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On the denesting of nested square roots

Eleftherios Gkioulekas∗

University of Texas Rio Grande Valley , Edinburg, TX 78539-2999
(Received 11 Sep 2016, Published: 6 Jun 2017)

We present the basic theory of denesting nested square roots, from an elementary point of
view, suitable for lower-level coursework. Necessary and sufficient conditions are given for
direct denesting, where the nested expression is rewritten as a sum of square roots of rational
numbers, and for indirect denesting, where the nested expression is rewritten as a sum of
fourth-order roots of rational numbers. The theory is illustrated with several solved examples.

1. Introduction

Using basic arithmetic, we can expand (2 +
√

2)2 = 22 + 2 · 2
√

2 + (
√

2)2 = 6 +

4
√

2 and then turn that around to write
√

6 + 4
√

2 = 2 +
√

2. The left-hand-
side is an example of a nested radical, which is defined as an expression involving
rational numbers, the basic four operations of arithmetic (addition, subtraction,
multiplication, division), and roots, such that some root appears under another
root. Denesting means rewritting the expression so that only rational numbers
appear inside roots. In this note, we limit ourselves to the problem of denesting
expressions of the form A =

√
a± b√p with a being a rational number and b, p

being positive rational numbers. We also consider the closely related problem of
denesting expressions of the form

√
a
√
p+ b

√
q with a, b rational numbers and p, q

rational positive numbers. Such expressions may occur in solutions of quadratic or
biquadratic equations, trigonometry problems, integrals of rational functions, and
so on.

However, this is only part of a broader problem. For example, nested radicals
involving a square root inside a cubic root routinely emerge when solving cubic
equations [1]. More complicated examples of nested radicals were given by Ra-
manujan [2] such as

3

√
3
√

2− 1 =
3

√
1

9
− 3

√
2

9
+

3

√
4

9
, (1)√

3
√

5− 3
√

4 = (1/3)(
3
√

2 +
3
√

20− 3
√

25), (2)

naturally begging the question of whether there is a systematic algorithm that can
be used to denest radical expressions of arbitrary complexity. To the best of the
author’s knowledge, this is still an open question and a subject of current research.
A review of known results is given by Landau [3]. Most notable is an algorithm by
Blomer [4, 5] that can handle nested radicals with depth 2 (roots inside roots) but
cannot handle depths greater than 2. Another method was developed by Zippel
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[6, 7] that is able to denest radicals, like the one by Ramanujan given by Eq. (1).
A much more general and more powerful algorithm was developed by Landau [8],
except for two shortcomings: the denested expression will use complex roots of
unity, and it runs in exponential time with respect to the depth of the expression
that one is attempting to denest. There is no known general denesting algorithm
that does not involve resulting expressions that use complex roots of unity.

When we limit ourselves to the simple case A =
√
a± b√p, then the situation is

much clearer: Borodin et al [9] showed that it can denest in only two ways, or not
at all: √

a± b√p =
√
x±√y; or

√
a± b√p = 4

√
p(
√
x±√y), (3)

with x, y, p also positive rational numbers. In this note, we give an exposition of
the denesting theory for this special expression from an elementary point of view,
appropriate for lower-level coursework. In particular, in Section 2, we derive the
necessary and sufficient conditions for the existence of denestings in accordance to
Eq. (3), without however going as far as to show that these are the only possible
denestings. The proofs are simple, given in a formal and complete style, and can
serve as excellent examples for introducing concepts of proof in lower-level course-
work, such as proof by contradiction, proof by cases, and quantified statements.
In Section 3 we give a few examples and also illustrate the splitting-term method,
as an occasional shortcut that leads to a faster calculation, where the appropriate
term splitting is obvious. In Section 4, we consider the denesting of radicals of
the form

√
a
√
p+ b

√
q with a, b, p, q rational numbers. The note is concluded in

Section 5.
For readers who wish to present this material at an elementary level, without

including the proofs in Section 2, it is sufficient to introduce Definition 2.1, where
we define direct and indirect denesting, and then state without proof Theorem 2.6
and Theorem 2.7. Theorem 2.6 gives the necessary and sufficient conditions for
direct denesting and the corresponding denesting formula. Likewise, Theorem 2.7
gives the necessary and sufficient conditions and the denesting formula for indirect
denesting. After this brief presentation, one can then proceed with the examples
in Section 3 and Section 4.

