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To appear, Real Analysis Exchange

OPTIMAL QUANTIZATION FOR MIXED DISTRIBUTIONS

MRINAL KANTI ROYCHOWDHURY

Abstract. The basic goal of quantization for probability distribution is to reduce the number
of values, which is typically uncountable, describing a probability distribution to some finite
set and thus approximation of a continuous probability distribution by a discrete distribution.
Mixed distributions are an exciting new area for optimal quantization. In this paper, we have
determined the optimal sets of n-means, the nth quantization errors, and the quantization
dimensions of different mixed distributions. Besides, we have discussed whether the quantization
coefficients for the mixed distributions exist. The results in this paper will give a motivation
and insight into more general problems in quantization for mixed distributions.

1. Introduction

The most common form of quantization is rounding-off. Its purpose is to reduce the cardinality
of the representation space, in particular, when the input data is real-valued. It has broad
application in engineering and technology (see [GG,GN,Z]). Let Rd denote the d-dimensional
Euclidean space equipped with the Euclidean norm ‖ · ‖, and let P be a Borel probability
measure on R

d where d ≥ 1. Then, the nth quantization error for P , with respect to the
squared Euclidean distance, is defined by

Vn := Vn(P ) = inf
{

V (P ;α) : α ⊂ R
d, 1 ≤ card(α) ≤ n

}

,

where V (P ;α) =
∫

mina∈α ‖x− a‖2dP (x) represents the distortion error due to the set α with
respect to the probability distribution P . A set α ⊂ R

d is called an optimal set of n-means for
P if Vn(P ) = V (P ;α). Of course, such a set α exists if the mean squared error or the expected
squared Euclidean distance

∫

‖x‖2dP (x) is finite (see [AW,GKL,GL,GL1]). For a continuous
Borel probability measure an optimal set of n-means contains exactly n elements (see [GL1]).
The elements of an optimal set of n-means are called optimal quantizers. For some work in this
direction, one can see [CR,DR,GL2,R1–R5]. For a finite set α ⊂ R

d and a ∈ α, by M(a|α) we
denote the set of all elements in R

d which are nearest to a among all the elements in α. M(a|α)
is called the Voronoi region generated by a ∈ α. On the other hand, the set {M(a|α) : a ∈ α}
is called the Voronoi diagram or Voronoi tessellation of Rd with respect to the set α. The point
a is called the centroid of its own Voronoi region if a = E(X : X ∈ M(a|α)), where X is a
P -distributed random variable. A Borel measurable partition {Aa : a ∈ α} is called a Voronoi

partition of Rd with respect to the probability distribution P , if P -almost surely Aa ⊂ M(a|α)
for all a ∈ α. Let us now state the following proposition (see [GG,GL1]).

Proposition 1.1. Let α be an optimal set of n-means, a ∈ α, and M(a|α) be the Voronoi region
generated by a ∈ α. Then, for every a ∈ α, (i) P (M(a|α)) > 0, (ii) P (∂M(a|α)) = 0, (iii)
a = E(X : X ∈ M(a|α)), and (iv) P -almost surely the set {M(a|α) : a ∈ α} forms a Voronoi

partition of Rd.

The above proposition implies that the points in an optimal set are the centroids of their own
Voronoi regions, in other words, the points in an optimal set are an evenly-spaced distribution of
sites in the domain with minimum distortion error with respect to a given probability measure
and is therefore very useful in many fields, such as clustering, data compression, optimal mesh
generation, cellular biology, optimal quadrature, coverage control and geographical optimization,

2010 Mathematics Subject Classification. 28A80, 60Exx, 94A34.
Key words and phrases. Optimal sets, quantization error, quantization dimension, quantization coefficient,

mixed distribution.
1

http://arxiv.org/abs/1703.06518v4


2 Mrinal Kanti Roychowdhury

for more details one can see [DFG, OBSC]. Besides, it has applications in energy efficient
distribution of base stations in a cellular network [HCHSVH,KKR, S]. In both geographical
and cellular applications the distribution of users is highly complex and often modeled by a
fractal [ABDHW,LZSC]. The numbers

D(P ) := lim inf
n→∞

2 logn

− log Vn(P )
and D(P ) := lim sup

n→∞

2 logn

− log Vn(P )

are, respectively, called the lower and upper quantization dimensions of the probability measure
P . If D(P ) = D(P ), then the common value is called the quantization dimension of P and is

denoted by D(P ). For any s ∈ (0,+∞), the numbers lim infn n
2
sVn(P ) and lim supn n

2
sVn(P )

are, respectively, called the s-dimensional lower and upper quantization coefficients for P . If
the s-dimensional lower and upper quantization coefficients for P are finite and positive, then s

coincides with the quantization dimension of P (see [GL1]).
By a probability vector (p1, p2, · · · , pN) it is meant that 0 < pj < 1 for all 1 ≤ j ≤ N , and

∑N

j=1 pj = 1. We now give the following definition.

Definition 1.2. Let P1, P2, · · · , PN be Borel probability measures on R
d, and (p1, p2, · · · , pN)

be a probability vector. Then, a Borel probability measure P on R
d is called a mixed probability

distribution, or in short, mixed distribution, generated by (P1, P2, · · · , PN) and the probability
vector if for all Borel subsets A of Rd, P (A) = p1P1(A) + p2P2(A) + · · · + pNPN(A). Such a
mixed distribution is denoted by P := p1P1 + p2P2 + · · ·+ pNPN , and P1, P2, · · · , PN are called
the components of the mixed distribution.

The following proposition follows from [L, Theorem 2.1].

Proposition 1.3. Let P be the mixed distribution generated by (P1, P2) associated with the

probability vector (p, 1−p), i.e., P = pP1+(1−p)P2, where 0 < p < 1. Assume that both D(P1)
and D(P2) exist. Then, D(P ) = max{D(P1), D(P2)}.

In this paper, our goal is to determine the optimal sets of n-means, the nth quantization errors
for all positive integers n and the quantization dimensions, and the quantization coefficients for
different mixed distributions. In Section 2, we have considered a mixed distribution P :=
pP1+(1− p)P2, where p = 1

2
, P1 is a uniform distribution on the closed interval C := [0, 1

2
], and

P2 is a discrete distribution onD := {2
3
, 5
6
, 1}. For this mixed distribution, in Subsection 2.6, first

we have determined the optimal sets of n-means and the nth quantization errors for n = 2, 3, 4, 5,
and then in Theorem 2.6.5, we give a general formula to determine the optimal sets of n-means
and the nth quantization errors for all n ≥ 5. In Proposition 2.7, we further show that the
quantization coefficient for this mixed distribution exists as a finite positive number yielding the
fact that the quantization dimension for this mixed distribution exists and equals the dimension
of the underlying space (see Remark 2.8).

In Section 3, for a mixed distribution P := pP1 + (1 − p)P2, where P1 is an absolutely
continuous probability measure supported by the closed interval C := [0, 1], and P2 is discrete on
D := {0, 1}, we mention a rule how to determine the optimal sets of n-means. In Proposition 3.2,
for a special case, we give a closed formula to determine the optimal sets of n-means and the
nth quantization errors for all n ≥ 2. As mentioned in Remark 3.3, in Proposition 3.4, we have
proved a claim that the optimal sets for a mixed distribution may not be unique.

In Section 4, we determine the optimal sets of n-means, and the nth quantization errors
for all n ≥ 2 for a mixed distribution P := 1

2
P1 +

1
2
P2, where P1 is a Cantor distribution

with support lying in the closed interval [0, 1
2
], and P2 is discrete on D := {2

3
, 5
6
, 1}. In this

section, first we have determined the optimal sets of n-means and the nth quantization errors
for n = 2, 3, 4, 5, and then in Theorem 4.7.5, we give a general formula to determine them
for all n ≥ 5. In Remark 4.8, we show that the quantization dimension for P exists, but the
quantization coefficient does not exist. In Section 5, we give some remarks about the optimal
quantization for mixed distributions.
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In Section 6, we consider a mixed distribution P := 1
2
P1 +

1
2
P2, where both P1 and P2 are

Cantor distributions. For this mixed distribution, we determine the optimal sets of n-means
and the nth quantization errors for all n ≥ 2. In Theorem 6.17.2, we show that the quantization
coefficient for P does not exist. In Section 7, we give some discussion and open problems.
Finally we would like to mention that the mixed distributions are an exciting new area for
optimal quantization, and the results in this paper will give a motivation and insight into more
general problems.

2. Quantization with P1 uniform and P2 discrete

Let P1 be a uniform distribution on the closed interval C := [0, 1
2
], i.e., P1 is a probability

distribution on R with probability density function g given by

g(x) =

{

2 if x ∈ C,

0 otherwise.

Let P2 be a discrete probability distribution on R with probability mass function h given by
h(x) = 1

3
for x ∈ D, and h(x) = 0 for x ∈ R \ D, where D := {2

3
, 5
6
, 1}. Let P be the mixed

distribution on R such that P = 1
2
P1+

1
2
P2. Notice that the support of P1 is C, and the support

of P2 is D implying that the support of P is C ∪ D. Thus, for a Borel subset A of R, we can
write

P (A) =
1

2
P1(A ∩ C) +

1

2
P2(A ∩D).

We now prove the following lemma.

Lemma 2.1. Let E(X) and V := V (X) represent the expected value and the variance of a

random variable X with distribution P . Then, E(X) = 13
24

and V = 181
1728

= 0.104745.

Proof: We have

E(X) =

∫

xdP =
1

2

∫

xdP1 +
1

2

∫

xdP2 =
1

2

∫

[0, 1
2
]

xg(x)dx+
1

2

∑

x∈D
xh(x) =

13

24
, and

E(X2) =

∫

x2dP =
1

2

∫

x2dP1 +
1

2

∫

x2dP2 =
1

2

∫

[0, 1
2
]

x2g(x)dx+
1

2

∑

x∈D
x2h(x) =

43

108
,

implying V := V (X) = E(X2)− (E(X))2 = 43
108

−
(

13
24

)2
= 181

1728
. Thus, the lemma is yielded. �

Note 2.2. Following the standard rule of probability, we see that E‖X − a‖2 =
∫

(x− a)2dP =
V (X) + (a − E(X))2 = V + (a − 13

24
)2, which yields the fact that the optimal set of one-mean

consists of the expected value 13
24
, and the corresponding quantization error is the variance V of

the random variable X . By P (·|C), we denote the conditional probability measure on C, i.e.,

P (·|C) = P (·∩C)
P (C)

, in other words, for any Borel subset B of C we have P (B|C) = P (B∩C)
P (C)

. Notice

that P (·|C) is a uniform distribution with density function f given by

f(x) =

{

2 if x ∈ C,

0 otherwise,

implying the fact that P (·|C) = P1. Similarly, P (·|D) = P2. In the sequel, for n ∈ N and i = 1, 2,
by αn(Pi) and Vn(Pi), it is meant the optimal sets of n-means and the nth quantization error
with respect to the probability distributions Pi. If nothing is mentioned within a parenthesis,
i.e., by αn and Vn, it is meant an optimal set of n-means and the nth quantization error with
respect to the mixed distribution P .

