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Using restrictions to accept or reject solutions of radical equations.
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(Received 07 Jan 2018, Published online: 16 Apr 2018)

The standard technique for solving equations with radicals is to square both sides of the equation as many
times as necessary to eliminate all radicals. Because the procedure violates logical equivalence, it results
in extraneous solutions that do not satisfy the original equation, making it necessary to check all solutions
against the original equation. We propose alternative solution procedures that are rigorous and simple to
execute where the extraneous solutions can be identified without verification against the original equation.
In this article, we review previous literature, establish and illustrate rigorous solution procedures for radical
equations of depth 1 (i.e. equations where all radicals can be eliminated in one step), and deal with an
ambiguity concerning the definition of real-valued solutions to radical equations. An application to defining
the inverse function, resulting in a parametric radical equation, is also explained.

1. Introduction

This article presents and proves the rigorous theory underlying the solution of three simple
types of radical equations and illustrates it with several solved examples. For our discus-
sion here we define a radical equation as an equation where the unknown variable appears
at least once inside a square root. We shall not concern ourselves with cubic roots or any
other higher-order roots.

In contemporary textbooks the procedure that is typically presented is to square both
sides of the equation, combined with other manipulations, as many times as necessary to
eliminate all square roots. The resulting polynomial equation is solved, and then we are
instructed to expect that some of the roots of the polynomial are extraneous solutions that
do not satisfy the original equation. To eliminate these extraneous solutions, each root of
the polynomial equation has to be substituted to the original radical equation to check
whether it satisfies it. This approach has persisted in textbooks for more than a century,
even though it is unsatisfactory for at least the following three reasons: (1) From a theoret-
ical standpoint, it is fair to say that a correct procedure should not result in “extraneous”
solutions that don’t work; (2) from a practical standpoint, unless the candidate solutions
are integers, it can be quite tedious to verify them directly on the original equation; (3)
with parametric radical equations, a solution that is rejected for some values of the pa-
rameter, may be a valid solution for other values of the parameter, and working that out
by direct verification is also impractical. The goal of this article is to present and illustrate
more rigorous procedures for solving radical equations where all extraneous solutions
are identified and eliminated during the solution process and not with backsubstitution
to the original equation. We will state and prove the properties that justify the proposed
procedures. Our scope will be limited to finding only real-valued solutions.

The problem of extraneous solutions, which afflicts both fractional and radical equa-
tions, has a rich and interesting history that has been reviewed in detail by Manning [1]. In
short, a rigorous treatment of extraneous solutions (in theorem-proof style) first emerged
in textbooks published during the 1890s. Radical equations themselves first appeared as
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a distinct textbook topic during the 1860s, however awareness of the problem of extrane-
ous solutions in radical equations emerged as a result of the consensus to define

√
a for

a ∈ [0,+∞) as the positive solution of the equation x2 − a = 0, which happened dur-
ing the 1880s. Previously,

√
a had a multi-valued interpretation that has survived to the

contemporary era only in the context of complex analysis, for roots of complex numbers.
Unfortunately, the rigor of the 1890s textbooks was forgotten in later editions of the same
textbooks during the 1900s. Attention to the extraneous solutions problem was rekindled
by Taylor in 1910 [2], Hegeman in 1922 [3], Bruce in 1931 [4], and Allendoerfer in 1966
[5], but a lot of their insights have been ignored, at least by American contemporary text-
books and current teaching practices.

Nevertheless, throughout the course of the twentieth century there has been some lim-
ited but interesting literature on radical equations. Huff and Barrow stated and proved a
theorem that provides the general solution for equations that follow the form

√
ax + v +√

cx + d = A [6]. Nagase gave a similar result [7] for equations that follow the form√
ax + b = cx + d, based on a solution technique by Bompart [8] and Roberti [9] that will

be reviewed in this article. There has also been some interest in the inverse problem of
constructing a radical equation from the solutions that we would like it to have. Beach pub-
lished a short note [10] showing how to construct radical equations following the forms
√

ax2 + bx + c = Ax+B, and
√

ax + b±
√

cx + d = A, and
√

ax + b+
√

cx + d =
√

Ax + B
from the roots r1, r2 of the quadratic equation to which they eventually reduce. The third
equation form was later revisited by Schwarz [11] in a paper that he co-authored with
two of his high-school students, where they showed how to construct radical equations
folowing that form without any extraneous solutions.