2. Denesting theorems

We use the following standard notation throughout the article: Q represents the set
of all rational numbers. We define Q∗ and Q∗

+ as the sets of nonzero rational numbers
and nonzero positive rational numbers correspondingly, given by Q∗ = Q−{0} and
Q∗

+ = {x ∈ Q|x > 0}. In the arguments given below, we use standard quantifier
notation to write statements and we use braces to represent conjunction (i.e. the
“logical and”).

We pose the problem of denesting the expression A =
√
a± b√p via the following

definition:

Definition 2.1: Let A =
√
a± b√p with a, b, p ∈ Q∗

+ and
√
p 6∈ Q. We say that:

A denests directly ⇐⇒ ∃x, y ∈ Q∗
+ : A =

√
x±√y,

A denests indirectly ⇐⇒ ∃x, y ∈ Q∗
+ : A = 4

√
p(
√
x±√y).
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The notation “±” implies that there are two definitions in place; one for the
“+” case and one for the “−” case. The goal is to derive necessary and sufficient
conditions for the statements “A denests directly” and “A denests indirectly” and
to calculate the corresponding rational numbers x, y. This is done below via The-
orem 2.6 and Theorem 2.7. To show these theorems, we begin with the following
lemmas:

Lemma 2.2: Let a, b ∈ Q∗
+ be given. Then

(
√
a 6∈ Q ∧ a 6= b) =⇒

√
a−
√
b 6∈ Q

Proof : Assume that
√
a 6∈ Q and a 6= b. To show that

√
a −
√
b 6∈ Q, we assume

that
√
a−
√
b ∈ Q in order to derive a contradiction. Since, a 6= b =⇒

√
a−
√
b 6= 0,

we may write

√
a = (1/2)[(

√
a+
√
b) + (

√
a−
√
b)]

=
1

2

[
(
√
a)2 − (

√
b)2

√
a−
√
b

+ (
√
a−
√
b)

]

=
1

2

[
a− b
√
a−
√
b

+ (
√
a−
√
b)

]
,

and it follows that
√
a −
√
b ∈ Q =⇒

√
a ∈ Q which is a contradiction, since by

hypothesis we have
√
a 6∈ Q. We conclude that

√
a−
√
b 6∈ Q. �

Lemma 2.3: Let a1, a2, b1, b2 ∈ Q with b1 > 0 and b2 > 0 and
√
b1 6∈ Q. Then

a1 ±
√
b1 = a2 ±

√
b2 ⇐⇒ (a1 = a2 ∧ b1 = b2).

Proof :
(=⇒): Assume that a1 ±

√
b1 = a2 ±

√
b2. We distinguish between the following

cases:
Case 1: Assume that b1 = b2. Then

a1 ±
√
b1 = a2 ±

√
b2 =⇒ a1 ±

√
b1 = a2 ±

√
b1 [ via b1 = b2]

=⇒ a1 = a2,

and we conclude that a1 = a2 ∧ b1 = b2.
Case 2: Assume that b1 6= b2. Then

a1 ±
√
b1 = a2 ±

√
b2 =⇒ ±(

√
b1 −

√
b2) = a2 − a1

=⇒
√
b1 −

√
b2 ∈ Q. [via a1, a2 ∈ Q]

This is a contradiction because, using Lemma 2.2, we have (
√
b1 6∈ Q∧b1 6= b2) =⇒√

b1 −
√
b2 6∈ Q. This means that this case does not materialize.

(⇐=): Assume that a1 = a2 ∧ b1 = b2. Then, it trivially follows that a1 ±
√
b1 =

a2 ±
√
b2. �
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Lemma 2.4: Let f(z) = z2 − az + b with zeroes z1, z2 ∈ R. It follows that{
x+ y = a
xy = b

⇐⇒
{
x = z1

y = z2
∨
{
x = z2

y = z1.

Proof : Since z1, z2 ∈ R are zeroes of f(z) = z2 − az + b, from the fundamental
theorem of algebra, we write z2−az+b = (z−z1)(z−z2) = z2−(z1+z2)z+z1z2, ∀z ∈
R, and therefore z1 + z2 = a. It follows that z1 = a− z2 and z2 = a− z1. Then, we
argue that:{

x+ y = a
xy = b

⇐⇒
{
y = a− x
x(a− x) = b

⇐⇒
{
y = a− x
ax− x2 = b

⇐⇒
{
y = a− x
x2 − ax+ b = 0

⇐⇒
{
y = a− x
x = z1 ∨ x = z2

⇐⇒
{
x = z1

y = a− z1
∨
{
x = z2

y = a− z2

⇐⇒
{
x = z1

y = z2
∨
{
x = z2

y = z1.

