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Abstract

The sum of independent, but not necessary identically distributed,
exponential random variables follows hypoexponential distribution. We
study a situation when the rate parameters of the exponential vari-
ables are not all different from each other. We obtain a represen-
tation for the Laplace transform of the hypoexponential distribution
in the case of two repeated parameter values. Applying this decom-
position, we prove a characterization of the exponential distribution.

Keywords: characterizations, exponential distribution, hypoexponential
distribution

MSC Classification: 62G30 , 62E10.

1 Introduction and main results

Sums of exponentially distributed random variables play a central role in many
stochastic models of real-world phenomena. The hypoexponential distribution
arises as a convolution of n independent exponential distributions each with
their own rate λi, the rate of the ith exponential distribution. Many processes
can be divided into sequential phases. If the time periods spent in different
phases are independent but not necessary identically distributed exponential
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variables, then the overall time is hypoexponential. For example, the absorp-
tion time for a finite-state Markov chain follows this distribution. We will write
Xi ∼ Exp(λi), λi > 0, if Xi has density

fi(x) = λie
−λix, x ≥ 0 (exponential distribution).

The distribution of the sum Yn = X1+X2+ . . .+Xn, where λi for i = 1, . . . , n
are not all identical, is called (general) hypoexponential distribution (e.g., [1]
and [2]). Assume that all λi’s are distinct, i.e., λi 6= λj when i 6= j. It is well-
known that under this condition, the density of Yn ∼ HypoE(λ1, λ2, . . . , λn)
is given by (see [3], p.309 and [4], p.40, Problem 12)

fYn
(x) =

n
∑

j=1

ℓjfj(x), x ≥ 0.

Here the weight ℓj is defined as ℓj =
∏n

i=1,i6=j λi(λi−λj)
−1. Thus, the density

of the sum of independent exponential variables with distinct parameters is
linear combination of the individual densities. For example, the density of Y2 is

fY2
(x) =

λ2

λ2 − λ1
f1(x) +

λ1

λ1 − λ2
f2(x).

It is called hypoexponential distribution because its coefficient of variation is
less than one, in contrast to the hyperexponential distribution which has coef-
ficient of variation greater than one and the exponential distribution which
has coefficient of variation equals one. An interesting connection with the
Hirschman-Widder densities is discussed in [5].

Let X1 and X2 be two independent copies of a non-negative random variable
X and E[X ] < ∞. If X ∼ Exp(λ), then X1 +X2/2 ∼ HypoE (λ, 2λ). It was
proved in [6] that this property of the exponential distribution is not shared
by any other continuous distribution, i.e., for λ > 0

X1 +
1

2
X2 ∼ HypoE (λ, 2λ) iff X ∼ Exp(λ).

The key argument in the proof is that the exponential distribution’s LT

Φ(t) =
λ

λ+ t
, t ≥ 0 (1)

is the unique LT solution of the equation

Φ(t)Φ

(

t

2

)

= 2Φ(t)− Φ

(

t

2

)

, t ≥ 0.
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Motivated by this result, in [7] we extended it in two directions: (i) for any
number n ≥ 2 of independent copies X1, X2, . . . , Xn of X , and (ii) for the
linear combination µ1X1 + µ2X2 + . . . + µnXn with arbitrary positive and
distinct coefficients µ1, µ2, . . . , µn. Namely, it was proved in [7], under some
additional assumptions, that for λ > 0

µ1X1 + . . .+ µnXn ∼ HypoE

(

λ

µ1
, . . . ,

λ

µn

)

iff X ∼ Exp(λ). (2)

This characterization was obtained by showing that (1) is the unique solution
of the LT equation

Φ(µ1t)Φ(µ2t) · · ·Φ(µnt) =

n
∑

j=1

ℓ̄jΦ(µjt), t ≥ 0, (3)

where ℓ̄j =
∏n

i=1,i6=j µj(µj − µi)
−1. Thus, the case of rate parameters λi’s

being all different from each other was settled down. The other extreme case
of equal λi’s, which leads to Erlang distribution of the sum, is trivial. Recently
the case of both positive and negative µi’s was considered in [8].

Does a similar characterization hold when the rate parameters λi’s of
HypoE(λ1, λ2, . . . , λn) are not all different? It is our goal in this paper to show
that, at least in one particular case, the answer to this question is positive.

