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Jason G. Parsons3, and Jorge L. Gardea-Torresdey1,2,*

1Department of Chemistry, The University of Texas at El Paso; 500 W University Ave., El Paso 
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3Department of Chemistry, The University of Texas-Pan American 1201 W University Drive, 
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4Department of Physics, The University of Texas at El Paso; 500 W University Ave., El Paso TX 
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Abstract

The sorption of selenite (SeO3
2−) and selenate (SeO4

2−) onto Fe3O4 nanomaterials produced by 

non microwave-assisted or microwave-assisted synthetic techniques was investigated through use 

of the batch technique. The phase of both synthetic nanomaterials was determined to be magnetite 

by X-ray diffraction. The average grain sizes of non microwave-assisted and microwave-assisted 

synthetic Fe3O4 were determined to be 27 and 25 nm, respectively through use of the Scherrer's 

equation. Sorption of selenite was pH independent in the pH range of 2-6, while sorption of 

selenate decreased at pH 5 and 6. The addition of Cl− had no significant effect on selenite or 

selenate binding, while the addition of NO3
− only affected selenate binding to the microwave 

assisted Fe3O4. A decrease of selenate binding to both synthetic particles was observed after the 

addition of SO4
2− while selenite binding was not affected. The addition of PO4

3− beginning at 

concentrations of 0.1 ppm had the most prominent effect on the binding of both selenite and 

selenate. The capacities of binding, determined through the use of Langmuir isotherm, were found 

to be 1923 and 1428 mg Se/kg of non microwave-assisted Fe3O4 and 2380 and 2369 mg Se/kg of 

microwave-assisted Fe3O4 for selenite and selenate, respectively.
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1. Introduction

The narrow range between selenium deficiency and toxicity in humans is of concern today. 

Deficiency occurs when daily consumption is less than 0.1 mg Se/kg of body weight, while 

toxicity occurs when consumption per day is above 1 mg Se/kg of body weight [1]. As 

drinking water is a primary source in which selenium can enter the human body, the U. S. 

Environmental Protection Agency has set the maximum contaminant level in drinking water 

to be 0.05 mg Se/L, [2-3]. Wild animals are also at risk when high concentrations of 

selenium are present in water systems. It has been reported that in waterfowl, high levels of 

selenium are embryotoxic and teratogenic [4]. In water, selenium exists predominately as 

the inorganic forms selenite (SeO3
2−, where the Se is present as the Se4+ ion) and selenate 

(SeO4
2−, where the Se is present as the Se6+ ion) [5].

There has been a variety of treatment technologies developed for the remediation of both 

selenium oxoanions in water including bacterial reduction, membrane filtration, chemical 

reduction, reverse osmosis, and solar ponds [6-8]. However, these treatment technologies are 

not cost effective. An alternative treatment technique that has been gaining increasing 

attention in study over the past decade is adsorption. Adsorbents such as sulphuric acid-

treated peanut shell, hydrocalumite, ettringite, AlPO4, biopolymeric materials, aluminum-

based water treatment residuals, hardened cement paste, cement minerals, aluminum oxides, 

iron oxyhydroxides, iron coated sand, and zero valent iron have been tested for the removal 

of selenium [8-17]. The use of magnetic materials as adsorbents may emerge as an even 

more efficient form of treatment technology. Magnetic materials are promising materials for 

adsorption because they can easily be removed from aqueous effluents by a simple process 

known as magnetic separation [18]. These materials are also useful because they produce no 

further contaminants such as flocculants and are capable of treating large amount of 

wastewater within a short amount of time [19].