�

Lemma 2.5: ∀x, y ∈ R :

({
x+ y > 0
xy > 0

⇐⇒
{
x > 0
y > 0

)
.

Proof :
(=⇒): Let x, y ∈ R be given such that x + y > 0 and xy > 0. To show that
x > 0∧y > 0, we assume the negation of that statement, which reads x ≤ 0∨y ≤ 0,
in order to derive a contradiction. Since the lemma remains invariant with respect
to the exchange x↔ y, we may assume, with no loss of generality, that x ≤ 0 and
then distinguish between the following cases:
Case 1: Assume that y ≤ 0. Then x ≤ 0 ∧ y ≤ 0 =⇒ x + y ≤ 0, which is a
contradiction, so this case does not materialize.
Case 2: Assume that y > 0. Then{

x ≤ 0
y > 0

=⇒
{
−x ≥ 0
y > 0

=⇒ −xy ≥ 0 =⇒ xy ≤ 0,

which is also a contradiction, since xy > 0, so this case also does not materialize.
Since neither case materializes, we have an overall contradiction and we conclude

that x > 0 ∧ y > 0
(⇐=): Assume that x > 0∧ y > 0. It follows immediately that x+ y > 0∧ xy > 0.
�

The next step is to use these lemmas to derive the following necessary and

sufficient conditions for the direct denesting of the expression A =
√
a±
√
b:

Theorem 2.6 : Let A =
√
a±
√
b with a, b ∈ Q∗ and b > 0 and

√
b 6∈ Q and

a±
√
b > 0. Then, it follows that

A denests directly ⇐⇒
{
∃δ ∈ Q∗

+ : a2 − b = δ2

a > 0
,{

δ =
√
a2 − b

a > 0
=⇒

√
a±
√
b =

√
a+ δ

2
±
√
a− δ

2
. (4)



946 Taylor & Francis and I.T. Consultant

Proof : We solve the equation
√
a±
√
b =
√
x±√y with respect to x, y. The first

step is to raise both sides to the power of 2. Doing so requires both sides of the
equation to be positive, in order to retain logical equivalence, so we need x > y, for
the “−” case. Any solutions with x ≤ y have to be rejected (again, only for the “−”
case), since the left-hand-side is strictly positive, so the right-hand-side cannot be
zero or negative. Finally, by Definition 2.1, we are only interested in solutions x, y
such that x > 0 ∧ y > 0. With this in mind, under the assumption x > y > 0, we
establish the following equivalence:√

a±
√
b =
√
x±√y ⇐⇒ a±

√
b = (

√
x±√y)2 [require x > y]

⇐⇒ a±
√
b = (

√
x)2 ± 2

√
x
√
y + (

√
y)2

⇐⇒ a±
√
b = (x+ y)±

√
4xy

⇐⇒
{
x+ y = a
4xy = b

[via Lemma 2.4]

⇐⇒
{
x+ y = a
xy = b/4.

(5)

Define the quadratic f(z) = z2−az+b/4 and calculate its discriminant ∆ = (−a)2−
4 · 1 · (b/4) = a2 − b. The corresponding zeroes are given by z1 = [a +

√
a2 − b]/2

and z2 = [a −
√
a2 − b]/2. Furthermore, they satisfy z1 + z2 = a and z1z2 = b/4.

The main argument reads:

A denests directly ⇐⇒ ∃x, y ∈ Q∗
+ :

√
a±
√
b =
√
x±√y [via Definition 2.1]

⇐⇒ ∃x, y ∈ Q∗
+ :

{
x+ y = a
xy = b/4

[via Eq. (5) and x, y ∈ Q∗
+]

⇐⇒ z1 ∈ Q∗
+ ∧ z2 ∈ Q∗

+

⇐⇒
{√

a2 − b ∈ Q∗

z1 > 0 ∧ z2 > 0
[via
√
b 6∈ Q]

⇐⇒
{
∃δ ∈ Q∗

+ : a2 − b = δ2

z1z2 > 0 ∧ z1 + z2 > 0
[via Lemma 2.5]

