitoring databases (available at http://eumon.ckff.si/about_daeumon.php).  181 

We contacted all the authors and monitoring program coordinators unless the reusability 182 

of data was clearly stated on the online repositories where the data were released  (e.g., Open 183 

Government License, CC0 1.0 Universal). We excluded the datasets for which we did not 184 

receive the permission.  185 

  186 

2.2| Quality control 187 

Taxonomy. We validated species scientific names using the online database Fishbase (Froese & 188 

Pauly, 2019). We used the R package rfishbase (as of December 2019; Boettiger, Lang, & 189 

Wainwright, 2012) and confirmed names with no match manually using the Catalog of Fishes 190 

(Fricke, Eschmeyer, & van der Laan, 2018). We then selected only records involving ray-finned 191 

fishes (Class Actinopterygii), excluding rays and lampreys, and unidentified species.  192 

http://eumon.ckff.si/about_daeumon.php


7 
 

Coordinates. We harmonized the coordinate system by projecting (if necessary) the 193 

coordinates of the individual datasets using the World Geodetic System (WGS84) as reference 194 

geographic coordinate system. We visually inspected the spatial distribution of the sites with 195 

respect to their respective country, region, or state borders as given in the original data sources 196 

and discarded sites with dubious coordinates (e.g. sites located in the ocean). We also removed 197 

sites whose coordinates were located outside of any hydrographic basin using the global major 198 

river basin GIS layer in HydroSHEDS (Lehner, Verdin, & Jarvis, 2008). 199 

Consistent sampling methods. We excluded surveys lacking information on sampling 200 

methods and selected only time-series collected using a consistent sampling protocol through 201 

time. The latter evaluation was dataset-specific as dictated by the complexity of the monitoring 202 

scheme and the available metadata. For instance, surveys were deemed consistent if they did not 203 

experience any major deviation in sampling protocol, and disregarded minor variations (e.g. 204 

number of anodes or traps, area sampled) due to survey-specific constraints (e.g. water depth, 205 

habitat complexity). By contrast, several monitoring programs implemented alternate sampling 206 

protocols to compare the efficiency of different gears (e.g. seining versus electrofishing) or 207 

sampling methods (e.g. continuous versus point electrofishing); these time-series conducted at 208 

the same sites but using different sampling protocols were kept separate in the database.  209 

Duplicates. We removed duplicates within individual datasets based on the coordinates of the 210 

sites, date of the survey, and species collected (e.g. due to different name attribution for the same 211 

site). We also identified potential duplicates among datasets (e.g. overlap between state-level and 212 

national databases) based on the coordinates of the sites rounded to three digits to account for 213 

different post-processing of the individual datasets.  214 

 215 

2.3| Database formatting 216 

Each entry (species abundance record) was assigned a unique (1) site, (2) survey, and (3) time-217 

series identifier. The site ID corresponds to a given pair of coordinates, the survey ID to a 218 

sampling campaign, and the time-series ID to a combination of site × sampling protocol. We 219 
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extracted the names of the sampled water bodies (e.g. creek, stream, river) from the available 220 

metadata associated with each individual dataset, that we cross-referenced against several 221 

continental and national geospatial river networks in GIS (e.g. Australian Hydrological 222 

Geospatial Fabric, Ordnance Survey Open Rivers). Additionally, each site ID was assigned to a 223 

biogeographic realm following Olson et al. (2001), hydrographic basin following HydroSheds 224 

(Lehner et al., 2008), and administrative units (country, region and province) based on its 225 

coordinates. For each sampling ID, we aggregated abundance records if they were given 226 

separately for individuals, size classes or sub-species for each validated species name or if 227 

different sampling passes, hauls, or sub-sampling areas were considered. We also converted 228 

time-series species abundances to densities or CPUE whenever possible. The different surveys 229 

were kept independent when conducted on different occasions within the same calendar year. We 230 

provided the year together with the quarter of the survey (1: January-March; 2: April-June; 3: 231 

July-September, 4: October-December). We also provided the associated unit (abundance class, 232 

count, CPUE, individuals/100m2, Leslie index, relative abundance) for each species abundance 233 

record. Finally, we extracted basic information regarding the sampling protocol, including details 234 

on electrofishing (backpack, shore-based or boat mounted electrofishers), netting (dip nets, gill 235 

nets, beach or pelagic seines), trapping (minnow traps, fyke nets or hoop nets), and trawling 236 

techniques. Many survey protocols involve a combination of sampling approaches, rendering 237 

challenging the inclusion of detailed information about the sampling effort in a standardized 238 

way. We therefore encourage the data user to refer to each data source for more information on 239 

the sampling methods. 240 

 The database is organized in three tables (.csv format): the time-series table, the survey 241 

table, and the information source table. The tables can be linked using the unique dataset source 242 