The iron oxide magnetite (Fe3O4) is an adsorbent with magnetic properties. A study by 

Martinez et al. [20] has shown that a naturally occurring magnetite with a particle size <5 

μm has been capable of binding selenite and selenate at acidic pH. Lopez de Arroyabe Loyo 

et al. [21] reported rapid selenite binding to ultra small Fe3O4 and Fe/Fe3C particles, but did 

not test the capacity of the material nor its ability for selenate adsorption. These studies 

indicate that magnetite may be a promising adsorbent for selenium removal. However, many 

previous studies for selenium oxoanion removal do not investigate the ability of the 

adsorbent to remove both selenite and selenate. Also, the effects of naturally occurring 

potential competitive anions Cl−, NO3
−, SO4

2−, or PO4
3− on selenium oxoanion removal 

have not been thoroughly investigated.

In this research, the magnetic iron oxide Fe3O4 was synthesized by both non microwave-

assisted and microwave-assisted synthetic techniques. The nanomaterials produced by both 

of these techniques were determined to have the crystal structure of magnetite. The Fe3O4 

nanomaterials’ adsorption capacities for selenite and selenate were tested in the pH range of 

2 through 6 and as a function of time. The effects of the addition of individual competitive 

anions Cl−, NO3
−, SO4

2−, or PO4
3− added to solution in a range of 0.1 to 100 ppm were also 

investigated. Finally, the capacities of both synthetic nanomaterials for selenite or selenate 
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binding were studied using selenium concentrations of 0.25 through 10 ppm and fitted with 

Langmuir isotherms.

2. Methodology

2.1. Solution preparation

Reagent grade Na2SeO3 (Aldrich), Na2SeO4 (Alfa Aesar), NaCl (Aldrich), Mg(NO3)2·6H2O 

(Mallinckrodt), K2SO4 (J.T. Backer), and Na3PO4·12H2O (EM Science) chemicals were 

dissolved in Millipore (18 mΩ) water to obtain stock solutions of selenite, selenate, chloride, 

nitrate, sulfate and phosphate, respectively. The prepared stock solutions were diluted to 

proper concentrations for the following research experiments.

2.2. Synthesis of the iron oxide nanomaterial

For the synthesis of the iron oxide nanomaterials, two separate 1.0 L solutions of 30 mM 

Fe(II) (from FeCl2, EM Science) were prepared. Both solutions were slowly titrated 

separately for 1 h with 90 mL of 1.0 M NaOH solution (from NaOH, VWR International 

West Chester, Pennsylvania) to obtain a ratio of 1:3 ratio of Fe+:OH−. The slow rate of 

titration was to prevent the precipitation of Fe(OH)3. After completion of the titration, one 

of the two titrated solutions was heated to 90° C for 1 h on a heating plate and resulted in the 

non microwave-assisted Fe3O4 nanomaterial. The other titrated solution was transferred into 

sealed vessels and placed in a Perkin Elmer Mulitwave 2000 system (Shelton CT, USA). 

The sealed vessels were heated to a temperature of 90° C and held constant for 25 min at a 

pressure of 75 bars and resulted in the microwave-assisted Fe3O4 nanomaterial. Both sets of 

prepared nanomaterials were cooled to room temperature and centrifuged at 3000 rpm 

(Fisher Scientific 8K, Houston, TX) for 5 min after each of the techniques were completed. 

To remove any byproducts that may have been generated during the synthesis, the 

nanomaterials were then washed twice with deionized water (DI). Subsequently, the 

nanomaterials were then dried in a VWR 1305U oven (VWR International, West Chester, 

PA) at 100° C for 24 h. Lastly, the nanomaterials were homogenized into a powder using a 

mortar and pestle for both analysis and experimental use.

2.3. XRD characterization

Powder x-ray diffraction (XRD) data were collected from both synthetic nanomaterials 

using a Siemens D5000 diffractometer (Bruker AXS GmbH, Germany). Samples were 

placed on a platinum holder and XRD patterns were collected at room temperature in the 

reflection geometry within a 2θ angular range between 25 and 60°. A step of 0.007° and 

counting time of 8 s / step were used. Both XRD datasets were first analyzed using the 

FULLPROF suite of programs and crystallographic data from the literature to determine the 

phases present in each nanomaterial [22]. Subsequently, Gaussian fits of three diffraction 

peaks for each XRD pattern were used to determine the average grain size of each 

nanomaterial via Scherrer's formalism.