Without the condition that all parameters λi’s are different, the hypoexpo-
nential density has a quite complex form (see [9]). This makes the analysis
of this case difficult. Here, we turn to one intermediate situation, allowing
two repeated values (ties) among λi’s. More precisely, let X1, X2, . . . , Xr+n be
independent copies of X with LT Φ. Consider the sum

Yr,n :=

r
∑

k=1

wXk +

r+n
∑

k=r+1

Xk, w > 0 and w 6= 1.

Due to the independence assumption, the LT of Yr,n equals Φr(wt)Φn(t). If
Φ is given by (1), then Φr(wt)Φn(t) is a product of certain linear fractions.
Therefore, we can decompose it into two sums involving the LT’s of wX and
X ∼ Exp(λ). To formulate the theorem below, we need to introduce the
following sums for any integers n ≥ 1 and m ≥ 0

Sn,m+1 =

n
∑

k=1

Sk,m, Sn,0 ≡ 1.

In particular, Sn,1 = n and Sn,2 = n(n+ 1)/2.
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Theorem 1 If X ∼ Exp(λ), then for any positive integers r and n, and positive real

w 6= 1, the random variable Yr,n has a hypoexponential distribution with LT Φr,n(t),
t ≥ 0, which satisfies

(w − 1)r+n

wn Φr,n(t) = (w − 1)rΦr(wt)

(

w − 1

w

)n

Φn(t) (4)

=

r
∑

i=1

Sn,r−i(−1)r−i(w − 1)iΦi(wt) + (−1)r
n
∑

j=1

Sn−j+1,r−1

(

w − 1

w

)j

Φj(t).

Theorem 1 shows that a necessary condition for X ∼ Exp(λ) is that its LT
Φ is a solution of equation (4). In particular, setting r = 1 in (4), we have

(w − 1)Φ(wt)

(

w − 1

w

)n

Φn(t) = (w − 1)Φ(wt)−

n
∑

i=1

(

w − 1

w

)i

Φi(t). (5)

The next theorem shows, under some additional assumptions, that (5) is both
a necessary and sufficient condition for X ∼ Exp(λ).

Theorem 2 Suppose that X1, X2, . . . , Xn+1, n ≥ 1, are independent copies of a

non-negative and absolutely continuous random variable X. Assume further that X

satisfies Cramér’s condition: there is a number t0 > 0 such that E[etX ] < ∞ for all

t ∈ (−t0, t0). For fixed positive integer n, fixed positive real w 6= 1, and λ > 0

wX1 +

n+1
∑

k=2

Xk ∼ HypoE

(

λ

w
, λ, . . . , λ

)

iff X ∼ Exp(λ). (6)

In Section 2 and Section 3 we present the proofs of Theorem 1 and Theorem 2,
respectively. The last section includes some concluding remarks.

2 Proof of Theorem 1

For simplicity and without loss of generality assume that X ∼ Exp(1). First,
recalling that Φ(t) = (1 + t)−1, we will show that the following linear fraction
decomposition holds for n ≥ 1 and w 6= 1

Φ(wt)Φn(t) =
1

(1 + wt)(1 + t)n
(7)

=

(

w

w − 1

)n
1

1 + wt
−

wn

(w − 1)n+1

n
∑

j=1

(

w − 1

w

)j
1

(1 + t)j
.

If n = 1, then
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1

(1 + wt)(1 + t)
=

w

(w − 1)(1 + wt)
−

1

(w − 1)(1 + t)

=
w

(w − 1)(1 + wt)
−

w

(w − 1)2

(

w − 1

w

)

1

1 + t
.

Assuming that (7) holds for n, we obtain for the (n+ 1)th term

1

(1 + wt)(1 + t)n+1
=

[

1

(1 + wt)(1 + t)n

]

1

1 + t

=

[

(

w

w − 1

)n
1

1 + wt
−

wn

(w − 1)n+1

n
∑

j=1

(

w − 1

w

)j
1

(1 + t)j

]

1

1 + t

=

(

w

w − 1

)n
1

(1 + wt)(1 + t)
−

wn

(w − 1)n+1

n
∑

j=1

(

w − 1

w

)j
1

(1 + t)j+1

=

(

w

w − 1

)n [
w

(w − 1)(1 + wt)
−

1

(w − 1)(1 + t)

]

−
wn+1

(w − 1)n+2

n
∑

j=1

(

w − 1

w

)j+1
1

(1 + t)j+1

=

(

w

w − 1

)n+1
1

1 + wt
−

wn+1

(w − 1)n+2

n+1
∑

j=1

(

w − 1

w

)j
1

(1 + t)j
,

which completes the proof of (7). Multiplying both sides of (7) by
(w− 1)n+1/wn, we obtain (5), i.e., (4) is true for r = 1 and any integer n ≥ 1.