ID and time-series ID. The time-series table contains: (1) source ID, (2) site ID, (3) time-series 243 

ID, (4) sampling method, (5) latitude (WGS 84), (6) longitude (WGS 84), (7) biogeographic 244 

realm, (8) hydrographic basin, (9) country (ISO code), (10) region, (11) province, and (12) water 245 

body. The survey table contains: (1) time-series ID, (2) survey ID, (3) sampling year, (4) 246 

sampling quarter, (5) species scientific name, (6) abundance, and (7) abundance unit. The 247 

information source table contains the full citation(s), online link to the raw data when publicly 248 

available, as well as the name(s) and contact of the data responsible(s) for each individual 249 
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dataset. Data curation was performed in the R (3.6.0) programming environment (R Core Team, 250 

2019). 251 

A list of the data sources is found in Appendix 1; for further information consult the 252 

metadata. A static version of RivFishTIME is available through the iDiv Biodiversity Portal 253 

(Comte et al., 2020), but we aim to continue interacting with data contributors to update and add 254 

new time-series datasets as they become available (see Data Availability Statement).  255 

 256 

3| RESULTS 257 

Our database includes 11,386 time-series of riverine fish compiled from 46 individual source 258 

datasets, representing a total of 106,785 surveys and 646,270 individual species abundance 259 

records at 11,072 unique sites. Survey-specific species richness across all time-series ranges 260 

from 1 to 50 species, and covers 944 ray-finned fish species. The surveyed sites display a wide 261 

distribution along longitudinal and latitudinal gradients, spanning 19 countries, 402 hydrographic 262 

basins, and 5 biogeographic realms (Fig. 1a). Despite broad geographical coverage, we note a 263 

clear spatial bias towards the Palearctic (European Union) and, to a lesser extent, Nearctic (North 264 

America) and Australasia realms. The abundance time-series are largely represented by 265 

individual counts, followed by densities (individuals/100m2) and CPUE (Fig. 1b). Abundance 266 

classes, Leslie index and relative abundance represent < 1% of the time-series. Electrofishing is 267 

by far the main sampling technique used to record the time-series, although variations are 268 

noticeable among biogeographic realms (Fig. 1c). For instance, dipnetting sampling techniques 269 

are only represented in the Neotropics, whereas gillnetting is the most common gear in the 270 

Afrotropics. 271 

The time-series cover a time period from 1951 to 2019 and are mainly concentrated over 272 

the last two decades (average first year = 1996; Fig. 2a). Surveys have been conducted primarily 273 

in the 3rd (July-September) and 4th (October-December) quarters of the year, especially in the 274 

Palearctic and Nearctic realms (corresponding to periods of low flows), but all quarters are 275 

represented in the different biogeographic realms (Fig. 2b). The mean time span of the time-276 

series is of 19 years and ranges from 10 to 68 years, with the longest time-series located in the 277 
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Palearctic (Fig. 2c). The sites were sampled from (non-necessarily consecutive) 2 to 52 years, 278 

with an average number of yearly surveys of 8 years (Fig 2d). Again, the highest number of 279 

yearly surveys was found in the Palearctic. The completeness of the time-series (i.e. ratio of 280 

number of yearly surveys to the overall time span) ranges from 4 to 100%, with a mean value of 281 

45% (Figure 2e). Importantly, the degree of completeness is largely uncorrelated to the time span 282 

of the time-series (r = 0.05).283 

 284 

Figure 1. (a) Map showing the distribution of the time-series where each time-series is 285 

represented by a dot with colors indicating the biogeographic realm and size representing fish 286 

species richness (averaged across surveys). Inset histograms display the distribution of the time-287 

series according to latitude and longitude. Barplots show the distribution of the time-series with 288 

respect to the (b) type of abundance, and (c) primary sampling method. Note the log10(x+1) y-289 

axes in (b)-(c). 290 
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 291 

Figure 2. (a) Temporal distribution of the yearly surveys relative to the period covered by the 292 

database (1951-2019). Each time-series appears in rows where the background colors correspond 293 

to the biogeographical realms and white indicates sampled years. (b) Temporal distribution of the 294 

surveys with respect to the quarter of the year. Temporal characteristics of the time-series with 295 

respect to the (c) overall time span, (d) number of yearly surveys, and (e) completeness defined 296 

as the ratio between the number of yearly surveys and the overall time span (expressed in %). 297 