Proposition 2.3. Let P1 be the uniform distribution on the closed interval [a, b] and n ∈ N.

Then, the set {a + (2i−1)(b−a)
2n

: 1 ≤ i ≤ n} is a unique optimal set of n-means for P1, and the

corresponding quantization error is given by Vn(P1) =
(a−b)2

12n2 .
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Proof: Notice that the probability density function g of P1 is given by

g(x) =

{

1
b−a

if x ∈ [a, b],
0 otherwise.

Since P1 is uniformly distributed on [a, b], the boundaries of the Voronoi regions of an optimal
set of n-means will divide the interval [a, b] into n equal subintervals, i.e., the boundaries of the
Voronoi regions are given by

{

a, a+
(b− a)

n
, a+

2(b− a)

n
, · · · a+

(n− 1)(b− a)

n
, a+

n(b− a)

n

}

.

This implies that an optimal set of n-means for P1 is unique, and it consists of the midpoints
of the boundaries of the Voronoi regions, i.e., the optimal set of n-means for P1 is given by

αn(P1) := {a + (2i−1)(b−a)
2n

: 1 ≤ i ≤ n} for any n ≥ 1. Then, the nth quantization error for P1

due to the set αn(P1) is given by

Vn(P1) = n

∫

[a,a+ b−a
n

]

(

x− (a+
b− a

2n
)
)2

dP1 = n

∫

[0, 1
2n

]

1

b− a
(x− 1

4n
)2dx =

(a− b)2

12n2
,

which yields the proposition. �

Corollary 2.4. Let P1 be the uniform distribution on the closed interval [0, 1
2
] and n ∈ N. Then,

the set {2i−1
4n

: 1 ≤ i ≤ n} is a unique optimal set of n-means for P1, and the corresponding

quantization error is given by Vn(P1) =
1

48n2 .

Remark 2.5. Notice that if β ⊂ R, then
∫

min
b∈β

‖x− b‖2dP =
1

2

∫

[0, 1
2
]

min
b∈β

(x− b)2g(x)dx+
1

2

∑

x∈D
min
b∈β

(x− b)2h(x), and so,

(1)

∫

min
b∈β

‖x− b‖2dP =

∫

[0, 1
2
]

min
b∈β

(x− b)2dx+
1

6

∑

x∈D
min
b∈β

(x− b)2.

2.6. Optimal sets of n-means and the errors for all n ≥ 2. In this subsection, we first
determine the optimal sets of n-means and the nth quantization error for the mixed distribution
P . Then, we show that the quantization dimension of P exists and equals the quantization
dimension of P1, which again equals one, which is the dimension of the underlying space. To
determine the distortion error in this subsection we will frequently use equation (1).

Lemma 2.6.1. Let α be an optimal set of two-means. Then, α = {1
4
, 5
6
} with quantization error

V2 =
17
864

= 0.0196759.

Proof: Consider the set of two-points β given by β := {1
4
, 5
6
}. Then, the distortion error is

∫

min
b∈β

‖x− b‖2dP =

∫

[0, 1
2
]

(x− 1

4
)2dx+

1

6

∑

x∈D
(x− 5

6
)2 =

17

864
= 0.0196759.

Since V2 is the quantization error for two-means we have V2 ≤ 0.0196759. Let α := {a1, a2} be
an optimal set of two-means with a1 < a2. Since the optimal points are the centroids of their
own Voronoi regions, we have 0 < a1 < a2 ≤ 1. If 13

32
≤ a1, then

V2 ≥
∫

[0, 13
32

]

(x− 13

32
)2dx =

2197

98304
= 0.022349 > V2,

which is a contradiction. So, we can assume that a1 ≤ 13
32
. We now show that the Voronoi region

of a1 does not contain any point from D. For the sake of contradiction, assume that the Voronoi
region of a1 contains points from D. Then, the following two cases can arise:

Case 1. 2
3
≤ 1

2
(a1 + a2) <

5
6
.
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Then, a1 = E(X : X ∈ C ∪ {2
3
}) = 17

48
and a2 = E(X : X ∈ {5

6
, 1}) = 11

12
, and so 1

2
(a1 + a2) =

61
96

< 2
3
, which is a contradiction.

Case 2. 5
6
≤ 1

2
(a1 + a2) < 1.

Then, a1 = E(X : X ∈ C ∪ {2
3
, 5
6
}) = 9

20
and a2 = 1, and so 1

2
(a1 + a2) =

29
40

< 5
6
, which is a

contradiction.
By Case 1 and Case 2, we can assume that the Voronoi region of a1 does not contain any

point from D. We now show that the Voronoi region of a2 does not contain any point from
C. Suppose that the Voronoi region of a2 contains points from C. Then, the distortion error is
given by

∫

[0, 1
2
(a1+a2)]

(x− a1)
2dx+

∫

[ 1
2
(a1+a2),

1
2
]

(x− a2)
2dx+

1

6

∑

x∈D
(x− a2)

2

=
1

108

(

27a31 + 27a21a2 − 27a1a
2
2 − 27a32 + 108a22 − 117a2 + 43

)

,

which is minimum when a1 =
5
24

and a2 =
19
24
, and the minimum value is 37

1728
= 0.021412 > V2,

which leads to a contradiction. So, we can assume that the Voronoi region of a2 does not contain
any point from C. Thus, we have a1 =

1
4
and a2 =

5
6
, and the corresponding quantization error

is V2 =
17
864

= 0.0196759. This, completes the proof of the lemma. �

Lemma 2.6.2. Let α be an optimal set of three-means. Then, α = {0.191074, 0.573223, 11
12
}

with quantization error V3 = 0.0106152.

Proof: Let us consider the set of three-points β := {0.191074, 0.573223, 11
12
}. Since 0.382149 =

1
2
(0.191074 + 0.573223) < 1

2
< 2

3
< 1

2

(

0.573223 + 11
12

)

= 0.744945 < 5
6
, the distortion error due

to the set β is given by
∫

min
b∈β

‖x− b‖2dP =

∫

[0, 0.382149]

(x− 0.191074)2dx+

∫

[0.382149, 1
2
]

(x− 0.573223)2dx

+
1

6
(
2

3
− 0.573223)2 +

1

6
(
5

6
− 11

12
)2 +

1

6
(1− 11

12
)2 = 0.0106152.

Since V3 is the quantization error for three-means, we have V3 ≤ 0.0106152. Let α := {a1, a2, a3}
be an optimal set of three-means with a1 < a2 < a3. Since the optimal points are the centroids
of their own Voronoi regions, we have 0 < a1 < a2 < a3 ≤ 1. If 3

8
≤ a1, then

V3 ≥
∫

[0, 3
8
]

(x− 3

8
)2dx =

9

512
= 0.0175781 > V3,

which leads to a contradiction. So, we can assume that a1 <
3
8
. If the Voronoi region of a2 does

not contain any point from C, then as the points of D are equidistant from each other with equal
probability, we will have either a2 =

1
2
(2
3
+ 5

6
) = 3

4
and a3 = 1, or a2 =

2
3
and a3 =

1
2
(5
6
+1) = 11

12
.

In any case, the distortion error is
∫

[0, 1
2
]

(x− 1

4
)2dx+

1

6
((
2

3
− 3

4
)2 + (

5

6
− 3

4
)2) =

11

864
= 0.0127315 > V3,

which is a contradiction. So, we can assume that the Voronoi region of a2 contains points from
C. If the Voronoi region of a2 does not contain any point from D, we must have a1 =

1
8
, a2 =

3
8
,

and a3 =
5
6
. Then, the distortion error is

∫

[0, 1
4
]

(x− 1

8
)2dx+

∫

[ 1
4
, 1
2
]

(x− 3

8
)2dx+

1

6
((
2

3
− 5

6
)2 + (1− 5

6
)2) =

41

3456
= 0.0118634 > V3,

which leads to a contradiction. Therefore, we can assume that the Voronoi region of a2 contains
points from C as well as from D. We now show that the Voronoi region of a2 contains only the
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point 2
3
from D. On the contrary, assume that the Voronoi region of a2 contains the points 2

3

and 5
6
from D. Then, we must have a3 = 1, and so the distortion error is

∫

[0,
a1+a2

2
]

(x− a1)
2 dx+

∫

[
a1+a2

2
, 1
2
]

(x− a2)
2 dx+

1

6

(

(
2

3
− a2)

2 + (
5

6
− a2)

2
)

=
1

108

(

27a31 + 27a21a2 − 27a1a
2
2 − 27a32 + 90a22 − 81a2 + 25

)

,

which is minimum when a1 = 1
4
and a2 = 3

4
, and the minimum value is 11

864
= 0.0127315 > V3,

which is a contradiction. Therefore, the Voronoi region of a2 contains only the point 2
3
from D.

This implies a3 =
1
2
(5
6
+ 1) = 11

12
, and then the distortion error is

∫

[0,
a1+a2

2
]

(x− a1)
2 dx+

∫

[
a1+a2

2
, 1
2
]

(x− a2)
2 dx+

1

6
(
2

3
− a2)

2 +
1

6

(

(1− 11

12
)2 + (

5

6
− 11

12
)2
)

=
1

144

(

36a31 + 36a21a2 − 36a1a
2
2 − 36a32 + 96a22 − 68a2 + 17

)

,

which is minimum when a1 = 0.191074 and a2 = 0.573223, and the corresponding distortion
error is V3 = 0.0106152. Moreover, we have seen a3 = 11

12
. Thus, the proof of the lemma is

complete. �

Lemma 2.6.3. Let α be an optimal set of four-means. Then, α = {1
4
, 3
8
, 3
4
, 1}, or α =

{1
4
, 3
8
, 2
3
, 11
12
}, and the quantization error is V4 =

17
3456

= 0.00491898.