2.4. Binding pH profile

In these studies, all experiments were performed at room temperature. The binding of either 

selenite or selenate to both synthetically prepared Fe3O4 nanomaterials were determined 
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over a pH range of 2 to 6. The pH of the 100 ppb selenite or selenate solutions were adjusted 

to pH 2, 3, 4, 5, or 6 using dilute hydrochloric acid or sodium hydroxide prior to reactions. 

The reactions were carried out in 5 mL polyethylene reaction tubes containing 10 mg of 

either nanomaterial with a 4 mL aliquot of 100 ppb of selenite or selenate at each pH. The 

reaction tubes were then rocked (Specimix, Thermo Scientific) and allowed to equilibrate 

for 60 min at room temperature. The samples were than centrifuged at 3000 rpm for 7 min 

and the resulting supernatants were collected for analysis in dynamic reaction cell- 

inductively-coupled plasma-mass spectrometer (DRC-ICP-MS) ELAN DRCII (Perkin 

Elmer, Shelton, CT) to determine the amount of selenium oxoanion removed. In addition, 

control samples containing only pH adjusted selenite or selenate oxoanions were treated the 

same as the samples to determine the effects of the methodology and polyethylene reaction 

tubes had on the selenium oxoanion binding. All experiments in this study were conducted 

in triplicate for statistical purposes.

2.5. Sorption kinetic study

The time required for either selenite or selenate binding to occur to each of the 

nanomaterials was determined using 100 ppb of selenite or selenate adjusted to pH 4 and 

reacted with 10 mg of nanomaterial at time intervals ranging from 5-60 min. The pH of 4 

was chosen for these experiments because the nanomaterials are both stable at this pH and 

there was no significant change in binding above this pH level found in the previous study. 

The pH adjustment was carried out as described in the pH binding study. A 4 mL aliquot of 

either 100 ppb selenite or selenate solution was added to 10 mg of either non microwave-

assisted or microwave-assisted nanomaterial and was allowed to equilibrate. The binding 

time intervals investigated were 5, 10, 15, 20, 30, and 60 min. The samples were centrifuged 

and the supernatant collected for analysis using DRC-ICP-MS.

2.6. Interference studies

The possible competition for active adsorption sites on both synthetic nanomaterials in the 

presence of varying concentrations of Cl−, NO3
−, SO4

2−, or PO4
3− was investigated at pH 4. 

A 4 mL aliquot containing 100 ppb of selenite or selenate solution and either 0.1, 1, 10, or 

100 ppm of the possible interfering ion of Cl−, NO3
−, SO4

2−, or PO4
3− was reacted with 

each synthetic nanomaterial for 1 h. After reaction time was completed, the samples were 

centrifuged and the supernatant was collected for DRC-ICP-MS analysis.

2.7. Adsorption isotherms

The selenium oxoanion binding capacities of both synthetic Fe3O4 nanomaterials was 

investigated using varying concentrations of selenite or selenate in the range of 0.25 to 10 

ppm. For these reactions, a 4 mL aliquot of either selenite or selenate at concentrations of 

0.25, 0.5, 1, 5, or 10 ppm adjusted to pH 4 were reacted on a rocker with 10 mg of either 

synthetic nanomaterial for a period of 15 min; which determined as the amount of time 

required for the binding of Se oxoanions to the Fe3O4 to occur. The reactions were 

performed in triplicate with control samples as mentioned previously. The samples were 

centrifuged after the reaction time was completed and the supernatant was collected for 

analysis by DRC-ICP-MS. The obtained data was then fitted to the Langmuir isotherm 
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equation shown below, where Ce is the concentration at equilibrium of Se(IV/VI), Qe is the 

amount of Se(IV/VI) adsorbed to the nanomaterial at equilibrium, and Qm and b are 

constants based on ionic strength and pH.