Next, we will prove (4) for any integer r ≥ 1. Assuming (4) holds for r, we will
prove it for r + 1. Indeed,

(w − 1)r+1Φr+1(wt)

(

w − 1

w

)n

Φn(t) (8)

= (w − 1)rΦr(wt)

(

w − 1

w

)n

Φn(t)(w − 1)Φ(wt)

=

(

r
∑

i=1

Sn,r−i(−1)r−i(w − 1)iΦi(wt) + (−1)r
n
∑

j=1

Sn−j+1,r−1

(

w − 1

w

)j

Φj(t)

)

×(w − 1)Φ(wt).
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Applying (5) with r = 1 and n = j, for the second term in the right-hand side,
after multiplying it by (w − 1)Φ(wt), we have

n
∑

j=1

Sn−j+1,r−1

(

w − 1

w

)j

Φj(t)(w − 1)Φ(wt) (9)

=

n
∑

j=1

Sn−j+1,r−1

(

(w − 1)Φ(wt) −

j
∑

i=1

(

w − 1

w

)i

Φi(t)

)

= Sn,r(w − 1)iΦi(wt)−

n
∑

j=1

Sn−j+1,r−1

j
∑

i=1

(

w − 1

w

)i

Φi(t)

= Sn,r(w − 1)iΦi(wt)−

n
∑

i=1

Sn−i+1,r

(

w − 1

w

)i

Φi(t).

Now, (8) and (9) imply (4) and thus the proof is complete.

3 Proof of Theorem 2

3.1 Auxiliary results

We will use the standard notation for the binomial coefficient:
(

k
j

)

when k ≥ j

and 0 when j > k, and (x)r := x(x− 1) . . . (x− r+ 1) for the falling factorial.

Lemma 1 For any integers n ≥ 1 and 1 ≤ j ≤ n, and positive real w 6= 1

(

n

j

)(

w

w − 1

)n

−

n−1
∑

k=1

(

w

w − 1

)k+1(
k

j − 1

)

−
1

w − 1

n−1
∑

k=1

(

w

w − 1

)k (
k

j

)

= 0.

(10)
Proof. The identity (10) is equivalent to

(

n

j

)(

w

w − 1

)n

−

(

w

w − 1

)j
1

(j − 1)!

n−1
∑

k=1

(

w

w − 1

)k−j+1

(k)j−1 (11)

−
1

w − 1

(

w

w − 1

)j
1

j!

n−1
∑

k=1

(

w

w − 1

)k−j

(k)j

=

(

n

j

)(

w

w − 1

)n

−

(

w

w − 1

)j
1

(j − 1)!

dj−1

dxj−1

(

n−1
∑

k=1

xk

)

∣

∣

∣

∣

x=w/w−1

−
1

w − 1

(

w

w − 1

)j
1

j!

dj

dxj

(

n−1
∑

k=1

xk

)

∣

∣

∣

∣

x=w/w−1

.
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Applying Leibniz formula for the mth derivative of a product of functions (e.g.,
[11]) we obtain

xm

m!

dm

dxm

(

n−1
∑

k=1

xk

)

=
xm

m!

dm

dxm

(

xn − x

x− 1

)

(12)

=
xm

m!

m
∑

r=0

(

m

r

)

(xn − x)(m−r)

(

1

x− 1

)(r)

=
xm

m!

m
∑

r=0

(

m

r

)

(−1)r(n)m−rr!
xn−m+r

(x − 1)r+1

= xn
m
∑

r=0

(−1)r
(

n

m− r

)

xr

(x− 1)r+1
.

Setting m = j and x = w/(w − 1), for the last term in (11) we have

1

w − 1

(

w

w − 1

)j
1

j!

dj

dxj

(

n−1
∑

k=1

xk

)

∣

∣

∣

∣

x=w/w−1

(13)

=
1

w − 1
xn

j
∑

r=0

(−1)r
(

n

j − r

)

xr

(x− 1)r+1

∣

∣

∣

∣

x=w/w−1

=

(

w

w − 1

)n j
∑

r=0

(−1)r
(

n

j − r

)

wr

=

(

w

w − 1

)n(
n

j

)

+

(

w

w − 1

)n j
∑

r=1

(−1)r
(

n

j − r

)

wr .