In this article we will present, prove, and illustrate the theory that underlies the rigorous
solution of radical equations that follow one of the following forms:√

f (x) =
√
g(x), (1)√

f (x) = g(x), (2)√
f1(x) +

√
f2(x) + · · · +

√
fn(x) = 0. (3)

Here, the functions listed are either polynomial or rational functions. Because in all of the
above equation forms, all radicals can be eliminated with one equivalence step, we will
designate these as radical equations with depth 1. A few additional radical equation forms
that require two equivalence steps to eliminate all radicals will be designated as radical
equations with depth 2, and they will be considered in future work.

The main results presented in this article are Proposition 3.3, Proposition 4.2, and
Lemma 2.2 establishing the solution procedures for radical equations following the forms
of Eq. (1), Eq. (2), and Eq. (3) correspondingly. I was first exposed to these techniques
by my high-school teacher, Mr. Alexandros Pistofidis, during the standard algebra course
for 10th and 11th grade in Greece during the years 1990 and 1991. The course was sim-
ilar to College Algebra and Precalculus taught at universities and colleges in the United
States, except more rigorous and with a lot of more detail. Over a two-year period, the
topics included logic, quantifiers, method of induction, applications of logic to the theory
of the quadratic, proving identities and inequalities, simplifying expressions with radicals.
solving equations, inequalities, systems of equations, and systems of inequalities, func-
tions, arithmetic and geometric sequences, exponentials and logarithms. The particular
techniques for the solution of radical equations, presented in this article, are not currently
part of the curriculum mandated by the Greek government [12], however they were in-
cluded in a set of very innovative lecture notes [13, 14] that were distributed to us in class.
The solution techniques proposed in this article are described in Ref. [13], except without
a formal justification. Example 4.1 first appeared in Ref. [13], whereas all other solved



1280 Taylor & Francis and I.T. Consultant

examples are original. An informal explanation of the technique proposed to solve radical
equations that follow the form of Eq. (2) was also given much later by Gurevich [15]. The
historical development of these particular solution procedures is not known to me beyond
what has been detailed above.

Another original contribution of this article, going beyond Pistofidis [13, 14], that I have
not seen previously addressed in textbooks or other literature, is the need to carefully
define the concept of a real-valued solution to a radical equation. Typically, when we
restrict our interest to real-valued solutions, we do so because we have some reason to
want to avoid square roots of negative numbers. So, should we accept or reject a real-
valued solution that verifies when substituted to the original radical equation but results
in square roots of negative numbers during the verification?

For example, consider the equation
√

1 − 3x =
√

x − 7, which follows the form of
Eq. (1). Standard procedure gives the solution x = 2, which satisfies the original equation,
except that it does so by yielding imaginary radicals:

√
1 − 3x =

√
x − 7 = i

√
5. Do we

want to accept or reject this solution? That depends on what we want to do with it. A
formalist viewpoint can be that the solution should be accepted, if our goal is to find the
elements of the set S = {x ∈ R |

√
1 − 3x =

√
x − 7}. Another viewpoint can be that

if we define real-valued functions f : A → R and g : B → R with f (x) =
√

1 − 3x
and g(x) =

√
x − 7 and with the widest possible implied domains A = (−∞, 1/3] and

B = [7,+∞), and are interested in the set S of all points where the graphs of f and g inter-
sect, then the formal definition of S reads S = {x ∈ A∩ B | f (x) = g(x)} and the solution
x = 2 should be rejected, because A ∩ B = ∅, which implies that no solutions at all can
be accepted. Typically, the equations we solve tend to arise from problems that concern
functions, so this second more restrictive viewpoint is oftentimes the relevant one.

For the purposes of this article we will designate all real numbers that satisfy the equa-
tion in the formal sense, allowing for roots of negative numbers, as formal solutions.
From amongst the formal solutions, those solutions that do not result in roots of negative
numbers, when substituted to the original radical equation, will be designated, for lack of
appropriate standard terminology, as strong solutions. We will see in this article that the
set of all strong solutions is always equal to the set of all formal solutions for the radical
equations that follow the form of Eq. (2) and Eq. (3). However, the two sets may be dif-
ferent for radical equations that follow the form of Eq. (1) and for other more complicated
forms with depth 2 that will be studied in Part 2 of this article series.