2.8. DRC-ICP-MS analysis

Selenium quantification of the supernatants obtained from the experiments described above 

was determined by analysis using a Perkin Elmer Elan DRC II ICP-MS with ELAN 

software. Table 1 describes the operational parameters of the DRC-ICP-MS for selenium 

analysis. To reduce interferences on the selenium ions during analysis, the samples were ran 

in dynamic reaction cell (DRC) mode using oxygen gas. The Se-O m/z 96 was the chosen 

ion used for analysis since Se-O production is favored under these conditions. Analysis of 

selenium was obtained based on calibration curves with a correlation coefficient (r2) of 0.99 

or better.

2.9. Statistical analysis

The obtained data of selenite and selenate binding percentages to both nanomaterials 

collected from pH, time dependence, and competitive anion studies were analyzed with one-

way analysis of variance (ANOVA) using SPSS software, version 12.0 (SPSS, Chicago, IL). 

The Tukey-HSD (honestly significant difference) test was used to determine significant 

differences between treatments for each of the aforementioned studies. References to 

significant differences between treatment means were based on a probability of p <0.05, 

unless otherwise stated.

3. Results and Discussion

3.1. X-ray diffraction characterization of nanomaterial

Characterization of the non-microwave-assisted and microwave-assisted nanomaterials by 

XRD revealed that both had the crystal structure magnetite (Fe3O4). Indeed, as shown by the 

data in Fig. 1, the XRD patterns exhibit the (220), (311), (400), (422), and (511) Bragg 

reflections corresponding to the known room temperature phase of magnetite [22]. The other 

two diffraction peaks present in each pattern are the (111) and (200) reflections from the 

platinum sample holder. No other peaks are observed, which indicates the impurity-free 

nature of the Fe3O4nanomaterials used in this study. Both synthetic techniques employed 

here are advantageous due to their simplicity and cost effectiveness compared to other 

previously reported preparation techniques that involve many steps as well as special 

chemicals and procedures. Although the two XRD datasets seem very similar upon mere 

visual inspection, careful Scherrer analysis of the full-width-at-half-maximum (FWHM) 

carried out on three different peaks in each pattern shows slightly different average grain 

sizes: 27 +/− 0.48 nm for the non-microwave-assisted and 25 +/− 0.95 nm for the 

microwave-assisted synthetic nanomaterials. This is not insignificant; this difference leads to 

nanoparticles in the non-microwave-assisted material whose individual volume is ~25% 
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larger, and whose surface area (for a given sample volume) is ~10% smaller than that of 

their microwave-assisted counterparts.

3.2. pH binding studies

The sorption of selenite and selenate to both sets of synthetic nanomaterials can be seen in 

Fig. 2. The binding of selenite to both synthetic Fe3O4 nanomaterials was practically pH 

independent as shown in Fig. 2(A-B). The sorption of selenate had the highest binding at pH 

2 to 4 for both synthetic types of Fe3O4. A decrease in selenate binding occurred at pH 5 for 

both particles and a more significant decrease was seen at pH 6. The decrease was higher for 

the non-microwave assisted synthesized nanomaterial (Fig. 2A), which might be due to the 

particle size. The decrease in binding could be due to the change in surface charge at higher 

pH values. It has been reported magnetites have a zero-point charge which mostly occurs in 

the pH range from 5-7 [23]. When the pH increases the surface of the particle will become 

less positively charged resulting in a lower binding affinity for anion binding. It has also 

been shown that selenate has a lower binding affinity to iron oxide surfaces than selenite 

[24]. Martinez et al. [20] have shown that at pH 6 the sorption of Se(IV) on magnetite is 

about 20% and the sorption of Se(VI) is about 1%. At pH 8 the sorption of Se(IV) is about 

10% while the sorption of Se(VI) is close to 0. This difference in binding affinity between 

selenite and selenate could be why selenite has a higher binding percentage at pH 6 than that 

of selenate to both nanomaterials. The lower binding affinity of selenate in addition to the 

change of surface charge at increasing pH values, could explain the decrease in binding at 

pH 5 and 6. The remaining experiments were conducted at a pH of 4 for maximum binding 

of selenate to the nano-magnetite materials. It has also been shown that selenate has a lower 

binding affinity to iron oxide surfaces than selenite [25].