Proof: Let us consider the set of four-points β := {1
4
, 3
8
, 3
4
, 1}. Then, the distortion error due

to the set β is
∫

min
b∈β

‖x− b‖2dP =

∫

[0, 1
4
]

(x− 1

8
)2dx+

∫

[ 1
4
, 1
2
]

(x− 3

8
)2dx+

1

6

(

(
2

3
− 3

4
)2 + (

5

6
− 3

4
)2
)

=
17

3456
.

Since V4 is the quantization error for four-means, we have V4 ≤ 17
3456

= 0.00491898. Let α :=
{a1 < a2 < a3 < a4} be an optimal set of four-means. Since the optimal points are the centroids
of their own Voronoi regions, we have 0 < a1 < · · · < a4 ≤ 1. If the Voronoi region of a2 does
not contain points from C, then

V4 ≥
∫

[0, 1
2
]

(x− 1

4
)2dx =

1

96
= 0.0104167 > V4,

which gives a contradiction, and so, we can assume that the Voronoi region of a2 contains points
from C. If the Voronoi region of a2 contains points from D, then it can contain only the point
2
3
from D, and in that case a3 =

5
6
and a4 = 1, which leads to the distortion error as

∫

[0,
a1+a2

2
]

(x− a1)
2 dx+

∫

[
a1+a2

2
, 1
2
]

(x− a2)
2 dx+

1

6
(
2

3
− a2)

2

=
1

216

(

54a31 + 54a21a2 − 54a1a
2
2 − 54a32 + 144a22 − 102a2 + 25

)

,

which is minimum when a1 = 0.191074 and a2 = 0.573223, and then, the minimum value is
0.00830043 > V4, which is a contradiction. So, the Voronoi region of a2 does not contain any
point from D. If the Voronoi region of a3 does not contain any point from D, then a4 = 5

6
yielding

V4 ≥
1

6

(

(
2

3
− 5

6
)2 + (1− 5

6
)2
)

=
1

108
= 0.00925926 > V4,

which leads to a contradiction. So, the Voronoi region of a3 contains at least one point from D.
Suppose that the Voronoi region of a3 contains points from C as well. Then, the following two
cases can arise:

Case 1. 2
3
∈ M(a3|α).
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Then, a4 =
11
12
, and the distortion error is

∫

[0,
a1+a2

2
]

(x− a1)
2 dx+

∫

[
a1+a2

2
,
a2+a3

2
]

(x− a2)
2 dx+

∫

[
a2+a3

2
, 1
2
]

(x− a3)
2 dx+

1

6
(
2

3
− a3)

2

+
1

6

(

(1− 11

12
)2 + (

5

6
− 11

12
)2
)

=
1

144

(

36a31 + 36a21a2 − 36a1a
2
2 + 4(9a22 − 17)a3 + (96− 36a2)a

2
3 − 36a33 + 17

)

which is minimum if a1 = 0.118238, a2 = 0.354715, and a3 = 0.645285, and the minimum value
is 0.00506623 > V4, which is a contradiction.

Case 2. {2
3
, 5
6
} ⊂ M(a3|α).

Then, a4 = 1, and the corresponding distortion error is
∫

[0,
a1+a2

2
]

(x− a1)
2 dx+

∫

[
a1+a2

2
,
a2+a3

2
]

(x− a2)
2 dx+

∫

[
a2+a3

2
, 1
2
]

(x− a3)
2 dx

+
1

6

(

(
2

3
− a3)

2 + (
5

6
− a3)

2
)

=
1

108

(

27a31 + 27a21a2 − 27a1a
2
2 + 27(a22 − 3)a3 + (90− 27a2)a

2
3 − 27a33 + 25

)

,

which is minimum if a1 = 0.0990219, a2 = 0.297066, and a3 = 0.702934, and the minimum value
is 0.00680992 > V4, which gives a contradiction.

By Case 1 and Case 2, we can assume that the Voronoi region of a3 does not contain any
point from C. Thus, we have (a1 =

1
4
, a2 =

3
8
, a3 =

3
4
, and a4 = 1), or (a1 =

1
4
, a2 =

3
8
, a3 =

2
3
,

and a4 =
11
12
), and the corresponding quantization error is V4 =

17
3456

= 0.00491898. �

Lemma 2.6.4. Let α be an optimal set of five-means. Then, α = {1
8
, 3
8
, 2
3
, 5
6
, 1}, and the corre-

sponding quantization error is V5 =
1

384
= 0.00260417.

Proof: Consider the set of five points β := {1
4
, 3
8
, 2
3
, 5
6
, 1}. The distortion error due to the set β

is given by
∫

min
b∈β

‖x− b‖2dP =

∫

[0, 1
4
]

(x− 1

8
)2dx+

∫

[ 1
4
, 1
2
]

(x− 3

8
)2dx =

1

384
= 0.00260417.

Since V5 is the quantization error for five-means, we have V5 ≤ 0.00260417. Let α := {a1 < a2 <

a3 < a4 < a5} be an optimal set of five-means. Since the optimal points are the centroids of
their own Voronoi regions, we have 0 < a1 < · · · < a5 ≤ 1. If the Voronoi region of a3 does not
contain any point from D, then we must have a1 =

1
12
, a2 =

1
4
, a3 =

5
12
, a4 =

3
4
, and a4 = 1, or

a1 =
1
12
, a2 =

1
4
, a3 =

5
12
, a4 =

2
3
, and a4 =

11
12

yielding the distortion error

3

∫

[0, 1
6
]

(x− 1

12
)2dx+

1

6

(

(
2

3
− 3

4
)2 + (

5

6
− 3

4
)2
)

=
1

288
= 0.00347222 > V5,

which is a contradiction. So, we can assume that the Voronoi region of a3 contains a point from
D. In that case, we must have a4 = 5

6
and a5 = 1. Suppose that the Voronoi region of a3

contains points from C as well. Then, the distortion error is
∫

[0,
a1+a2

2
]

(x− a1)
2 dx+

∫

[
a1+a2

2
,
a2+a3

2
]

(x− a2)
2 dx+

∫

[
a2+a3

2
, 1
2
]

(x− a3)
2 dx+

1

6

(2

3
− a3

)2

=
1

216

(

54a31 + 54a21a2 − 54a1a
2
2 + 6

(

9a22 − 17
)

a3 − 18(3a2 − 8)a23 − 54a33 + 25
)

,

which is minimum if a1 = 0.118238, a2 = 0.354715, and a3 = 0.645285, and the minimum value
is 0.00275142 > V5, which is a contradiction. So, the Voronoi region of a3 does not contain
any point from C yielding a1 = 1

8
, a2 = 3

8
, a3 = 2

3
, a4 = 5

6
and a5 = 1, and the corresponding

quantization error is V5 =
1

384
= 0.00260417. Thus, the proof of the lemma is complete. �
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Theorem 2.6.5. Let n ∈ N and n ≥ 5, and let αn be an optimal set of n-means for P and

αn(P1) be the optimal set of n-means with respect to P1. Then,

αn(P ) = αn−3(P1) ∪D, and Vn(P ) =
1

2
Vn−3(P1).

Proof: If n = 5, by Lemma 2.6.4, we have α5(P ) = {1
8
, 3
8
, 2
3
, 5
6
, 1} and V5(P ) = 1

384
, which by

Corollary 2.4 yields that α5(P ) = α2(P1)∪D and V5(P ) = 1
2
V2(P1), i.e., the theorem is true for

n = 5. Proceeding in the similar way, as Lemma 2.6.4, we can show that the theorem is true
for n = 6 and n = 7. We now show that the theorem is true for all n ≥ 8. Consider the set of
eight points β := { 1

20
, 3
20
, 1
4
, 7
20
, 9
20
, 2
3
, 5
6
, 1}. The distortion error due to set β is given by

∫

min
b∈β

‖x− b‖2dP = 5

∫

[0, 1
10

]

(x− 1

20
)2dx =

1

2400
= 0.000416667.

Since Vn is the nth quantization error for n-means for n ≥ 8, we have Vn ≤ V8 ≤ 0.000416667. Let
αn := {a1 < a2 < · · · < an} be an optimal set of n-means for n ≥ 8, where 0 < a1 < · · · < an ≤ 1.
To prove the first part of the theorem, it is enough to show that M(an−2|αn) does not contain
any point from C, and M(an−3|αn) does not contain any point from D. If M(an−2|αn) does not
contain any point from D, then

Vn ≥ 1

6

(

(
2

3
− 3

4
)2 + (

5

6
− 3

4
)2
)

=
1

432
= 0.00231481 > Vn,

which leads to a contradiction. So, M(an−2|αn) contains a point, in fact the point 2
3
, from D. If

M(an−2|αn) does not contain points from C, then an−2 =
2
3
. Suppose that M(an−2|αn) contains

points from C. Then, 2
3
≤ 1

2
(an−2 + an−1) implies an−2 ≥ 4

3
− an−1 =

4
3
− 5

6
= 1

2
. The following

three cases can arise:
Case 1. 1

2
≤ an−2 ≤ 7

12
.

Then, Vn ≥ 1
6
(2
3
− 7

12
)2 = 1

864
= 0.00115741 > Vn, which is a contradiction.

Case 2. 7
12

≤ an−2 ≤ 5
8
.

Then, 1
2
(an−3 + an−2) <

1
2
implying an−3 < 1− an−2 ≤ 1− 7

12
= 5

12
, and so

Vn ≥
∫

[ 5
12

, 1
2
]

(

x− 5

12

)2

dx+
1

6

(2

3
− 5

8

)2

=
5

10368
= 0.000482253 > Vn,

which leads to a contradiction.
Case 3. 5

8
≤ an−2.

Then, 1
2
(an−3 + an−2) <

1
2
implying an−3 < 1− an−2 ≤ 1− 5

8
= 3

8
, and so

Vn ≥
∫

[ 3
8
, 1
2
]

(

x− 3

8

)2

dx =
1

1536
= 0.000651042 > Vn,

which gives contradiction.
Thus, in each case we arrive at a contradiction yielding the fact that M(an−2|αn) does not

contain any point from C. If M(an−3|α) contains any point from D, say 2
3
, then we will have

M(an−2|α) ∪M(an−1|α) ∪M(an|α) = {5
6
, 1},

which by Proposition 1.1 implies that either an−2 = an−1 = 5
6
, and an = 1, or an−2 = 5

6
, and

an−1 = an = 1, which contradicts the fact that 0 < a1 < · · · < an−2 < an−1 < an ≤ 1. Thus,
M(an−3|α) does not contain any point from D. Hence, αn(P ) = αn−3(P1) ∪D, and so,

Vn(P ) =

∫

C

min
a∈αn−3(P1)

(x− a)2dx+
1

6

∑

x∈D
min
a∈D

(x− a)2 =
1

2

∫

C

min
a∈αn−3(P1)

(x− a)22dx

implying Vn(P ) = 1
2
Vn−3(P1). Thus, the proof of the theorem is complete. �
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Proposition 2.7. Let P be the mixed distribution as defined before. Then,

lim
n→∞

n2Vn(P ) =
1

96
.