Similarly, for the other term in (11), one can obtain

(

w

w − 1

)j
1

(j − 1)!

dj−1

dxj−1

(

n−1
∑

k=1

xk

)

∣

∣

∣

∣

x=w/w−1

=

(

w

w − 1

)n j
∑

r=1

(−1)r−1

(

n

j − r

)

wr.

(14)
Substituting (13) and (14) into (11), we obtain (10) and complete the proof.

Lemma 2 For any integers n ≥ 2 and j ≥ 1, and positive real w 6= 1

Qj,n(w) := n

(

w

w − 1

)n

−
1

w − 1

n−1
∑

k=0

(

w

w − 1

)k

(wj+k)

{

= 0 j = 1,
6= 0 j ≥ 2.

(15)
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Proof. We have

Qj,n(w) = n

(

w

w − 1

)n

−

n−1
∑

k=0

wk+j

(w − 1)k+1
−

n−1
∑

k=1

kwk

(w − 1)k+1

= n

(

w

w − 1

)n

− wj−1
n
∑

k=0

wk+1

(w − 1)k+1
−

w

(w − 1)2

n−1
∑

k=1

kwk−1

(w − 1)k−1

= n

(

w

w − 1

)n

+ wj−1

(

w −
wn+1

(w − 1)n

)

−
w

(w − 1)2
d

dx

(

x− xn

1− x

)
∣

∣

∣

∣

x=w/(w−1)

= n

(

w

w − 1

)n

−
wj+n

(w − 1)n
− w −

nwn

(w − 1)n
+

wn+1

(w − 1)n

and after some algebra, we obtain

Qj,n(w) =
w(wj−1 − 1)

(w − 1)n
((w − 1)n − wn),

which implies (15).

3.2 Proof of the theorem

If X ∼ Exp(λ), then Y1,n ∼ HypoE
(

w−1λ, λ, . . . , λ
)

by the definition of
hypoexponential distribution. We will proceed with the proof of the opposite
direction in (6). The case n = 1 is a particular case of (2) included in [7]. Let
n ≥ 2. Consider the function Ψ with the following series expansion

Ψ(t) :=
1

Φ(t)
=

∞
∑

j=0

ajt
j , t > 0. (16)

Note that, as a consequence of Cramér’s condition, the above series is uniformly
convergent in a proper neighborhood of t = 0 (see [10], p.240). To prove the
theorem, it is sufficient to show that for some λ > 0

Ψ(t) = 1 + λ−1t, (17)

i.e., the coefficients of the series in (16) are

a0 = 1, a1 = λ−1 > 0, aj = 0, j ≥ 2. (18)

Clearly,

a0 =
1

Φ(0)
= 1. (19)
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Dividing both sides of (5) by (w − 1)n+1w−nΦ(wt)Φn(t) and changing the
summation index, we obtain

H1,n(t) :=

(

w

w − 1

)n

Ψn(t)−

n−1
∑

k=0

1

w − 1
Ψ(wt)

(

w

w − 1

)k

Ψk(t) = 1. (20)

To calculate the coefficients aj , we differentiate both sides of (20) with respect
to t at t = 0. It follows from (20) that

d

dt
H1,n(t)|t=0 =

[

n

(

w

w − 1

)n

−
1

w − 1

n−1
∑

k=0

(

w

w − 1

)k

(w + k)

]

a1

=: c1(n)a1 = 0.

It follows from (15) that c1(n) = 0 and thus there exists λ > 0 such that

a1 = λ−1. (21)

Differentiating (20) twice with respect to t at t = 0, we have

1

2!

d2

dt2
H1,n(t)|t=0

=

[

(

n

2

)(

w

w − 1

)n

−
1

w − 1

n−1
∑

k=0

(

w

w − 1

)k ((
k

1

)

w +

(

k

2

))

]

a21

+

[

(

w

w − 1

)n

−
1

w − 1

n−1
∑

k=0

(

w

w − 1

)k

(w2 + k)

]

a2

=: c1,2(n)a
2
1 + c2(n)a2 = 0.