3.3. Sorption kinetic studies

The binding of selenium oxoanions to non microwave-assisted and microwave-assisted 

synthetic Fe3O4 nanomaterials as a function of time is shown in Fig. 3(A-B). Statistical 

analysis with one-way ANOVA determined that there was no significant difference in the 

binding of selenite or selenate to either non-microwave-assisted Fig. 3A) or microwave-

assisted (Fig. 3B) synthetic Fe3O4 in a time range of 5 to 60 min. Su and Suarez [26] have 

shown that selenite and selenate binding equilibrates within 25 min of contact time to iron 

oxides and goethitite. It is interesting to note the rapid binding of selenite to synthetic Fe3O4 

with average particle size of 4 nm within 10 min of contact time has been shown by Lopez 

de Arroyabe Loyo et al. [21]. Martinez et al. [20] reported that both selenite and selenate 

binding to a natural magnetite with a particle size <5 μm took over 24 h to reach maximum 

binding capacity. This observation suggests that even though the synthetically produced 

nanomaterials used in this study are almost 7 times larger than those produced and used by 

Lopez de Arroyabe Loyo et al. [21], the fact these particles are at nanoscale produces faster 

binding times than micrometer sized particles. The Fe3O4 nanomaterial is non-porous so the 

smaller the particle, the larger surface area with more available binding sites for selenium 

oxoanion binding to occur. This suggests the binding is occurring on the surface without the 

occurrence of a redox reaction. This would indicate the oxidation states of both selenite and 

selenate will remain the same. Our XAS results (not shown) corroborated previous report by 

Lopez de Arroyabe Loyo et al. [21] that have shown by extended X-ray absorption fine 
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structure (EXAFS) no shift of backscattering contribution in the coordination shell of Se and 

Fe between 2.3 to 2.6 Ǻ.

3.4. Competitive anion studies

The results of the competition study on selenite and selenate to both non microwave-assisted 

and microwave-assisted synthesized nanomaterials in the presence of varying concentrations 

of Cl−, NO3
−, SO4

2−, or PO4
3− added can be seen in Fig. 4-7. As shown in Fig. 4(A-B), the 

addition of Cl− at concentrations varying from 0.1 to 100 ppm had no significant effect on 

the percentage of both selenite and selenate binding to either Fe3O4 nanomaterial. This 

indicates the Cl− ion has a low binding affinity for Fe3O4. A similar observation of Cl− not 

acting as a competitive anion for the iron oxide surface was reported by Jeong et al. [27]. 

These similarities in results indicate that chloride has a low binding affinity for iron oxide 

surface and complexes formed between chloride and iron oxide surface are weaker than 

those between iron oxide and selenium.

While the addition of NO3
− did not have an effect on selenate binding to the non 

microwave-assisted synthetic Fe3O4 (Fig. 5A), the anion did lower selenate binding by 30% 

on the microwave-assisted synthetic Fe3O4 material. However, the inclusion of NO3
− did 

not affect the binding of selenite to either of the two synthetically different Fe3O4 as can be 

seen in Fig. 5(B). This non-competitive effect of the nitrite anion could be behaving the 

same as the chloride anion. One possible explanation for the decrease in selenate binding to 

only the microwave-assisted synthetic Fe3O4 material is the size of the material. Dhillon and 

Dhillon [28] have stated that competitive effect of sorbed anions could occur either by 

physical competition for binding sites or through electrostatic competition results from a 

change in electrostatic potential. As explained in the X-ray diffraction analysis of the two 

different synthetically produced nanomaterials, the microwave-assisted synthetic technique 

resulted in a smaller average particle size of Fe3O4 than that of the non microwave-assisted 

synthetic technique. A smaller particle size would result in larger surface area and a higher 

number of binding sites. This greater number of binding sites along with selenate having a 

lower binding affinity than observed for selenite could allow the NO3
− to compete to a 

higher extent with the selenate oxoanion present in solution.