Proof: By Corollary 2.4 and Theorem 2.6.5, we have

lim
n→∞

n2Vn(P ) =
1

2
lim
n→∞

n2Vn−3(P1) =
1

2
lim
n→∞

n2

48(n− 3)2
=

1

96
,

and thus, the proposition is yielded. �

Remark 2.8. By Proposition 2.7, it follows that lim
n→∞

n2Vn(P ) = 1
96
, i.e., one-dimensional

quantization coefficient for the mixed distribution P is finite and positive implying the fact
that the quantization dimension of the mixed distribution P exists, and equals one, which
is the dimension of the underlying space. It is known that for a probability measure P on
R

d with non-vanishing absolutely continuous part lim
n→∞

n
2
dVn(P ) is finite and strictly positive,

i.e., the quantization dimension of P exists, and equals the dimension d of the underlying
space (see [BW]). Thus, for the mixed distribution P considered in this section, we see that
D(P ) = D(P1) = 1.

3. A rule to determine optimal quantizers

Let 0 < p < 1 be fixed. Let P be a mixed distribution given by P = pP1 + (1− p)P2 with the
support of P1 equals C and the support of P2 equals D, such that P1 is continuous on C, and P2

is discrete on D, and D ⊂ C. It is well-known that the optimal set of one-mean consists of the
expected value and the corresponding quantization error is the variance V of the P -distributed
random variable X . Assume that P1 is absolutely continuous on C := [0, 1], and P2 is discrete
on D := {0, 1}. Then, in the following note we give a rule how to obtain the optimal sets of
n-means for the mixed distribution P for any n ≥ 2.

Note 3.1. Let αn := {a1, a2, · · · , an} be an optimal set of n-means for P such that 0 ≤ a1 <

a2 < · · · < an ≤ 1. Write

M(ai|αn) :=







[

0, a1+a2
2

]

if i = 1,
[

ai−1+ai
2

,
ai+ai+1

2

]

if 2 ≤ i ≤ n− 1,
[

an−1+an
2

, 1
]

if i = n,

(2)

where M(ai|αn) represent the Voronoi regions of ai for all 1 ≤ i ≤ n with respect to the set αn.
Since the optimal points are the centroids of their own Voronoi regions, we have ai = E(X : X ∈
M(ai|αn)) for all 1 ≤ i ≤ n. Solving the n equations one can obtain the optimal sets of n-means
for the mixed distribution P . Once, an optimal set of n-means is known, the corresponding
quantization error can easily be determined.

Let us now give the following proposition.

Proposition 3.2. Let αn be an optimal set of n-means and Vn is the corresponding quantization

error for n ≥ 2 for the mixed distribution P := 1
2
P1 +

1
2
P2 such that P1 is uniformly distributed

on C := [0, 1] with probability density function g given by

g(x) =

{

1 if x ∈ C,

0 otherwise,

and P2 is discrete on D := {1} with mass function h given by h(1) = 1. Then, for n ≥ 2,

αn :=

{

(2i− 1)
(

−
√
n2 − n+ 1 + 2n− 1

)

2(n− 1)n
: 1 ≤ i ≤ n

}

and Vn =
4n2−4(

√
n2−n+1+1)n+2

√
n2−n+1+7

12(
√
n2−n+1+2n−1)

2 .
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Proof: As mentioned in Note 3.1, solving the n equations ai = E(X : X ∈ M(ai|α)), we obtain

ai =
(2i− 1)

(

−
√
n2 − n+ 1 + 2n− 1

)

2(n− 1)n
,

for all 1 ≤ i ≤ n, and hence, the corresponding quantization error is given by

Vn =

∫ 1
2
(a1+a2)

0

(x− a1)
2dx+

n−1
∑

i=2

∫ 1
2
(ai+ai+1)

1
2
(ai−1+ai)

(x− ai)
2dx+

∫ 1

1
2
(an−1+an)

(x− an)
2dx+

1

2
(an − 1)2,

which upon simplification yields Vn =
4n2−4(

√
n2−n+1+1)n+2

√
n2−n+1+7

12(
√
n2−n+1+2n−1)

2 . Thus, the proof of the

proposition is complete. �

Remark 3.3. Let P1 be absolutely continuous on C := [0, 1] and P2 be discrete on D with
D ⊂ C. Then, if D := {0, 1}, the system of equations in (3) has a unique solution implying that
there exists a unique optimal set of n-means for the mixed distribution P := pP1+(1−p)P2 for
each n ∈ N. If D ∩ Int(C) is nonempty, where Int(C) represents the interior of C, then as it is
seen in Proposition 3.4, the optimal sets of n-means for the mixed distribution P for all n ∈ N

is not necessarily unique.

Proposition 3.4. Let P := 1
2
P1 +

1
2
P2, where P1 is uniformly distributed on C := [0, 1] and P2

is discrete on D := {1
2
}. Then, P has two different optimal sets of two-means.

Proof: Let α := {a1, a2} be an optimal set of two means for P with 0 < a1 < a2 < 1.
Then, P -almost surely, we have C = M(a1|α) ∪M(a2|α) implying that either 1

2
∈ M(a1|α), or

1
2
∈ M(a2|α). First, assume that 1

2
∈ M(a1|α), i.e., 0 < a1 <

1
2
≤ 1

2
(a1 + a2). Then,

a1 = E(X : X ∈ [0,
1

2
(a1 + a2)]) =

∫ a+b
2

0
x dx+ 1

2
∫ a+b

2

0
1 dx+ 1

=
a2 + 2ab+ b2 + 4

4(a+ b+ 2)
, and

a2 = E(X : X ∈ [
1

2
(a1 + a2), 1]) =

∫ 1
a+b
2
x dx

∫ 1
a+b
2

1 dx
=

1

4
(a + b+ 2).

Solving the above two equations, we have a1 = 1
4
(−5 + 3

√
5) and a2 = 1

4
(1 +

√
5), and the

corresponding quantization error is given by

V2(P ) =

∫

min
a∈α

‖x− a‖2dP =
1

2

∫

min
a∈α

(x− a)2dP1 +
1

2

∫

min
a∈α

(x− a)2dP2

=
1

2

∫

a1+a2
2

0

(x− a1)
2 dx+

1

2

∫ 1

a1+a2
2

(x− a2)
2 dx+

1

2

(1

2
− a1

)2

= 0.0191242.

Next, assume that 1
2
∈ M(a2|α), i.e., 1

2
(a1 + a2) ≤ 1

2
< a2 < 1. Then,

a1 = E(X : X ∈ [0,
1

2
(a1 + a2)]) =

∫ a+b
2

0
x dx

∫ a+b
2

0
1 dx

=
a+ b

4
, and

a2 = E(X : X ∈ [
1

2
(a1 + a2), 1]) =

∫ 1
a+b
2

1x dx+ 1
2

∫ 1
a+b
2

1 dx+ 1
=

a2 + 2ab+ b2 − 8

4(a+ b− 4)
.

Solving the above two equations, we have a1 = 1
4
(3 −

√
5) and a2 = 3

4
(3 −

√
5), and as before,

the corresponding quantization error is give by

V2(P ) =
1

2

∫

a1+a2
2

0

(x− a1)
2 dx+

1

2

∫ 1

a1+a2
2

(x− a2)
2 dx+

1

2

(1

2
− a2

)2

= 0.0191242.
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Thus, we see that there are two different optimal sets of two-means with same quantization
error, which is the proposition. �

4. Quantization with P1 a Cantor distribution and P2 discrete

In this section, we consider a mixed distribution P := 1
2
P1 +

1
2
P2, where P1 is a Cantor

distribution given by P1 = 1
2
P1 ◦ S−1

1 + 1
2
P1 ◦ S−1

2 , where S1(x) =
1
3
x and S2(x) =

1
3
x + 1

3
for

all x ∈ R, and P2 is a discrete distribution on D := {2
3
, 5
6
, 1} with density function h given by

h(x) = 1
3
for all x ∈ D. By a word, or a string of length k over the alphabet {1, 2}, it is meant

σ := σ1σ2 · · ·σk, where σj ∈ {1, 2} for 1 ≤ j ≤ k. A word of length zero is called the empty word
and is denoted by ∅. Length of a word σ is denoted by |σ|. The set of all words over the alphabet
{1, 2} including the empty word ∅ is denoted by {1, 2}∗. For two words σ := σ1σ2 · · ·σ|σ| and
τ := τ1τ2 · · · τ|τ |, by στ , it is meant the concatenation of the words σ and τ . If σ = σ1σ2 · · ·σk,
we write Sσ := Sσ1 ◦ Sσ2 ◦ · · · ◦ Sσk

, and Jσ = Sσ(J), where J = J∅ := [0, 1
2
]. S1 and S2 generate

the Cantor set C :=
⋂

k∈N
⋃

σ∈{1,2}k Jσ. C is the support of the probability distribution P1.

Notice that the support of the Mixed distribution P is C ∪D. For any σ ∈ {1, 2}k, k ≥ 1, the
intervals Jσ1 and Jσ2 into which Jσ is split up at the (k+1)th level are called the children of Jσ.

The following lemma is well-known and appears in many places, for example, see [GL2,R1].

Lemma 4.1. Let f : R → R
+ be Borel measurable and k ∈ N. Then
∫

fdP1 =
∑

σ∈{1,2}k

1

2k

∫

f ◦ SσdP1.

Lemma 4.2. Let X1 be a P1-distributed random variable. Then, its expectation and the variance

are respectively given by E(X1) =
1
4
and V (X1) =

1
32
, and for any x0 ∈ R,

∫

(x− x0)
2dP1(x) =

V (X1) + (x0 − 1
4
)2.