The article is organized as follows. Preliminary results and notation are introduced in
Section 2. Section 3 discusses the solution of radical equations following the form of
Eq. (1), Section 4 discusses the solution of radical equations following the form of Eq. (2),
and Section 5 discusses the solution of radical equations following the form of Eq. (3).
In Section 6 we show an interesting application of the theory of radical equations to the
problem of finding the definition and the domain of the inverse of a function whose def-
inition involves square roots of polynomials or rational functions. The article concludes
with Section 7.

2. Preliminaries

Let N = {0, 1, 2, 3, . . .} be the set of all natural numbers and for any n ∈ N − {0} introduce
the notation [n] = {k ∈ N | 1 ≤ k ≤ n} = {1, 2, 3, . . . , n}. Our point of departure is the
following well-known property of real numbers, which we state without proof:

∀a, b ∈ R : (ab = 0⇐⇒ (a = 0 ∨ b = 0)). (4)

Note that we will use explicitly written quantifier and boolean algebra notation for all
mathematical statements in this article. The proofs will be presented in detail and can serve
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as good examples of proofwriting technique that are accessible with very basic algebra
background. From Eq. (4) we derive Lemma 2.1 and Lemma 2.2, which we then use to
establish the propositions given in Section 3 and Section 4. Furthermore, Lemma 2.2 is
used directly in the solution procedure described in Section 5.

Lemma 2.1: ∀a, b ∈ [0,+∞) : (a2 = b2 ⇐⇒ a = b).

Proof : Let a, b ∈ [0,+∞) be given. We note that

a2 = b2 ⇐⇒ a2 − b2 = 0⇐⇒ (a − b)(a + b) = 0⇐⇒

⇐⇒ a − b = 0 ∨ a + b = 0⇐⇒ a = b ∨ a = −b. (5)

We will now show the equivalence

(a = b ∨ a = −b) ⇐⇒ a = b. (6)

(=⇒): We assume that a = b ∨ a = −b and distinguish between the following cases:
Case 1: We assume that a = b. Then the conclusion is given immediately by hypothesis.
Case 2: We assume that a = −b. Then it follows that b ∈ [0,+∞) =⇒ b ≥ 0 =⇒ a =
−b ≤ 0 =⇒ a ≤ 0 and a ∈ [0,+∞) =⇒ a ≥ 0. We conclude that a = 0 and therefore
b = −a = −0 = 0 = a.

In both cases we conclude that a = b.
(⇐=): Assume that a = b. It trivially follows that a = b ∨ a = −b.

This proves the claim given by Eq. (6). Combining Eq. (5) and Eq. (6) it follows that
a2 = b2 ⇐⇒ a = b. �

Lemma 2.2: Let n ∈ N − {0} be a natural number. Then, it follows that

∀a1, . . . , an ∈ R :
( n∑
k=1

√
ak = 0⇐⇒ ∀k ∈ [n] : ak = 0

)
. (7)

Proof : Let a1, . . . , an ∈ R be given. We define

A = {k ∈ [n] | ak ≥ 0} and B = {k ∈ [n] | ak ≤ 0}, (8)

and note that ∀k ∈ A : √ak ≥ 0 and ∀k ∈ B :
√
|ak | ≥ 0.

(=⇒): Assume that
∑n

k=1
√

ak = 0. Let k ∈ [n] be given. To show that ak = 0, we assume
that ak , 0 in order to derive a contradiction. We distinguish between the following cases.
Case 1: Assume that ak > 0. It follows that k ∈ A, and we note that∑

m∈[n]

√
am = 0 =⇒ Re

( ∑
m∈[n]

√
am

)
= 0 =⇒

∑
m∈A

√
am = 0, (9)

and

ak > 0 =⇒
√

ak > 0 =⇒
∑
m∈A

√
am ≥

√
ak > 0 =⇒

∑
m∈A

√
am > 0, (10)

which leads to a contradiction between Eq. (9) and Eq. (10).
Case 2: Assume that ak < 0. It follows that k ∈ B, and we note that∑

m∈[n]