The effects of the addition of SO4
2− on selenite or selenate binding to the two synthetic 

nanomaterials can be seen in Fig. 6. Selenite did not experience a significant decrease in 

binding in the presence of SO4
2−in a range of 0.1-100 ppm which is shown in Fig. 6B. Goh 

and Lim [29] and Zhang et al. [30] have shown similar results with selenite binding being 

hardly affected by addition of SO4
2−oxoanion to iron oxide containing tropical sand and 

iron-coated granular activated carbons (GAC), respectively. There was a decrease of 

selenate binding to both microwave-assisted and non microwave-assisted synthesized 

nanomaterials beginning at 1 and 10 ppm, respectively. In the presence of 1 ppm sulfate, the 

molar ratio of selenate to sulfate is 1 SeO4
2− : 14.9 SO4

2−. The non microwave-assisted 

material still had around 100 % binding while the microwave assisted material had 60% 

binding. This indicates both Fe3O4 materials have a high affinity for selenate. The 

differences in binding percentages between the microwave-assisted and non microwave-

assisted materials are occurring due to the differences in surface area generated by the two 
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synthetic techniques. At 10 ppm of sulfate present, the molar ratio of selenate to sulfate is 1 

SeO4
2− : 149 SO4

2−. Again, at these ratios selenate binding decreased for both Fe3O4 

particles to 15 and 80% binding for non microwave-assisted and microwave-assisted 

synthetic Fe3O4, respectively. When in the presence of 100 ppm sulfate the molar ratio of 

selenate to sulfate was SeO4
2−: 1488 SO4

2−. Even though the binding percentages are 6% 

and 20% for non microwave-assisted and microwave-assisted nanomaterials, respectively, 

binding occurring at this molar ratio is still indicative of the affinity for selenate to Fe3O4 

materials. It is known the chemistry of selenate and sulfate is quite similar. This similarity in 

chemistry could be the explanation of the decreased sorption of selenate in the presence of 

sulfate. Zhang et al. [30] described this effect by explaining both anions tend to form weak 

bonds with surface sites which could be more easily released. The smaller particle size of 

the microwave-assisted synthesized Fe3O4, as described above, could explain why binding 

started to decrease at a lower concentration of SO4
2−(1 ppm) as opposed to the non 

microwave-assisted synthetic Fe3O4 binding (10 ppm).

The competitive effect of the addition of PO4
3− anion on selenite and selenate binding to 

both synthetic Fe3O4 nanomaterials can be seen in Fig. 7. The addition of PO4
3− had a 

greater affect on the binding of selenate to the synthetic Fe3O4 nanomaterials than any other 

anion investigated in this study. A decrease in selenite binding to microwave-assisted and 

non microwave-assisted synthetic Fe3O4 nanomaterials was observed to begin at the 

introduction of 10 and 100 ppm of PO4
3− respectively. In the presence of 100 ppm PO4

3−, 

the molar ratio of selenite to phosphate is 1 SeO3
2−: 1000 PO4

3−. Even at this large molar 

ratio of sulfate to selenite ions present, there is still selenite binding occurring to the non 

microwave-assisted synthetic material. This would indicate the effect was due to the 

difference in molar ratios and competitive effect rather than that of a mono, bi, or tri-anion 

effect. In addition, the phosphate ion has an additional oxygen, therefore the selenite affinity 

and size make it easier for it to bind and take up less space on the surface of the material.