Proof: Using Lemma 4.1, we have

E(X1) =

∫

x dP1 =
1

2

∫

1

3
x dP1 +

1

2

∫

(
1

3
x+

1

3
) dP1 =

1

6
E(X1) +

1

6
E(X1) +

1

6

implying E(X1) =
1
4
. Again,

E(X2
1 ) =

∫

x2 dP1 =
1

2

∫

1

9
x2 dP1 +

1

2

∫

(1

3
x+

1

3

)2

dP1 =
1

9
E(X2

1 ) +
1

9
E(X1) +

1

18
,

which yields E(X2
1 ) = 3

32
, and hence V (X1) = E(X1 − E(X1))

2 = E(X2
1 ) − (E(X1))

2 = 3
32

−
(1
4
)2 = 1

32
. Then, following the standard theory of probability, we have

∫

(x − x0)
2 dP1 =

V (X1) + (x0 − E(X1))
2, and thus the lemma is yielded. �

Definition 4.3. For n ∈ N with n ≥ 2, let ℓ(n) be the unique natural number with 2ℓ(n) ≤ n <

2ℓ(n)+1. For I ⊂ {1, 2}ℓ(n) with card(I) = n−2ℓ(n) let βn(I) be the set consisting of all midpoints
a(σ) of intervals Jσ with σ ∈ {1, 2}ℓ(n) \ I and all midpoints a(σ1), a(σ2) of the children of Jσ

with σ ∈ I, i.e.,

βn(I) = {a(σ) : σ ∈ {1, 2}ℓ(n) \ I} ∪ {a(σ1) : σ ∈ I} ∪ {a(σ2) : σ ∈ I}.
The following proposition follows due to [GL2, Definition 3.5 and Proposition 3.7].

Proposition 4.4. Let βn(I) be the set for n ≥ 2 given by Definition 4.3. Then, βn(I) forms an

optimal set of n-means for P1, and the corresponding quantization error is given by

Vn(P1) =

∫

min
a∈βn(I)

‖x− a‖2 dP1 =
1

18ℓ(n)
· 1

32

(

2ℓ(n)+1 − n +
1

9

(

n− 2ℓ(n)
)

)

.

Lemma 4.5. Let E(X) and V := V (X) represent the expected value and the variance of a

random variable X with distribution P . Then, E(X) = 13
24

and V = 95
864

= 0.109954.
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Proof: In this proof we use the results from Lemma 4.1. We have

E(X) =

∫

xdP =
1

2

∫

xdP1 +
1

2

∫

xdP2 =
1

2

∫

xdP1 +
1

2

∑

x∈D
xh(x) =

13

24
, and

E(X2) =

∫

x2dP =
1

2

∫

x2dP1 +
1

2

∑

x∈D
x2h(x) =

697

1728
,

implying V := V (X) = E(X2)− (E(X))2 = 697
1728

−
(

13
24

)2
= 95

864
. Thus, the lemma is yielded. �

Note 4.6. Since E‖X − a‖2 =
∫

(x− a)2dP = V (X) + (a−E(X))2 = V + (a− 13
24
)2, it follows

that the optimal set of one-mean for the mixed distribution P consists of the expected value 13
24
,

and the corresponding quantization error is the variance V of the random variable X . For any
σ ∈ {1, 2}∗, by a(σ), it is meant a(σ) := E(X1 : X1 ∈ Jσ), where X1 is a P1 distributed random
variable, i.e., a(σ) = Sσ(

1
4
). Notice that for any σ ∈ {1, 2}∗, and for any x0 ∈ R, we have

(3)

∫

Jσ

(x− x0)
2 dP1 = pσ

(

s2σV + (Sσ(
1

4
)− x0)

2
)

,

where pσ = 1
2|σ| , and sσ = 1

3|σ| .

4.7. Optimal sets of n-means and nth quantization error. In this subsection, we deter-
mine the optimal sets of n-means and the nth quantization errors for all n ≥ 2 for the mixed
distribution P . To determine the distortion error, we will frequently use the equation (3).

Lemma 4.7.1. Let α be an optimal set of two-means. Then, α = {1
4
, 5
6
} with quantization error

V2 =
43

1728
= 0.0248843.

Proof: Consider the set of two-points β given by β := {1
4
, 5
6
}. Then, the distortion error is

∫

min
b∈β

‖x− b‖2dP =
1

2

∫

C

(x− 1

4
)2dP1 +

1

6

∑

x∈D
(x− 5

6
)2 =

43

1728
= 0.0248843.

Since V2 is the quantization error for two-means, we have V2 ≤ 0.0248843. Let α := {a1, a2} be
an optimal set of two-means with a1 < a2. Since the optimal points are the centroids of their
own Voronoi regions, we have 0 < a1 < a1 < a2 ≤ 1. If a1 ≥ 29

72
> S21(

1
2
), then

V2 ≥
1

2

∫

J1∪J21
(x− 29

72
)2dP1 =

1105

41472
= 0.0266445 > V2,

which leads to a contradiction. We now show that the Voronoi region of a1 does not contain
any point from D. Notice that the Voronoi region of a1 can not contain all the points from D

as by Proposition 1.1, P (M(a2|α)) > 0. First, assume that the Voronoi region of a1 contains
both 2

3
and 5

6
. Then,

a1 = E(X : X ∈ C ∪ {2
3
,
5

6
}) =

1
2
1
4
+ 1

6
2
3
+ 1

6
5
6

1
2
+ 1

6
+ 1

6

=
9

20
and a2 = 1,

which yield 1
2
(a1 + a2) = 29

40
< 5

6
, which is a contradiction, as we assumed {2

3
, 5
6
} ⊂ M(a1|α).

Next, assume that the Voronoi region of a1 contains only the point 2
3
from D. Then,

a1 = E(X : X ∈ C ∪ {2
3
}) =

1
2
1
4
+ 1

6
2
3

1
2
+ 1

6

=
17

48
and a2 =

1

2
(
5

6
+ 1) =

11

12
,

which yield 1
2
(a1+a2) =

61
96

< 2
3
, which is a contradiction, as the Voronoi region of a1 contains

2
3
.

Thus, we can assume that the Voronoi region of a1 does not contain any point from D implying
that a1 ≤ 1

4
. Notice that if the Voronoi region of a1 does not contain any point from D and the
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Voronoi region of a2 does not contain any point from C, then a1 = 1
4
and a2 = 5

6
. If a2 < 21

32
,

then

V2 ≥
1

6

(

(
2

3
− 21

32
)2 + (

5

6
− 21

32
)2 + (1− 21

32
)2
)

=
1379

55296
= 0.0249385 > V2,

which gives a contradiction, and so 21
32

≤ a2 ≤ 5
6
. Suppose that 21

32
≤ a2 ≤ 17

24
. Since a1 ≤ 1

4
,

E(X1 : X1 ∈ J1 ∪ J21) =
19
108

< 1
4
, and S21(

1
2
) < 1

2
( 19
108

+ 21
32
) < 1

2
(1
4
+ 21

32
) < S2212(0), we have

V2 ≥
1

2

(

∫

J1∪J21
(x− 19

108
)2dP1 +

∫

J2212∪J222
(x− 21

32
)2dP1

)

+
1

6

(

(
5

6
− 17

24
)2 + (1− 17

24
)2
)

=
1938409

71663616
= 0.0270487 > V2,

which leads to a contradiction. So, we can assume that 17
24

≤ a2 ≤ 5
6
. Suppose that 17

24
≤ a2 ≤ 3

4
.

Notice that S221(
1
2
) < 1

2
(1
4
+ 17

24
) < S222(0), and E(X1 : X1 ∈ J1 ∪ J21 ∪ J2211) =

829
4212

< 1
4
, and

so, we have

V2 ≥
1

2

(

∫

J1∪J21∪J2211
(x− 829

4212
)2dP1 +

∫

J2212

(x− 1

4
)2dP1 +

∫

J222

(x− 17

24
)2dP1

)

+
1

6

(

(
2

3
− 17

24
)2 + (

5

6
− 3

4
)2 + (1− 3

4
)2
)

=
2242573

87340032
= 0.0256763 > V2,

which is a contradiction. So, we can assume that 3
4
≤ a2 ≤ 5

6
. Then, notice that 1

2
(a1 + a2) <

1
2

implying a1 < 1− a2 ≤ 1
4
, but 1

2
(1
4
+ 3

4
) = 1

2
, and thus, P -almost surely the Voronoi region of a2

does not contain any point from C yielding a1 =
1
4
, a2 =

5
6
, and the corresponding quantization

error is V2 =
43

1728
= 0.0248843. �

Let us now state the following three lemmas. Due to technicality we do not show the proofs
in the paper.

Lemma 4.7.2. Let α be an optimal set of three-means. Then, α = { 1
12
, 31
60
, 11
12
} with quantization

error V3 =
89

8640
= 0.0103009.

Lemma 4.7.3. Let α be an optimal set of four-means. Then, α = { 1
12
, 5
12
, 3
4
, 1}, or α =

{ 1
12
, 5
12
, 2
3
, 11
12
}, and the quantization error is V4 =

7
1728

= 0.00405093.

Lemma 4.7.4. Let α be an optimal set of five-means. Then, α = α2(P1) ∪ D, and the corre-

sponding quantization error is V5 =
1

576
= 1

2
V2(P1).

Theorem 4.7.5. Let n ∈ N and n ≥ 5, and let αn be an optimal set of n-means for P and

αn(P1) be the optimal set of n-means for P1. Then,

αn(P ) = αn−3(P1) ∪D, and Vn(P ) =
1

2
Vn−3(P1).

Proof: If n = 5, by Lemma 4.7.4, we see that the theorem is true for n = 5. Proceeding
in the similar way, as Lemma 4.7.4, we can show that the theorem is true for n = 6 and
n = 7. We now show that the theorem is true for all n ≥ 8. Consider the set of eight points
β := {a(11), a(12), a(21), a(221), a(222), 2

3
, 5
6
, 1}. The distortion error due to set β is given by

∫

min
b∈β

‖x− b‖2dP =
1

2
V5(P1) =

7

46656
= 0.000150034.

Since Vn is the nth quantization error for n-means for n ≥ 8, we have Vn ≤ V8 ≤ 0.000150034. Let
αn := {a1 < a2 < · · · < an} be an optimal set of n-means for n ≥ 8, where 0 < a1 < · · · < an ≤ 1.
To prove the first part of the theorem, it is enough to show that M(an−2|αn) does not contain
any point from C, and M(an−3|αn) does not contain any point from D. If M(an−2|αn) does not
contain any point from D, then

Vn ≥ 1

6

(

(
2

3
− 3

4
)2 + (

5

6
− 3

4
)2
)

=
1

432
= 0.00231481 > Vn,
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which leads to a contradiction. So, M(an−2|αn) contains a point, in fact the point 2
3
, from D. If

M(an−2|αn) does not contain points from C, then an−2 =
2
3
. Suppose that M(an−2|αn) contains

points from C. Then, 2
3
≤ 1

2
(an−2 + an−1) implies an−2 ≥ 4

3
− an−1 =

4
3
− 5

6
= 1

2
. The following

three cases can arise:
Case 1. 1

2
≤ an−2 ≤ 7

12
.