⇐⇒
{
∃δ ∈ Q∗

+ : a2 − b = δ2

a > 0 ∧ b > 0

[
via

{
z1 + z2 = a
z1z2 = b/4

]
⇐⇒

{
∃δ ∈ Q∗

+ : a2 − b = δ2

a > 0.
[via b > 0]

The possibility a2 − b = 0 is ruled out by the assumption
√
b 6∈ Q which is why

we write
√
a2 − b ∈ Q∗ on the third to last statement above. Furthermore, the

requirement x > y is easy to satisfy with the choice x = z1 and y = z2.
For the second statement, using δ =

√
a2 − b we note that since z1 = (a + δ)/2

and z2 = (a− δ)/2, it follows that√
a±
√
b =
√
x±√y ⇐⇒

{
x+ y = a
xy = b/4

[via Eq. (5)]
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⇐⇒
{
x = (a+ δ)/2
y = (a− δ)/2 ∨

{
x = (a− δ)/2
y = (a+ δ)/2

[via Lemma 2.4]

⇐⇒
{
x = (a+ δ)/2
y = (a− δ)/2, [via x > y]

and therefore, we obtain the denesting equation:

√
a±
√
b =

√
a+ δ

2
±
√
a− δ

2
. (6)

�

The main result is the denesting equation, given by Eq. (4), which holds regard-
less of whether δ is rational or irrational. Of course, Eq. (4) results in a denesting
only when δ is a rational number. The additional condition a > 0 ∧ b > 0 ensures
that there are no square roots of negative numbers in the denested expression so
that we do not have to concern ourselves with choosing appropriate branch cuts.
However, the theorem gives us more than just the denesting formula. It also shows
that when the formula fails to result in a successful direct denesting, that means
that no such denesting is possible.

The proof for the indirect denesting theorem piggybacks on the preceding theo-
rem. The indirect denesting theorem reads as follows:

Theorem 2.7 : Let A =
√
a+ b

√
q with a, b ∈ Q∗ and q ∈ Q∗

+ and
√
q 6∈ Q∗

+ such
that a+ b

√
q > 0. Then the following statements hold:

A denests indirectly ⇐⇒
{
∃δ ∈ Q∗

+ : q(b2q − a2) = δ2

b > 0
,

{
δ =

√
q(b2q − a2)

a > 0 ∧ b > 0
=⇒

√
a+ b

√
q =

1
4
√
q

[√
bq + δ

2
+

√
bq − δ

2

]
,

{
δ =

√
q(b2q − a2)

a < 0 ∧ b > 0
=⇒

√
a+ b

√
q =

1
4
√
q

[√
bq + δ

2
−
√
bq − δ

2

]
.

Proof : To show the first statement, we begin with the observation that since
a+ b

√
q > 0, multiplying both sides with

√
q > 0 gives a

√
q+ bq > 0. This enables

us to write

A =
√
a+ b

√
q =

√
a
√
q + b(

√
q)2

√
q

=
1
4
√
q

√
a
√
q + bq

=


1
4
√
q

√
bq + |a|√q, if a > 0

1
4
√
q

√
bq − |a|√q, if a < 0.
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Noting that |a|√q =
√
a2√q =

√
a2q, it follows that

A =


1
4
√
q

√
bq +

√
a2q, if a > 0

1
4
√
q

√
bq −

√
a2q, if a < 0.

(7)

The main argument proving the first statement reads:

A denests indirectly ⇐⇒
√
bq ±

√
a2q denests directly [via Eq. (7) and q > 0]

⇐⇒
{
∃δ ∈ Q∗

+ : (bq)2 − a2q = δ2

bq > 0
[via Theorem 2.6]

⇐⇒
{
∃δ ∈ Q∗

+ : q(b2q − a2) = δ2

b > 0.
[via q > 0]

To show the next two statements, we combine Eq. (7) with the direct denesting
equation given by Eq. (4), and distinguish between the following cases:
Case 1: For a > 0, we have:

A =
√
a+ b

√
q =

1
4
√
q

√
bq +

√
a2q [via Eq. (7)]

=
1
4
√
q

[√
bq + δ

2
+

√
bq − δ

2

]
. [via Eq. (4)]

Case 2: For a < 0, we have:

A =
√
a+ b

√
q =

1
4
√
q

√
bq −

√
a2q [via Eq. (7)]

=
1
4
√
q

[√
bq + δ

2
−
√
bq − δ

2

]
, [via Eq. (4)]

and this concludes the proof. �

The theorem for indirect denesting corresponds to the following denesting equa-
tion:

√
a+ b

√
q =


1
4
√
q

[√
bq + δ

2
+

√
bq − δ

2

]
, if a > 0

1
4
√
q

[√
bq + δ

2
−
√
bq − δ

2

]
, if a < 0,

where δ =
√
q(b2q − a2). As long as δ is a rational number, we have a successful

indirect denesting. Note that the formula for indirect denesting given by Zippel
[6] does not properly account for the case a < 0, where the radicals should be
subtracted, most likely due to a typo. From the theorems we learn, in general, that

expressions of the form
√
a±
√
b do not have direct denesting when a < 0, however

it is possible that they may have an indirect denesting. Finally, it is worth noting
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that the indirect denesting can be effected by factoring 4
√
q instead of 1/ 4

√
q, giving

us

√
a+ b

√
q =


4
√
q

[√
bq + δ

2q
+

√
bq − δ

2q

]
, if a > 0

4
√
q

[√
bq + δ

2q
−

√
bq − δ

2q

]
, if a < 0.

The necessary and sufficient conditions for a successful indirect denesting using the
4
√
q factorization are the same as the ones given by Theorem 2.7.

3. Examples of root denesting

As a practical matter, Theorem 2.6 and Theorem 2.7 provide universal methods

for denesting expressions of the form
√
a±
√
b, or for determining that denesting

is not possible. In some cases, we can take a shortcut, if it is possible to see a
splitting of a into two contributions that will result in an obvious perfect square.
A general case where splitting may work is if we can rewrite the radical as√

a2 + q ± 2a
√
q = |a±√q|.

While it takes some effort to see this splitting in actual problems, the case a = 1
gives √

q + 1± 2
√
q = |1±√q|,

where the splitting is immediately obvious. Generally, the splitting can be partic-
ularly difficult to see, if it involves rational numbers.

We begin with the following two examples of square root denesting. We show the
calculations with the level of detail needed, if the calculations are done by hand.

Example 3.1 Denest the expression
√

37 + 20
√

3.

Solution : Using a = 37 and b = (20
√

3)2, we have

δ2 = a2 − b = 372 − (20
√

3)2 = 1369− 400 · 3 = 1369− 1200 = 169

= 132 =⇒ δ = 13,

and therefore√
37 + 20

√
3 =

√
(a+ δ)/2 +

√
(a− δ)/2 =

√
(37 + 13)/2 +

√
(37− 13)/2

=
√

50/2 +
√

24/2 =
√

25 +
√

12 = 5 + 4
√

3.

�

Example 3.2 Denest the expression
√

3
√

2− 4.

Solution : Since −4 < 0, this expression does not have a direct denesting. Factor-
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ing out
√

2 gives

√
3
√

2− 4 =

√
√

2

(
3− 4√

2

)
=

4
√

2

√
3− 4

√
2

2
=

4
√

2

√
3− 2

√
2

=
4
√

2

√
1− 2

√
2 + (

√
2)2 =

4
√

2

√
(1−

√
2)2 =

4
√

2|1−
√

2|

=
4
√

2(
√

2− 1).

�

In general, with indirect denesting it is easier to just factor out the corresponding
radical and then look for a direct denesting. In the above example, the denesting
was obvious enough with term splitting. However, instructors should caution their
students to use the identity

√
x2 = |x| in order to remove the root, after forming a

perfect square. The identity introduces an absolute value that should be carefully
removed.

We show one more example of indirect denesting, using the denesting identity
given by Theorem 2.7.

Example 3.3 Denest the expression
√
−84 + 67

√
7.

Solution : Since −84 < 0, there is no direct denesting, so we look for an indirect
denesting. Using a = −84 and b = 67 and q = 7, we have

δ2 = q(b2q − a2) = 7(672 · 7− (−84)2) = 7(4489 · 7− 7056) = 7(31423− 7056)

= 7 · 24367 = 170569 = 4132 =⇒ δ = 413,

and from the indirect denesting identity, we have

√
−84 + 67

√
7 =

1
4
√
q

[√
bq + δ

2
−
√
bq − δ

2

]

=
1
4
√

7

[√
67 · 7 + 413

2
−
√

67 · 7− 413

2

]

=
1
4
√

7

[√
469 + 413

2
−
√

469− 413

2

]
=

1
4
√

7

[√
882

2
−
√

56

2

]

=

√
441−

√
28

4
√

7
=

21− 2
√

7
4
√

7
.