√
am = 0 =⇒ Im

( ∑
m∈[n]

√
am

)
= 0 =⇒

∑
m∈B

√
am = 0
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=⇒
∑
m∈B

i
√
|am | = 0 =⇒

∑
m∈B

√
|am | = 0, (11)

and

ak < 0 =⇒ |ak | > 0 =⇒
√
|ak | > 0 =⇒

∑
m∈B

√
|am | ≥

√
|ak | > 0

=⇒
∑
m∈B

√
|am | > 0, (12)

which also leads to a contradiction between Eq. (11) and Eq. (12).
From both cases above we conclude that ak = 0. It follows overall that ∀k ∈ [n] : ak =

0.
(⇐=): Assume that ∀k ∈ [n] : ak = 0. Then it trivially follows that

∑n
k=1
√

ak = 0. �

3. Equations with two equal radicals

The solution technique, based on the restriction set method, for finding the strong solu-
tions for equations of the form

√
f (x) =

√
g(x) is as follows:

(1) We find the domain A of the equation by requiring that f (x) ≥ 0 and g(x) ≥ 0:{
f (x) ≥ 0
g(x) ≥ 0 ⇐⇒ · · · ⇐⇒ x ∈ A. (13)

(2) We solve the equation by squaring both sides:√
f (x) =

√
g(x) ⇐⇒ f (x) = g(x) ⇐⇒ · · · ⇐⇒ x ∈ S0. (14)

(3) We accept the solutions in S0 that also belong to A. Consequently, the solution set
for all strong solutions is given by S = S0 ∩ A.

The solutions rejected by this procedure are still formal solutions of the original equation,
however they are not strong solutions. We illustrate the solution technique with Exam-
ple 3.1 and Example 3.2. The theoretical justification is given by Proposition 3.3. Note
that the braces used in Eq. (15) and in the exposition below represent the boolean con-
junction operation (i.e. the logical “and”). Furthermore, in all of the example solutions
and proposition proofs given in the following, we use boolean notation throughout the
solution process in conjunction with the appropriate amount of narrative that should be
present in a well-written mathematical argument.

Example 3.1 Find all strong solutions of the equation
√

3x + 1 =
√

2 − x.

Solution : We require that{
3x + 1 ≥ 0
2 − x ≥ 0 ⇐⇒

{
3x ≥ −1
x ≤ 2 ⇐⇒

{
x ≥ −1/3
x ≤ 2 ⇐⇒ x ∈ [−1/3, 2], (15)

therefore the domain of the equation is the interval A = [−1/3, 2]. Solving the equation
gives:

√
3x + 1 =

√
2 − x ⇐⇒ 3x + 1 = 2 − x ⇐⇒ 3x + x = 2 − 1 (16)

⇐⇒ 4x = 1⇐⇒ x = 1/4. (17)
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The solution is accepted, since 1/4 ∈ A. Consequently, the set of all strong solutions to
the equation is S = {1/4}. �

Example 3.2 Find all strong solutions of the equation
√

2x + 3 =
√

3x + 5

Solution : We require that{
2x + 3 ≥ 0
3x + 5 ≥ 0 ⇐⇒

{
2x ≥ −3
3x ≥ −5 ⇐⇒

{
x ≥ −3/2
x ≥ −5/3 (18)

⇐⇒ x ∈ [−3/2,+∞) ∩ [−5/3,+∞) ⇐⇒ x ∈ [−3/2,+∞), (19)

and therefore the domain of the equation is A = [−3/2,+∞). Solving the equation gives:

√
2x + 3 =

√
3x + 5⇐⇒ 2x + 3 = 3x + 5⇐⇒ 3x − 2x = 3 − 5⇐⇒ x = −2. (20)

This solution is rejected, because −2 < A, consequently the equation has no strong solu-
tions �

In connection with Example 3.2, it should be emphasized that the rejected solution is,
in fact, a formal solution of the radical equation, and as such it would have been accepted
if the problem was to find the set of all formal solutions.