Then, Vn ≥ 1
6
(2
3
− 7

12
)2 = 1

864
= 0.00115741 > Vn, which is a contradiction.

Case 2. 7
12

≤ an−2.

Then, 1
2
(an−3 + an−2) <

1
2
implying an−3 < 1− an−2 ≤ 1− 7

12
= 5

12
, and so

Vn ≥ 1

2

∫

J22

(

x− 5

12

)2

dP1 =
1

2304
= 0.000434028 > Vn,

which leads to a contradiction.
By Case 1 and Case 2, we can assume that M(an−2|αn) does not contain any point from C.

If M(an−3|α) contains any point from D, say 2
3
, then we will have

M(an−2|α) ∪M(an−1|α) ∪M(an|α) =
{5

6
, 1
}

,

which by Proposition 1.1 implies that either an−2 = an−1 = 5
6
and an = 1, or an−2 = 5

6
and

an−1 = an = 1, which contradicts the fact that 0 < a1 < · · · < an−2 < an−1 < an ≤ 1. Thus,
M(an−3|α) does not contain any point from D. Hence, αn(P ) = αn−3(P1) ∪D, and so,

Vn(P ) =
1

2

∫

C

min
a∈αn−3(P1)

(x− a)2dP1 +
1

6

∑

x∈D
min
a∈D

(x− a)2 =
1

2

∫

C

min
a∈αn−3(P1)

(x− a)2dP1

implying Vn(P ) = 1
2
Vn−3(P1). Thus, the proof of the theorem is complete. �

Remark 4.8. Let β be the Hausdorff dimension of the Cantor set generated by the similarity
mappings S1 and S2. Then, β = log 2

log 3
. By [GL2, Theorem 6.6], it is known that the quantization

dimension of P1 exists and equals β, i.e., D(P1) = β. Since

D(P ) = lim
n→∞

2 logn

− log 2− log Vn−m(P1)
= lim

n→∞
2 log(n−m)

− log Vn−m(P1)
= D(P1) = β,

we can say that the quantization dimension of the mixed distribution exists and equals the
quantization dimension of the Cantor distribution P1, i.e., D(P ) = D(P1) = β. Again, by
[GL2, Theorem 6.3], it is known that the quantization coefficient for P1 does not exits. By

Theorem 4.7.5, we have lim infn→∞ n
2
β Vn(P ) = 1

2
lim infn→∞ n

2
β Vn−3(P1) = 1

2
lim infn→∞(n −

3)
2
βVn−3(P1), and similarly, lim supn→∞ n

2
β Vn(P ) = 1

2
lim supn→∞(n − 3)

2
βVn−3(P1). Hence, the

quantization coefficient for the mixed distribution P does not exist.

5. Some remarks

Theorem 2.6.5 and Theorem 4.7.5 motivate us to give the following remarks.

Remark 5.1. Let 0 < p < 1 be fixed. Let P be the mixed distribution given by P = pP1 +
(1 − p)P2 with the support of P1 = C and the support of P2 = D, such that P1 is continuous
on C and P2 is discrete on D. Let card(D) = m for some positive integer m. Further assume
that C and D are strongly separated : there exists a δ > 0 such that d(C,D) := inf{d(x, y) : x ∈
C and y ∈ D} > δ. Then, we conjecture that there exists a positive integer N such that for all
n ≥ N , we have αn(P ) = αn−m(P1) ∪D. Notice that it is not known whether the quantization
dimension D(P1) of P1 exists; if D(P1) exists, then as the quantization dimension of a finite
discrete distribution is zero, by Proposition 1.3, we can say that the quantization dimension
D(P ) of the mixed distribution P exists, and D(P ) = D(P1).
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Remark 5.2. Let D be a finite discrete subset of C := [0, 1]. If P1 is continuous on C, singular
or nonsingular, and P2 is discrete on D, then for the mixed distribution P := pP1 + (1 − p)P2,
where 0 < p < 1, the optimal sets of n-means and the nth quantization errors for all n ≥ 2 and
for all D are not known yet. Some special cases to be investigated are as follows: Take p = 1

2
,

P1 as a uniform distribution on C, and D = {2
3
, 5
6
, 1}. The optimal sets of n-means and the

nth quantization errors for such a mixed distribution for all n ≥ 2 are not known yet. Such
a problem can also be investigated by taking P1 as a Cantor distribution, and P2 discrete on
D, for example, one can take P1 the classical Cantor distribution, as considered in [GL2], and
D = {2

3
, 5
6
, 1}. Notice that p, P1 and D can be chosen in many different ways.

6. Quantization where P1 and P2 are Cantor distributions

Let P1 be the Cantor distribution given by P1 = 1
2
P1 ◦ S−1

1 + 1
2
P2 ◦ S−1

2 , where S1(x) =
1
3
x

and S2(x) = 1
3
x + 2

9
for all x ∈ R. Let P2 be the Cantor distribution given by P2 = 1

2
P2 ◦

T−1
1 + 1

2
P2 ◦ T−1

2 , where T1(x) =
1
4
x+ 1

2
and T2(x) =

1
4
x+ 3

4
for all x ∈ R. Let C be the Cantor

set generated by S1 and S2, and D be the Cantor set generated by T1 and T2. Let P be the
mixed distribution generated by P1 and P2 such that P = 1

2
P1 +

1
2
P2. Let {1, 2}∗ be the set of

all words over the alphabet {1, 2} including the empty word ∅ as defined in Section 4. Write
J := [0, 1

3
] and K := [2

3
, 1]. Then, we have C =

⋂

k∈N
⋃

σ∈{1,2}k Jσ and D =
⋂

k∈N
⋃

σ∈{1,2}k Kσ,

where for σ ∈ {1, 2}∗, Jσ = Sσ([0,
1
3
]) and Kσ = Tσ([

2
3
, 1]). Thus, C is the support of P1, and D

is the support of P2 implying the fact that C ∪ D is the support of the mixed distribution P .
As before, if nothing is mentioned within a parenthesis, by αn and Vn, we mean an optimal set
of n-means and the corresponding quantization error for the mixed distribution P .

The following two lemmas are similar to Lemma 4.2.

Lemma 6.1. Let E(P1) and V (P1) denote the expected value and the variance of a P1-distributed

random variable. Then, E(P1) =
1
6
and V (P1) =

1
72
. Moreover, for any x0 ∈ R,

∫

(x−x0)
2 dP1 =

V (P1) + (x0 − 1
6
)2.

Lemma 6.2. Let E(P2) and V (P2) denote the expected value and the variance of a P2-distributed

random variable. Then, E(P2) = 5
6
and V (P2) = 1

60
. Moreover, for any x0 ∈ R,

∫

(x −
x0)

2dP2(x) = V (P2) + (x0 − 5
6
)2.

We now prove the following lemma.

Lemma 6.3. Let E(P ) and V (P ) denote the expected value and the variance of a P -distributed

random variable, where P is the mixed distribution given by P = 1
2
P1 +

1
2
P2. Then, E(P ) = 1

2

and V (P ) = 91
720

. Moreover, for any x0 ∈ R,
∫

(x− x0)
2dP (x) = V (P ) + (x0 − 1

2
)2.

Proof: Let X be a P -distributed random variable. Then,

E(X) =

∫

xdP (x) =
1

2

∫

x dP1 +
1

2

∫

xdP2(x) =
1

2

(1

6
+

5

6

)

=
1

2
, and

E(X2) =

∫

x2dP (x) =
1

2

∫

x2 dP1 +
1

2

∫

x2dP2(x) =
1

2

( 1

24
+

32

45

)

=
271

720
,

and so, V (P ) = E(X2)− (E(X))2 = 91
720

. Then, by the standard theory of probability, for any

x0 ∈ R,
∫

(x− x0)
2dP (x) = V (P ) + (x0 − 1

2
)2. Thus, the proof of the lemma is complete. �

Remark 6.4. From Lemma 6.3, it follows that the optimal set of one-mean for the mixed
distribution P is 1

2
and the corresponding quantization error is V (P ) = 91

720
. Again, notice that

for any x0 ∈ R, we have
∫

(x− x0)
2dP (x) =

1

2

(

V (P1) + V (P2) + (x0 −
1

6
)2 + (x0 −

5

6
)2
)

.



16 Mrinal Kanti Roychowdhury

Definition 6.5. For n ∈ N with n ≥ 2, let ℓ(n) be the unique natural number with 2ℓ(n) ≤
n < 2ℓ(n)+1. For σ ∈ {1, 2}∗, let a(σ) and b(σ), respectively, denote the midpoints of the basic
intervals Jσ and Kσ. Let I ⊂ {1, 2}ℓ(n) with card(I) = n− 2ℓ(n). Define βn(P1, I) and βn(P2, I)
as follows:

βn(P1, I) = {a(σ) : σ ∈ {1, 2}ℓ(n) \ I} ∪ {a(σ1) : σ ∈ I} ∪ {a(σ2) : σ ∈ I}, and

βn(P2, I) = {b(σ) : σ ∈ {1, 2}ℓ(n) \ I} ∪ {b(σ1) : σ ∈ I} ∪ {b(σ2) : σ ∈ I}.
The following proposition follows due to [GL2, Definition 3.5 and Proposition 3.7].

Proposition 6.6. Let βn(P1, I) and βn(P2, I) be the sets for n ≥ 2 given by Definition 6.5.

Then, βn(P1, I) and βn(P2, I) form optimal sets of n-means for P1 and P2, respectively, and the

corresponding quantization errors are given by

Vn(P1) =

∫

min
a∈βn(P1,I)

‖x− a‖2 dP1 =
1

18ℓ(n)
· 1

72

(

2ℓ(n)+1 − n +
1

9

(

n− 2ℓ(n)
)

)

, and

Vn(P2) =

∫

min
a∈βn(P2,I)

‖x− a‖2 dP2 =
1

32ℓ(n)
· 1

60

(

2ℓ(n)+1 − n +
1

16

(

n− 2ℓ(n)
)

)

.

Proposition 6.7. For n ≥ 2, let αn be an optimal set of n-means for P . Then, αn ∩ [0, 1
3
) 6= ∅

and αn ∩ (2
3
, 1] 6= ∅.