Note the log10(x+1) y-axes in (b)-(e). 298 

 299 
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4| CONCLUSIONS 300 

Our collective effort provides the most comprehensive long-term community database of riverine 301 

fishes to date, spanning large biogeographic, climatic and hydrographic gradients. Almost all 302 

biogeographic realms are represented but it is important to note that our database is not exempt 303 

from spatial bias. For instance, less than 1% of the time-series belong to the Afrotropic or 304 

Neotropic realms, whereas 84% belong to the Palearctic realm. These spatial gaps often present 305 

in biodiversity-rich regions (tropical areas, southeast Asia) are likely to mirror the current 306 

networks of freshwater monitoring programs (Buss et al., 2015; Radinger et al., 2019) as well as 307 

biodiversity research efforts (Martin, Blossey, & Ellis, 2012), and hence will be prioritized in 308 

future updates of RivFishTIME. We also warn data users that species abundance may not be 309 

directly comparable across sites without a full understanding of the specifics of sampling 310 

approach and effort, with respect to their selectivity and efficiency (Goffaux, Grenouillet, & 311 

Kestemont, 2005; Portt, Coker, Ming, & Randall, 2006; Oliveira, Gomes, Latini, & Agostinho, 312 

2014; Benejam et al., 2012), and refer to the original data sources for more information about the 313 

sampling protocols.  314 

Despite these unavoidable limitations associated with secondary datasets collected for 315 

multiple purposes, we are confident that RivFishTIME will stimulate new research in the fields 316 

of global change ecology and macroecology. First and foremost, it will provide the needed 317 

baseline information for conservation and restoration efforts to bend the curve of freshwater 318 

biodiversity loss (Tickner et al., 2020). For instance, the fish abundance time-series could be 319 

used to assess population or community trends in different rivers of the world, broadening the 320 

taxonomic and spatial representation of existing indicators of the status of global biodiversity 321 

(e.g. Living Planet Index). Coupled with high-resolution environmental time-series, this unique 322 

database could also help to decipher the underlying drivers of biodiversity changes in riverine 323 

systems, including (but not limited to) habitat fragmentation and destruction, invasive species, 324 

pollution, hydrologic alteration and climate change (e.g. Chen & Olden, 2020, Erős et al., 2020). 325 

In turn, this knowledge could be integrated into ecological models used to forecast how fish 326 

communities will respond to future environmental change, paving the way to mitigate those 327 

impacts. RivFishTIME could also offer new macroecological insights into the implications of 328 

river network complexity on community structure and assembly processes across extensive 329 



13 
 

environmental gradients (e.g. community composition, population persistence, spatial synchrony 330 

in community dynamics) – questions that have long fascinated ecologists but have been so far 331 

primarily explored through theoretical approaches.  332 

 333 
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DATA AVAILABILITY 388 

RivFishTIME is publicly available through the iDiv Biodiversity Portal: 389 

https://doi.org/10.25829/idiv.1873-10-4000. We kindly ask the users to cite this paper as well as 390 

the source of each primary dataset in any published material produced using these data. We 391 

encourage any potential data contributor to contact LC with possible datasets to expand the 392 

database. Updates of RivFishTIME will be curated through the iDiv Biodiversity Portal and also 393 

released through the more specialized Freshwater Biodiversity Data Portal 394 

(https://data.freshwaterbiodiversity.eu/). 395 
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Appendix 1 | Data sources 501 

SourceID Citations URLaccess 

1 Agència Catalana de l’Aigua (2003); 

Agència Catalana de l’Aigua (2010); 

Agència Catalana de l’Aigua (2018) 

http://aca.gencat.cat/ 

2 Zeni, Hoeinghaus, & Casatti (2017); 

Casatti et al. (2009) 
− 

3 Universidad de Antioquia-Empresas 

Publicas de Medellin (2019) 
− 

4 Erős et al. (2014) − 

5 Gammon (2013) − 

6 Ecosystem Health Monitoring 

Program Queensland (2019) 

https://hlw.org.au/report-card/ 

7 Finnish electrofishing register Hertta 

(2019) 
− 

8 Sigouin (2017) https://open.canada.ca/data/en/dataset

/fe2441a6-8ae4-4884-b181-

cd7ec53bd842 

9 Whitney, Gido, Martin, & Hase 

(2016) 
− 

10 Gido, Propst, Olden, & Bestgen 

(2013); Gido et al. (2019) 
− 

11 Kesner & Marsh (2010) https://www.rosemonteis.us/documen

ts/kesner-marsh-2010 

12 Griffith (2017); Griffith, Zheng, & 

Cormier (2018) 