Proposition 3.3: Consider the equation
√

f (x) =
√
g(x) with f : A→ R and g : B → R

polynomial or rational functions with A ⊆ R and B ⊆ R. The set S1 of all strong solutions
is given by

S1 = S0 ∩ A, (21)

S0 = {x ∈ A ∩ B | f (x) = g(x)}, (22)

A1 = {x ∈ A ∩ B | | f (x) ≥ 0 ∧ g(x) ≥ 0}, (23)

and the set S2 of all formal solutions is given by S2 = S0.

Proof : Strong solutions: We begin with the observation that in order for x to be a strong
solution of the equation

√
f (x) =

√
g(x) it has to satisfy the condition f (x) ≥ 0∧g(x) ≥ 0

which is equivalent to x ∈ A1. We can therefore rule out all x < A1 as possible strong
solutions to our equation.

Let x ∈ A1 be given. It follows that{
f (x) ≥ 0
g(x) ≥ 0 =⇒

{√
f (x) ≥ 0√
g(x) ≥ 0,

(24)

and therefore, using Lemma 2.1, we have√
f (x) =

√
g(x) ⇐⇒ (

√
f (x))2 = (

√
g(x))2 [via Lemma 2.1] (25)

⇐⇒ f (x) = g(x) ⇐⇒ x ∈ S0. (26)

We conclude that the set of all strong solutions to our equation is given by S1 = S0 ∩ A.
Formal solutions: We now look for additional solutions that violate the requirement

f (x) ≥ 0 ∧ g(x) ≥ 0. Let x ∈ A ∩ B be given. We distinguish between the following
cases.
Case 1: Assume that f (x) < 0 ∧ g(x) ≥ 0. Then

Im(
√

f (x)) = Im(
√
g(x)) [via the equation] (27)
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= 0, [via g(x) ≥ 0] (28)

which is a contradiction because f (x) < 0 =⇒ Im(
√

f (x)) , 0 consequently this case
contributes no additional solutions.
Case 2: Assume that f (x) ≥ 0 ∧ g(x) < 0. Then, with similar argument, this also leads
to the same contradiction, and therefore this case too contributes no additional solutions.
Case 3: Assume that f (x) < 0 ∧ g(x) < 0. Then√

f (x) =
√
g(x) ⇐⇒ i

√
− f (x) = i

√
−g(x) (29)

⇐⇒
√
− f (x) =

√
−g(x) (30)

⇐⇒ (
√
− f (x))2 = (

√
−g(x))2 [via Lemma 2.1] (31)

⇐⇒ − f (x) = −g(x) ⇐⇒ f (x) = g(x), (32)

consequently this case contributes the solutions

S′0 = {x ∈ A ∩ B | f (x) = g(x) < 0}. (33)

From the above argument, we conclude that the set of all formal solutions is given by

S2 = {x ∈ A ∩ B | f (x) = g(x) ≥ 0} ∪ {x ∈ A ∩ B | f (x) = g(x) < 0} (34)

= {x ∈ A ∩ B | f (x) = g(x)} = S0. (35)

�

4. Equations with one radical

For equations with one radical that take the form
√

f (x) = g(x), an interesting result
is that the set of all strong solutions is always equal to the set of all formal solutions.
Furthermore, it is not necessary to require the restriction f (x) ≥ 0 when determining the
domain of the equation.

The solution technique is as follows:

(1) The domain of the equation is determined by requiring that the left-hand-side of
the equation be greater or equal to zero:

g(x) ≥ 0⇐⇒ · · · ⇐⇒ x ∈ A. (36)

(2) We solve the equation by squaring both sides:√
f (x) = g(x) ⇐⇒ f (x) = [g(x)]2 ⇐⇒ · · · ⇐⇒ x ∈ S0. (37)

(3) We accept only those solutions of S0 that belong also to the domain A of the
equation. Consequently, the solution set is given by S = S0 ∩ A.

We stress again that the set of all strong solutions and the set of all formal solutions
coincide and are both given by S = S0 ∩ A. Unlike the case previously discussed in
Section 2, all solutions that are rejected by the above procedure do not satisfy the original
equation, either in the strong sense or in the formal sense. An intuitive way to explain
all this is to note that any solution obtained from solving the equation f (x) = [g(x)]2

will satisfy f (x) ≥ 0 since f (x) is set equal to the square of a real number. That in turn
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retroactively justifies squaring both sides of the original radical equation after imposing
the restriction g(x) ≥ 0. The proof of Proposition 4.2 also considers why no solutions
are possible with g(x) < 0. The solution technique is illustrated via Example 4.1 and is
formally justified by Proposition 4.2, both given in the following.