Proof: Consider the set of two-points β2 := {1
6
, 5
6
}. Then,

∫

min
a∈β2

‖x− a‖2dP =
1

2

(

∫

(x− 1

6
)2dP1 +

∫

(x− 5

6
)2dP2

)

=
11

720
= 0.0152778.

Since Vn is the quantization error for n-means for n ≥ 2, we have Vn ≤ V2 ≤ 0.0152778. Let
αn = {a1, a2, a3, · · · , an} be an optimal set of n-means such that a1 < a2 < a3 < · · · < an. Since
the optimal points are centroids of their own Voronoi regions, we have 0 < a1 < · · · < an < 1.
Assume that 1

3
≤ a1. Then,

Vn ≥
∫

[0, 1
3
]

(x− 1

3
)2dP =

1

2

∫

[0, 1
3
]

(x− 1

3
)2dP1 =

1

48
= 0.0208333 > Vn,

which is a contradiction, and so we can assume that a1 <
1
3
. Next, assume that an ≤ 2

3
. Then,

Vn ≥
∫

[ 2
3
,1]

(x− 2

3
)2dP =

1

2

∫

[ 2
3
,1]

(x− 2

3
)2dP2 =

1

45
= 0.0222222 > Vn,

which leads to a contradiction, and so we can assume that 2
3
< an. Thus, we see that αn∩[0, 13) 6=

∅ and αn ∩ (2
3
, 1] 6= ∅, which proves the proposition. �

Proposition 6.8. For n ≥ 2, let αn be an optimal set of n-means for P . Then, αn does not

contain any point from the open interval (1
3
, 2
3
). Moreover, the Voronoi region of any point from

αn ∩ J does not contain any point from K, and the Voronoi region of any point from αn ∩ K

does not contain any point from J .

Proof: By Proposition 6.7, the statement of the proposition is true for n = 2. Now, we prove
it for n = 3. Consider the set of three points β3 := {1

6
, 17
24
, 23
24
}. Then,

∫

min
a∈β3

‖x− a‖2dP =
1

2

(

∫

J

(x− 1

6
)2dP1 +

∫

K1

(x− 17

24
)2dP2 +

∫

K2

(x− 23

24
)2dP2

)

=
43

5760
.

Since V3 is the quantization error for three-means, we have V3 ≤ 43
5760

= 0.00746528. Let
α3 := {a1, a2, a3} be an optimal set of three-means such that 0 < a1 < a2 < a3 < 1. By
Proposition 6.7, we have a1 <

1
3
and 2

3
< a3. Suppose that a2 ∈ (1

3
, 2
3
). The following two cases

can arise:
Case 1. 1

3
< a2 ≤ 1

2
.
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Then, 1
2
(a2 + a3) >

2
3
implying a3 >

4
3
− a2 ≥ 4

3
− 1

2
= 5

6
. Using an equation similar to (3), we

can show that for 5
6
< a3 < 1, the error 1

2

∫

K
(x−a3)

2dP2 is minimum if P -almost surely, a3 =
5
6
,

and the minimum value is 1
120

. Thus,

V3 ≥
1

2

∫

K

(x− 5

6
)2dP2 =

1

120
= 0.00833333 > V3,

which is a contradiction.
Case 2. 1

2
≤ a2 <

2
3
.

Then, 1
2
(a1 + a2) <

1
3
implying a1 < 2

3
− a2 ≤ 2

3
− 1

2
= 1

6
. Similar in Case 1, for 0 < a1 < 1

6
,

the error 1
2

∫

J
(x − a1)

2dP1 is minimum if P -almost surely, a1 = 1
6
, and the minimum value is

1
144

. Thus,

V3 ≥
1

144
+

1

2

∫

K1

(x− 2

3
)2dP2 =

11

1440
= 0.00763889 > V3,

which leads to a contradiction.
Thus, by Case 1 and Case 2, we see that α3 does not contain any point from (1

3
, 2
3
). We now

prove the proposition for all n ≥ 4. Consider the set of four points β4 := { 1
18
, 5
18
, 17
24
, 23
24
}. The

distortion error due to the set β4 is given by
∫

min
a∈β4

‖x− a‖2dP =
1

2
(V2(P1) + V2(P2)) =

67

51840
= 0.00129244.

Since Vn is the quantization error for n-means for all n ≥ 4, we have Vn ≤ V4 ≤ 0.00129244. Let
j = max{i : ai < 2

3
for all 1 ≤ i ≤ n}. Then, aj < 2

3
. We need to show that aj < 1

3
. For the

sake of contradiction, assume that aj ∈ (1
3
, 2
3
). Then, two cases can arise:

Case A. 1
3
< aj ≤ 1

2
.

Then, 1
2
(aj + aj+1) >

2
3
implying aj+1 >

4
3
− aj ≥ 4

3
− 1

2
= 5

6
, and so,

Vn ≥ 1

2

∫

K1

(x− 5

6
)2dP2 =

1

240
= 0.00416667 > Vn,

which leads to a contradiction.
Case B. 1

2
≤ aj ≤ 2

3
.

Then, 1
2
(aj−1 + aj) <

1
3
implying aj−1 <

2
3
− aj ≤ 2

3
− 1

2
= 1

6
, and so,

Vn ≥ 1

2

∫

J2

(x− 1

6
)2dP1 =

1

288
= 0.00347222 > Vn,

which gives a contradiction.
Thus, by Case A and Case B, we can assume that aj ≤ 1

3
. If the Voronoi region of any

point from αn ∩ J contains points from K, then we must have 1
2
(aj + aj+1) > 2

3
implying

aj+1 >
4
3
−aj ≥ 4

3
− 1

3
= 1, which is a contradiction since aj+1 < 1. Similarly, the Voronoi region

of any point from αn∩K does not contain any point from J . Thus, the proof of the proposition
is complete. �

Note 6.9. From Proposition 6.7 and Proposition 6.8, it follows that for n ≥ 2, if an optimal
set αn contains n1 elements from J and n2 elements from K, then n = n1 + n2. In that case,
we write αn := α(n1,n2) and Vn := V(n1,n2). Thus, αn = α(n1,n2) = αn1(P1) ∪ αn2(P2), and
Vn = V(n1,n2) =

1
2
(Vn1(P1) + Vn2(P2)).

Lemma 6.10. Let α be an optimal set of two-means for P . Then, α = α(1,1), and the corre-

sponding quantization error is V2 =
5

432
= 0.0115741.

Proof: Let α = {a1, a2} be an optimal set of two-means such that 0 < a1 < a2 < 1. By
Proposition 6.7, we have a1 < 1

3
and 2

3
< a2 yielding a1 =

1
6
, a2 =

5
6
, i.e., α = α1(P1) ∪ α1(P2),

and V2 =
11
720

= 0.0152778. Thus, the proof of the lemma is complete. �
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Lemma 6.11. Let α be an optimal set of three-means. Then, α = α(1,2), and the corresponding

quantization error is V3 =
43

5760
= 0.00746528.

Proof: Let α be an optimal set of three-means. By Proposition 6.7 and Proposition 6.8, we
can assume that either α = α2(P1) ∪ α1(P2), or α = α1(P1) ∪ α2(P2). Since

∫

min
a∈α1(P1)∪α2(P2)

(x− a)2dP <

∫

min
a∈α2(P1)∪α1(P2)

(x− a)2dP,

the set α = α1(P1) ∪ α2(P2) forms an optimal set of three-means, and the corresponding quan-
tization error is

V3 =

∫

min
a∈α1(P1)∪α2(P2)

(x− a)2dP =
1

2
(V1(P1) + V2(P2)) =

43

5760
= 0.00746528,

which yields the lemma. �

Lemma 6.12. Let α be an optimal set of four-means. Then, α = α(2,2), and the corresponding

quantization error is V4 =
67

51840
= 0.00129244.

Proof: Let α be an optimal set of four-means. By Proposition 6.7 and Proposition 6.8, we
can assume that either α = α3(P1) ∪ α1(P2), α = α2(P1) ∪ α2(P2), or α = α1(P1) ∪ α3(P2) .
Among all these possible choices, we see that α = α2(P1)∪α2(P2) gives the minimum distortion
error, and hence, α = α2(P1) ∪ α2(P2) is an optimal set of four-means, and the corresponding
quantization error is V4 =

1
2
(V2(P1) + V2(P2)) =

67
51840

= 0.00129244, which is the lemma. �

Remark 6.13. Proceeding in the similar way, as Lemma 6.12, it can be proved that the optimal
sets of n-means for n = 5, 6, 7, etc. are, respectively, α(3,2), α(22,2) α(22,3), etc.

We now prove the following lemma.

Lemma 6.14. Let α(26n−4,25n−4) be an optimal set of 26n−4+25n−4-means for P for some positive

integer n. For 1 ≤ i ≤ 5 and 1 ≤ j ≤ 6, let ℓi, kj ∈ N be such that 1 ≤ ℓi ≤ 25n−4+(i−1) and

1 ≤ kj ≤ 26n−4+(j−1). Then, (i) α(26n−4,25n−4+ℓ1) is an optimal set of 26n−4+25n−4+ℓ1-means; (ii)
α(26n−4+k1,25n−3) is an optimal set of 26n−4+25n−3+k1-means; (iii) α(26n−3,25n−3+ℓ2) is an optimal

set of 26n−3+25n−3+ℓ2-means; (iv) α(26n−3+k2,25n−2) is an optimal set of 26n−3+25n−2+k2-means;

(v) α(26n−2,25n−2+ℓ3) is an optimal set of 26n−2+25n−2+ℓ3-means; (vi) α(26n−2+k3,25n−1) is an optimal

set of 26n−2+25n−1+k3-means; (vii) α(26n−1,25n−1+ℓ4) is an optimal set of 26n−1+25n−1+ℓ4-means;

(viii) α(26n−1+k4,25n) is an optimal set of 26n−1 + 25n + k4-means; (ix) α(26n,25n+ℓ5) is an optimal

set of 26n + 25n + ℓ5-means; (x) α(26n+k5,25n+1) is an optimal set of 26n + 25n+1 + k5-means; and

(xi) α(26n+1+k6,25n+1) is an optimal set of 26n+1 + 25n+1 + k6-means.