Lemma 1 and Lemma 2 with j = 2 yield c1,2(n) = 0 and c2(n) 6= 0,
respectively. Therefore,

a2 = 0. (22)

It remains to prove that aj = 0 for all j ≥ 3. We will need the general Leibniz
rule for differentiating a product of functions. Denote by v(j)(x) the jth deriva-
tive of v(x); v(0)(x) := v(x). Define a multi-index set ααα = (α1, α2, . . . , αn)
as a n-tuple of non-negative integers. Denote ‖ααα‖ = α1 + α2 + . . . + αn

and Λj := {ααα : ‖ααα‖ = j}. The jth derivative (when exists) of the product
v1(t)v2(t) · · · vn(t) is given by (e.g. [11])

dj

dtj

n
∏

i=1

vi(t) =
∑

Λj

(

j!

α1!α2! · · ·αn!

n
∏

i=1

v
(αi)
i (t)

)

. (23)
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Let us write Λj as union of three disjoint subsets as follows:

Λj = Λ′
j ∪ Λ′′

j ∪ Λ′′′
j ,

where

Λ′
j = {‖ααα‖ = j : only one of {α1, α2, . . . , αn} equals j (others are zeros)}

Λ′′
j = {‖ααα‖ = j : exactly j of {α1, α2, . . . , αn} equal 1 (others are zeros)}

Λ′′′
j = {‖ααα‖ = j : there is an index αi with 2 ≤ αi < j}.

Notice that by definition, Λ′′
j is not empty only if j ≤ n.

We will proceed by induction with respect to the index j ≥ 2 of aj . For
j = 2 we have already proved that a2 = 0. Assuming ai = 0 for 2 ≤ i ≤ j − 1,
we will show that aj = 0. Since a0 = 1, applying (23), we obtain

1

j!

dj

dtj
Ψn(t)|t=0 =

∑

Λj

(

n
∏

i=1

aαi

)

=
∑

Λ′

j

(·) +
∑

Λ′′

j

(·) +
∑

Λ′′′

j

(·)

=

(

n

1

)

aja
n−1
0 +

(

n

j

)

aj1a
n−j
0

= naj +

(

n

j

)

aj1.

Notice that
∑

Λ′′′

j
(·) = 0 by the induction assumption. Also,

1

j!

dj

dtj
Ψ(wt)Ψk(t)|t=0 =

∑

Λj

(

wαk+1aαk+1

k
∏

i=1

aαi

)

=
∑

Λ′

(·) +
∑

Λ′′

(·) +
∑

Λ′′′

(·)

=

(

wjak0aj +

(

k

1

)

aja
k−1
0 a0

)

+

((

k

j − 1

)

aj−1
1 ak−j+1

0 wa1 +

(

k

j

)

aj1a
k−j
0 a0

)

=

((

k

j − 1

)

w +

(

k

j

))

aj1 +
(

wj + k
)

aj .

Therefore, grouping the coefficients in front of aj1 and aj , we write

1

j!

dj

dtj
H1,n(t)|t=0

=

[

(

n

j

)(

w

w − 1

)n

−
1

w − 1

n−1
∑

k=0

(

w

w − 1

)k ((
k

j − 1

)

w +

(

k

j

))

]

aj1

+

[

n

(

w

w − 1

)n

−
1

w − 1

n−1
∑

k=0

(

w

w − 1

)k

(wj + k)

]

aj

=: c1,j(n)a
j
1 + cj(n)aj = 0.
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It follows from Lemma 1 that c1,j(n) = 0 and hence

c1,j(n)a
j
1 + cj(n)aj = cj(n)aj = 0.

Finally, according to Lemma 2, cj(n) 6= 0 when j ≥ 2, which implies

aj = 0, j ≥ 2. (24)

Now, (19), (21), (22), and (24) lead to (18), which completes the proof.

4 Concluding remarks

In this paper we continue the study of the relation between the exponential
and hypoexponential distributions, initiated in [6] and extended in [7]. The
obtained characterization complements those in the above papers. Here we deal
with a situation where the rate parameters λi’s in a convolution of exponential
variables are not all different from each other. First, we obtain a representation
for the LT of the hypoexponential distribution in the case of two coinciding
parameters’ values. Applying this decomposition, we prove a characterization
of the exponential distribution. The obtained result is of interest itself, how-
ever it can also serve as a basis for further investigations of more complex
compositions of the rate parameters. In particular, the question whether or
not equation (4) with r > 1 is a sufficient condition for Φ to be a LT of the
exponential distribution is still open.
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