https://doi.org/10.23719/1376690 

13 Occhi, V. T. & Vitule, J. R. S. 

(Unpublished data) 
− 

14 Terui et al. (2018) − 

15 Iowa Department of Natural 

Resources (2013) 

https://data.iowa.gov/Environment/Bi

oNet/e7yf-f5fs 

16 Milardi et al. (2020) − 

17 Levêque, Hougard, Resh, Statzner, & 

Yaméogo (2003) 
− 

18 Pyron, Vaughn, Winston, & Pigg 

(1998) 
− 



19 
 

19 Gido (2017) https://doi.org/10.6073/pasta/150e218

b069074a8ecede85a7406d43f 

20 McLarney, Meador, & Chamblee 

(2013) 

https://www.mainspringconserves.org

/what-we-do/aquatic-monitoring/ 

21 Long Term Resource Monitoring 

Program  (2016) 

https://www.umesc.usgs.gov/data_lib

rary/fisheries/fish1_query.shtml 

22 Matthews & Marsh-Matthews (2017) https://doi.org/10.5061/dryad.2435k 

23 Murray-Darling Basin Authority 

(2018) 

https://data.gov.au/data/dataset/murra

y-darling-basin-fish-and-

macroinvertebrate-survey 

24 Minnesota Pollution Control Agency 

(2018) 

https://www.pca.state.mn.us/water/bi

ological-monitoring-water-minnesota 

25 Montana, Fish, Wildlife & Parks 

(2019) 

http://gis-

mtfwp.opendata.arcgis.com/items/81

92e75218c6460ba97ba3dd0a2fb3a5 

26 U.S. Geological Survey (2019) https://aquatic.biodata.usgs.gov/clear

Criteria.action 

27 U.K. Environmental Agency (2019) https://data.gov.uk/dataset/d129b21c-

9e59-4913-91d2-82faef1862dd/nfpd-

freshwater-fish-survey-relational-

datasets 

28 North Carolina Department of 

Environmental Quality (2018) 

https://deq.nc.gov/about/divisions/wa

ter-resources/water-resources-

data/water-sciences-home-

page/ecosystems-branch/fish-stream-

assessment-program 

29 Fagundes et al. (2015) − 

30 Winston, Taylor, & Pigg (1991); 

Taylor (2010) 

https://onlinelibrary.wiley.com/doi/fu

ll/10.1111/fwb.13211 

31 Mosie & Makati (2018) https://www.gbif.org/dataset/77929c0

a-7506-4b2d-a49d-10fc3312d50d 

32 Office Français de la Biodiversité 

(2019) 

http://www.naiades.eaufrance.fr/acce

s-donnees#/hydrobiologie 

33 Oklahoma Water Resources Board 

(2019) 

http://home-

owrb.opendata.arcgis.com/search?tag

s=fish 

34 Agencia Vasca del Agua (2019) http://www.uragentzia.euskadi.eus/in

formazioa/ubegi/u81-0003341/eu/ 
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35 Ortega, Dias, Petry, Oliveira, & 

Agostinho (2015) 
− 

36 Davenport, S.R. (Unpublished data) − 

37 Dala-Corte, Becker, & Melo (2017) − 

38 Bêche, Connors, Resh, & 

Merenlender (2009) 

https://nature.berkeley.edu/reshlab/ 

39 Toronto and Region Conservation 

Authority (2018) 

https://data.trca.ca/dataset/2018-

watershed-fish-community 

40 U.S. Fish and Wildlife Service 

(2017) 
− 

41 Stefferud, J. A. (Unpublished data) − 

42 Sers (2013) https://www.slu.se/en/departments/aq

uatic-resources1/databases1/database-

for-testfishing-in-streams/ 

43 Benejam, Angermeier, Munné, & 

García-Berthou (2010); Merciai, 

Molons-Sierra, Sabater, & García-

Berthou (2017) 

− 

44 Miyazono & Taylor (2015) https://bioone.org/journals/The-

Southwestern-Naturalist/volume-

60/issue-1/MP-02.1/Long-term-

changes-in-seasonal-fish-assemblage-

dynamics-in-an/10.1894/MP-

02.1.short 

45 Rinne & Miller (2006) − 

46 Van Thuyne et al. (2013); Brosens et 

al. (2015) 

https://ipt.inbo.be/resource?r=vis-

inland-occurrences 
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