Proof: By Remark 6.13, it is known that α(26n−4,25n−4) is an optimal set of 26n−4 + 25n−4-means
for n = 1. So, we can assume that α(26n−4,25n−4) is an optimal set of 26n−4 + 25n−4-means for P
for some positive integer n. Recall that α(n1,n2) is an optimal set of n1+n2-means, and contains
n1 elements from C and n2 elements from D, and so, an optimal set of n1 + n2 + 1-means must
contain at least n1 elements from C, and at least n2 elements from D. For all n ≥ 1, since

1

2
(V26n−4(P1) + V25n−4+1(P2)) <

1

2
(V26n−4+1(P1) + V25n−4(P2)),

we can assume that α(26n−4,25n−4+ℓ1) is an optimal set of 26n−4 + 25n−4 + ℓ1-means for ℓ1 = 1.
Having known α(26n−4,25n−4+1) as an optimal set of 26n−4 + 25n−4 + 1-means, we see that

1

2
(V26n−4(P1) + V25n−4+2(P2)) <

1

2
(V26n−4+1(P1) + V25n−4+1(P2)),

and so, α(26n−4,25n−4+ℓ1) is an optimal set of 26n−4+25n−4+ℓ1-means for ℓ1 = 2. Proceeding in this
way, inductively, we can show that α(26n−4,25n−4+ℓ1) is an optimal set of 26n−4 +25n−4 + ℓ1-means
for 1 ≤ ℓ1 ≤ 25n−4. Thus, (i) is true. Now, by (i), we see that α(26n−4,25n−3) is an optimal set
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of 26n−4 + 25n−3-means. Then, proceeding in the same way as (i) we can show that (ii) is true.
Similarly, we can prove the statements from (iii) to (xi). Thus, the lemma is yielded. �

Proposition 6.15. The sets α(26n−4,25n−4), α(26n−4,25n−3), α(26n−3,25n−3), α(26n−3,25n−2), α(26n−2,25n−2),

α(26n−2,25n−1), α(26n−1,25n−1), α(26n−1,25n), α(26n,25n), α(26n,25n+1), α(26n+1,25n+1), and α(26n+2,25n+1) are

optimal sets for all n ∈ N.

Proof: By Remark 6.13, it is known that α(26n−4,25n−4) is an optimal set of 26n−4 + 25n−4-means
for n = 1. Then, by Lemma 6.14, it follows that α(26n−4,25n−4) is an optimal set of 26n−4 +25n−4-
means for n = 2, and so, applying Lemma 6.14 again, we can say that α(26n−4,25n−4) is an optimal
set of 26n−4 + 25n−4-means for n = 3. Thus, by induction, α(26n−4 ,25n−4) are optimal sets of
26n−4 + 25n−4-means for all n ≥ 2. Hence, by Lemma 6.14, the statement of the proposition is
true. �

Remark 6.16. Because of Lemma 6.3, Lemma 6.10, Lemma 6.11, Lemma 6.12, and Re-
mark 6.13, the optimal sets of n-means are known for all 1 ≤ n ≤ 6. To determine the optimal
sets of n-means for any n ≥ 6, let ℓ(n) be the least positive integer such that 26ℓ(n)−4+25ℓ(n)−4 ≤
n < 26(ℓ(n)+1)−4 + 25(ℓ(n)+1)−4. Then, using Lemma 6.14, we can determine n1 and n2 with
n = n1 + n2 so that αn = α(n1,n2) gives an optimal set of n-means. Once n1 and n2 are known,
the corresponding quantization error is obtained by using the formula Vn = 1

2
(Vn1(P1)+Vn2(P2)).

6.17. Asymptotics for the nth quantization error Vn(P ). In this subsection, we investigate
the quantization dimension and the quantization coefficients for the mixed distribution P . Let
β1 be the Hausdorff dimension of the Cantor set C generated by S1 and S2, and β2 be the
Hausdorff dimension of the Cantor set D generated by T1 and T2. Then, β1 =

log 2
log 3

and β2 =
1
2
.

If D(Pi) are the quantization dimensions of Pi for i = 1, 2, then it is known that D(P1) = β1

and D(P2) = β2 [GL2]. By Proposition 1.3, the following theorem is true.

Theorem 6.17.1. Let D(P ) be the quantization dimension of the mixed distribution P :=
1
2
P1 +

1
2
P2. Then, D(P ) = max{D(P1), D(P2)}.

Theorem 6.17.2. Quantization coefficient for the mixed distribution P := 1
2
P1 +

1
2
P2 does not

exist.

Proof: By Theorem 6.17.1, the quantization dimension of the mixed distribution exists and
equals β1, where β1 = log 2

log 3
. To prove the theorem it is enough to show that the sequence

(

n
2
β1 Vn(P )

)

n≥1
has at least two different accumulation points. By Lemma 6.14 (i), it is known

that α(26n−4,25n−4) is an optimal set of 26n−4 + 25n−4-means. Again, by Lemma 6.14 (ii), it is
known that α(26n−4+26n−5,25n−3) is an optimal set of 26n−4 + 26n−5 + 25n−3-means. Write F (n) :=
26n−4 + 25n−4, and G(n) := 26n−4 + 26n−5 + 25n−3 for n ∈ N. Recall that

VF (n) = V(26n−4,25n−4) =
1

2

(

V26n−4(P1) + V25n−4(P2)
)

=
1

240

(

217−20n + 5 · 37−12n
)

,

VG(n) = V(26n−4+26n−5,25n−3) =
1

2

(

V26n−4+26n−5(P1) + V25n−3(P2)
)

=
1

15
29−20n +

5

16
811−3n.

Notice that (26n)
2
β1 = 2

12n log 3
log 2 = 312n and limn→∞

(

312

220

)n

= 0, and so, we have

lim
n→∞

F (n)
2
β1VF (n)(P ) = lim

n→∞
(26n−4 + 25n−4)

2
β1

1

240

(

217−20n + 5 · 37−12n
)

= lim
n→∞

312n
( 1

24
+

1

24
· 1

2n

)
2
β1 1

240

(

217−20n + 5 · 37−12n
)

= 2
− 8

β1
5 · 37
240

=
1

144
= 0.00694444,
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and

lim
n→∞

G(n)
2
β1VG(n)(P ) = lim

n→∞
(26n−4 + 26n−5 + 25n−3)

2
β1 (

1

15
· 29−20n +

5

16
· 811−3n)

= lim
n→∞

312n
( 1

24
+

1

25
+

1

23
1

2n

)
2
β1 (

1

15
· 29−20n +

5

16
· 81 · 3−12n) =

5

16
· 3

2 log(3)
log(2)

−6 = 0.0139496.

Since (F (n)
2
β1VF (n)(P ))n≥1 and (G(n)

2
β1VG(n)(P ))n≥2 are two subsequences of (n

2
β1 Vn(P ))n∈N

having two different accumulation points, we can say that the sequence (n
2
β1 Vn(P ))n∈N does not

converge, in other words, the β1-dimensional quantization coefficient for P does not exist. This
completes the proof of the theorem. �

We now conclude the paper with the following section.

7. Discussion and open problems

Let P1 and P2 be two uniform distributions defined on the base L1 := {(t, 0) : −1 ≤ t ≤ 1},
and the semicircular arc L2 := {(cos t, sin t) : 0 ≤ t ≤ π} of the semicircular disc x2

1 + x2
2 = 1,

where x2 ≥ 0. Write P := p1P1+p2P2, where (p1, p2) is a probability vector. Then, P is a mixed
distribution with support L := L1 ∪ L2. The determination of the optimal sets of n-means for
smaller values of n for such a mixed distribution is not so difficult, but for the higher values of
n it needs extensive work. If we know how many points in an optimal set αn of n-means for P
are coming from L1 such that the Voronoi region of any point of which does not contain any
point from L2, or how many points are coming due to L2 such that the Voronoi region of any
point of which does not contain any point from L1, then we can easily determine the optimal
set αn for P . Set p1 = p2 =

1
2
, i.e., take P = 1

2
P1 +

1
2
P2.

Definition 7.1. Define the sequence {a(n)} such that a(n) = ⌊n(
√
2− 1)⌋ for n ≥ 1, i.e.,

{a(n)}∞n=1 ={0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 11, 11, 12, 12, · · ·},
where ⌊x⌋ represents the greatest integer not exceeding x.

Alogorithm 7.2. Let V (n, k) be the distortion error if we assume that an optimal set αn of
n-means for P contains k-elements from L1 the Voronoi region of any point of which does not
contain any point from L2. Let {a(n)} be the sequence defined by Definition 7.1. Define an
algorithm as follows:

(i) Write k := a(n).
(ii) If k = 1 go to step (v), else step (iii).
(iii) If V (n, k − 1) < V (n, k) replace k by k − 1 and go to step (ii), else step (iv).
(iv) If V (n, k + 1) < V (n, k) replace k by k + 1 and return, else step (v).
(v) End.

When the algorithm ends, then the value of k, obtained, is the actual value of k that an optimal
set αn for P contains from the base L1 of the semicircular disc. For example, if n = 5000, then
a(n) = 2071, and by running the algorithm we obtain k = 2083. This tells us that an optimal
set αn of n-means for P contains 2083 elements from L1 the Voronoi region of any point of
which does not contain any point from L2, 2 elements from the interior of the angles formed
by the base L1 and the semicircular arc L2, the Voronoi regions of these two points contain
points from both L1 and L2, and the remaining 5000− 2083− 2 points are from L2 the Voronoi
region of any point of which does not contain any point from L1. Thus, we see that the above
sequence and the algorithm help us to correctly determine an optimal set of n-means for the
mixed distribution P = 1

2
P1 +

1
2
P2. For the details of it see [PRRSS]. For any other probability

vector (p1, p2) what will be the sequence is not known yet, i.e., a general formula to determine
the optimal set of n-means for the mixed distribution P = p1P1+p2P2, where P1 and P2 are two
uniform distributions as defined before, is not known yet. In fact, one can fix a probability vector
(p1, p2), and vary the probability measures P1 and P2 to investigate the optimal sets of n-means



Optimal Quantization for Mixed Distributions 21

for the mixed distribution P for any positive integer n. For example, let us take P := 1
2
P1+

1
2
P2,

where P1 is a uniform distribution with support two perpendicular diameters of a circle, and P2

is a uniform distribution defined on the circle. Notice that optimal quantizations for P1 and P2,
in this case, are already known, but for the mixed distribution P the optimal sets of n-means,
and the nth quantization errors for all positive integers n are not known yet.

Optimal quantization for a general probability measure, singular or nonsingular, is still open,
which yields the fact that the optimal quantization for a mixed distribution taking any two prob-
ability measures is not yet known. The results in our paper, will further motivate the interested
researchers to investigate the optimal quantization for more general mixed distributions.
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