A decrease in binding of selenate to microwave-assisted synthetic Fe3O4 was observed to 

occur not only with a lower concentration of PO4
3− introduced, but at a greater extent than 

that of the non microwave-assisted synthetic Fe3O4 nanomaterial. These trends have been 

observed by Goh and Lim [29] and Zhang et al. [30] in tropical sand containing iron oxides 

and iron-coated GAC, respectively. As explained previously, the differences in the selenium 

binding percentages between the non microwave-assisted and microwave-assisted 

nanomaterials could be a result of the smaller particle size of the microwave-assisted 

synthetic Fe3O4 nanomaterial. A significant decrease of less than 1% and 0% selenate 

binding to non microwave-assisted synthetic and microwave-assisted synthetic Fe3O4, 

respectively was observed to occur at the addition of 100 ppm of PO4
3−. The inclusion of 

100 ppm PO4
3− in solution results in a molar ratio of 1 SeO4

2− : 1505 PO4
3−. There had to 

be 1505 times the concentration of phosphate present to for selenate binding to decrease to 

almost 0%. It has been described in the literature that the PO4
3− 4oxoanion is very 

adsorptive to the surfaces of iron oxides in low concentration range [27].
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3.5. Adsorption isotherms

The binding capacities of both the non microwave-assisted and microwave-assisted 

synthesized Fe3O4 nanomaterials were based on the fitting of selenite and selenate sorption 

studies to Langmuir isotherms equation as seen in Figures 8 and 9. The capacities as a result 

of the fitting are detailed in Table 2. The non microwave-assisted synthesized Fe3O4 

nanomaterial had a capacity of 1923 and 1428 mg Se/kg of Fe3O4 for selenite and selenate, 

respectively. The microwave-assisted synthetic nanomaterial was determined to have a 

higher capacity for both selenite and selenate of 2380 and 2369 mg Se/kg of Fe3O4, 

respectively than that of the non-microwave assisted nanomaterial. The higher capacity of 

the microwave-assisted material could be the result of its smaller size than that of the non 

microwave-assisted synthetic material. The average grain size of the microwave assisted 

nanoparticles was approximately 25 nm and that of the open vessel was 27 nm; this would 

account for the small sorption observed in the capacities (approximately 7-8 % difference in 

the diameter which results in approximately a 20% difference in the surface area of the 

particles).

As explained earlier, the smaller particle would result in a greater number of surface sites for 

selenium oxoanion binding to occur. This increase would allow for a higher capacity of the 

nanomaterial. Goh and Lim [29] reported 145 mg Se/ kg of tropical soil for selenite removal 

which is a much lower adsorption value for selenite than the synthetic magnetite produced in 

this study. Naturally occurring magnetite was also observed to have lower capacities for 

both selenite and selenate of 352.95 and 484.63 mg Se/ kg of magnetite [20]. This 

observation in the differences in capacities of naturally occurring and the synthetic 

magnetite prepared for these studies could be explained by the size differences of the 

magnetite as stated previously. The reported capacities of selenite and selenate to iron-

coated GAC adsorbents at room temperature were 637 and 220 mg Se/ g of Fe-GAC, 

respectively were also lower than the capacities reported in this study [30-31].

4. Conclusions

The results of this work show that both non-microwave assisted and microwave-assisted 

synthesized Fe3O4 are capable of binding both selenite and selenate oxoanions. The binding 

of both oxoanions to the nanomaterial had an optimum pH of 4 and reached equilibrium 

within 5 min of contact time. These results are consistent with the anion binding to materials 

with similar surface properties. The anions SO4
2− and PO4

3− affected the binding of both 

oxoanions to the greatest extent. The non microwave-assisted synthesized Fe3O4 

nanomaterial had a capacity of 1923 and 1428 mg Se/kg of Fe3O4 for selenite and selenate, 

respectively. The microwave-assisted synthetic material was determined to have a higher 

capacity for both selenite and selenate of 2380 and 2369 mg/kg of Fe3O4, respectively than 

that of the non microwave-assisted material. These results suggest that both synthetic 

materials can be used to remove selenium from contaminated waters. Also, synthetic 

methods used in this study require less steps, special chemicals, and procedures than 

previously reported preparation techniques. Additionally, the removal time and capacities of 

both Se(IV) and Se(VI) using both synthetic materials tested were faster and higher than 

previous materials tested. However, the materials and technique investigated in this study 
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would experience limitations in the presence of competitive anions. Further studies would 

need to be performed to determine efficiency of these materials in a larger system for the 

remediation of Se(IV) and Se(VI) from contaminated water.
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Fig. 1. 
X-ray diffraction pattern of Fe3O4 from titration of iron(II) chloride with sodium hydroxide. 