We can stop here, or continue as follows:

√
−84 + 67

√
7 =

21− 2
√

7
4
√

7
=

√
7

4
√

7

[
21√

7
− 2

]
=

4
√

7

[
21
√

7

7
− 2

]
=

4
√

7(3
√

7− 2).

�

Note that converting the 1/ 4
√

7 form of the denested result into the finalized 4
√

7
form is effected by factoring an

√
7 factor.



Mathematical Education in Science and Technology 951

4. A related denesting problem

Radicals of the form
√
a
√
p+ b

√
q with a, b ∈ Q and p, q ∈ Q∗

+ can be also denested
using direct denesting (Theorem 2.6) or indirect denesting (Theorem 2.7) after
factoring out

√
p or

√
q. We illustrate the technique with the following example.

Example 4.1 Denest the expression A =
√

5
√

2 + 4
√

3.

Solution : We note that

A =

√
5
√

2 + 4
√

3 =

√√√√√2

(
5 +

4
√

3√
2

)
=

4
√

2

√
5 +

4
√

2
√

3

2
=

4
√

2

√
5 + 2

√
6.

We attempt a direct denesting using a = 5 and δ2 = 52 − (2
√

6)2 = 25 − 4 · 6 =
25− 24 = 1 =⇒ δ = 1, therefore√

5 + 2
√

6 =

√
a+ δ

2
+

√
a− δ

2
=

√
5 + 1

2
+

5− 1

2
=
√

3 +
√

2

=⇒A =

√
5
√

2 + 4
√

3 =
4
√

2(
√

3 +
√

2).

�

It is is easy to show that
√
p factorization is equivalent to

√
q factorization,

meaning that the radical can be denested by
√
p factorization if and only if it

can be denested with
√
q factorization. This can be seen by comparing the nec-

essary and sufficient denesting conditions corresponding to
√
p factorization with

the corresponding conditions for
√
q factorization. Writing√

a
√
p+ b

√
q = 4
√
p

√
a+ b

√
q/p, (8)

the corresponding denesting condition, via Theorem 2.6 and Theorem 2.7, is given
by the logical “or” of two statements:{

∃δ ∈ Q∗
+ : a2 − b2q/p = δ2

a > 0
∨
{
∃δ ∈ Q∗

+ : (q/p)[b2(q/p)− a2] = δ2

b > 0.
(9)

The first statement corresponds to direct denesting and the second statement cor-
responds to indirect denesting. Doing a

√
q factorization gives√

a
√
p+ b

√
q = 4
√
q

√
b+ a

√
p/q, (10)

and the corresponding necessary and sufficient condition for denesting the second
factor reads:{

∃δ ∈ Q∗
+ : b2 − a2(p/q) = δ2

b > 0
∨
{
∃δ ∈ Q∗

+ : (p/q)(a2(p/q)− b2) = δ2

a > 0.
(11)

The first statement in the logical “or” corresponds to direct denesting whereas
the second statement corresponds to indirect denesting. The equivalence between
Eq. (9) and Eq. (11) follows immediately by noticing that multiplying the equations
on the existential statements in Eq. (11) by a factor of (q/p)2 on both sides, that
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factor being a perfect square, yields the corresponding statements in Eq. (9), al-
though with the order switched. Consequently, if factorization of

√
p gives a radical

that denests directly, then the factorization of
√
q will give a radical that denests

indirectly, and vice versa.

5. Conclusion

In its most general form, the problem of denesting roots remains an open question
for current research. The basic discussion given in this article barely scratches the
surface of the topic, but it is basic enough to be accessible in low-level coursework.
Simple denesting techniques can be introduced in College Algebra or Precalculus
courses, in the context of solving quadratic or biquadratic equations, or evaluating
trigonometric numbers for unusual angles. They can also be introduced in Calculus
coursework in the context of evaluating definite integrals of rational functions. The
proofs of the lemmas and theorems in Section 2 are simple and make for excel-
lent examples for introducing basic concepts of proof techniques, such as proof by
contradiction, proof by cases, quantifiers. and so on. The necessary and sufficient
denesting conditions are as strict as is needed to ensure that the denested expres-
sions do not require use of complex numbers. A more advanced treatment of this
topic requires a background in abstract algebra and Galois theory and is given in
the cited references.
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