(A) non microwave-assisted synthesis. (B) microwave-assisted synthesis.
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Fig. 2. 
Percentage bound of selenite and selenate at a concentration of 100 ppb to the nanomaterial 

under varying pH conditions ranging from pH 2 to 6. (A) non microwave-assisted Fe3O4. 

(B) microwave-assisted Fe3O4. Error bars represent Standard Error of three replicate. * 

represents statistical differences at p ≤ 0.05.
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Fig. 3. 
Time dependence of percentage bound of selenite and selenate to the nanomaterial at a pH 

of 4. (A) non microwave-assisted Fe3O4. (B) microwave-assisted Fe3O4. Error bars 

represent Standard Error of three replicate.
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Fig. 4. 
The effects of the Cl− ion ranging in concentration from 0.1-100 ppm on the sorption of 

selenite and selenate to non microwave-assisted and microwave-assisted Fe3O4. (A) 

Selenate.

(B) Selenite. Error bars represent Standard Error of three replicate.
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Fig. 5. 
The effects of the NO3

− ion ranging in concentration from 0.1-100 ppm on the sorption of 

selenite and selenate to non microwave-assisted and microwave-assisted Fe3O4. (A) 

Selenate. (B) Selenite. Error bars represent Standard Error of three replicate. * represents 

statistical differences at p ≤ 0.05.
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Fig. 6. 
The effects of the SO4

2−ion ranging in concentration from 0.1-100 ppm on the sorption of 

selenite and selenate to non microwave-assisted and microwave-assisted Fe3O4. (A) 

Selenate. (B) Selenite. Error bars represent Standard Error of three replicate. * represents 

statistical differences at p ≤ 0.05.
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Fig. 7. 
The effects of the PO4

3− ion ranging in concentration from 0.1-100 ppm on the sorption of 

selenite and selenate to non microwave-assisted and microwave-assisted Fe3O4. (A) 

Selenate.

(B) Selenite. Error bars represent Standard Error of three replicate. * represents statistical 

differences at p ≤ 0.05.
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Fig. 8. 
The Langmuir isotherm fittings of both selenite and selenate binding onto non microwave-

assisted Fe3O4 nanomaterial. (A) Selenite. (B) Selenate.
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Fig. 9. 
The Langmuir isotherm fittings for both selenite and selenate binding onto microwave-

assisted Fe3O4 nanomaterial. (A) Selenite. (B) Selenate.
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Table 1

ICP-MS settings used for the determination of Se concentration in collected supernatants upon reaction with 

either non microwave-assisted or microwave-assisted synthesized nanomaterial.

Parameter Setting

RF Power 1200W

Nebulizer Meinhard Type A Quartz

Nebulizer flow 0.95 L/min

Spray chamber Glass cyclonic

Injector Quartz

Plasma flow (Ar) 15 L/min

CeO/Ce <5%

Ba+/Ba++ <5%

O2 0.85 mL/min
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Table 2

Capacities based on Langmuir isotherm experiments for both selenite and selenate binding to non microwave-

assisted and microwave-assisted Fe3O4 nanomaterials.

Nanomaterial Adsorbate Qe (mg Se/kg of Fe3O4) R2

Non microwave-assisted Fe3O4 SeO3
2− 1923±119.877 1.0

SeO4
2− 1428±71.4 0.997

Microwave-assisted Fe3O4 SeO3
2− 2380±7.14 0.990

SeO4
2 2369±16.58 1.0
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