Example 4.1 Solve the equation
√

x2 − 2x + 6 + 3 = 2x.

Solution : We note that√
x2 − 2x + 6 + 3 = 2x ⇐⇒

√
x2 − 2x + 6 = 2x − 3. (38)

To determine the domain of the equation we require that

2x − 3 ≥ 0⇐⇒ 2x ≥ 3⇐⇒ x ≥ 3/2⇐⇒ x ∈ [3/2,+∞) ≡ A. (39)

Solving the equation for all x ∈ A gives

Eq. (38)⇐⇒ x2 − 2x + 6 = (2x − 3)2 ⇐⇒ x2 − 2x + 6 = 4x2 − 12x + 9 (40)

⇐⇒ (4 − 1)x2 + (−12 + 2)x + (9 − 6) = 0⇐⇒ 3x2 − 10x + 3 = 0 (41)

⇐⇒ · · · ⇐⇒ x = 3 ∨ x = 1/3. (42)

The solution x = 3 ∈ A is accepted and the solution x = 1/3 < A is rejected. It follows
that the solution set of all strong solutions or all formal solutions is given by S = {3}. �

Proposition 4.2: Consider the equation
√

f (x) = g(x) with f : A→ R and g : B → R
polynomial or rational functions with A ⊆ R and B ⊆ R. The set S1 of all strong solutions
and the set S2 of all formal solutions to the equation are given by

S1 = S2 = S0 ∩ A1, (43)

S0 = {x ∈ A ∩ B | f (x) = [g(x)]2}, (44)

A1 = {x ∈ A ∩ B | g(x) ≥ 0}. (45)

Proof : First, we note that the equation does not have any formal solutions with f (x) < 0.
To show a contradiction, let us assume that x ∈ A ∩ B is a formal solution such that
f (x) < 0. Then

Im(g(x)) = Im(
√

f (x)) [via the equation] (46)

, 0. [via f (x) < 0] (47)

This is a contradiction, since g has been defined as a real-valued mapping g : B → R, and
therefore Im(g(x)) = 0. It follows that all formal solutions of the original equation will
satisfy the inequality f (x) ≥ 0. This also implies that any formal solutions that may exist
will be found under the next case, and as such, they will also be strong solutions.

To solve the equation, let x ∈ A ∩ B be given such that f (x) ≥ 0. We distinguish
between the following cases:
Case 1: Assume that g(x) < 0. Since f (x) ≥ 0 =⇒

√
f (x) ≥ 0, it follows that

√
f (x) ,

g(x), consequently the equation does not have any formal solutions with g(x) < 0.
Case 2: Assume that g(x) ≥ 0. Since we also have f (x) ≥ 0 =⇒

√
f (x) ≥ 0, we can use
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Lemma 2.1 and write√
f (x) = g(x) ⇐⇒ f (x) = [g(x)]2 ⇐⇒ x ∈ S0. (48)

From the above argument we conclude that the set S1 of all strong solutions and the set
S2 of all formal solutions are given by

S1 = S2 = {x ∈ A ∩ B | | f (x) = [g(x)]2 ∧ g(x) ≥ 0} = S0 ∩ A1. (49)

�

It is worth mentioning that for equations of the form
√

ax + b = g(x), where g(x) is
a polynomial or rational function, an alternate method by Bompart [8] reduces them to
equations of the form

√
Ax + B = C with A, B,C constants. Then, it is clear that if C < 0,

then there are no solutions, and when C ≥ 0, we are justified by Lemma 2.1 to square both
sides of the equation without introducing any extraneous solutions by doing so. The idea
is to apply an auxiliary change of variables y =

√
ax + b, solve for x (with the implicit

assumption that y ≥ 0) to obtain x = (1/a)(y2− b), and substitute to the original equation
thereby obtaining an equivalent equation y = g((1/a)(y2 − b)) which is going simplify
either to a polynomial or to a rational equation. Once we find all y solutions, we solve
the corresponding equations

√
ax + b = y with respect to x for all solutions y that satisfy

y ≥ 0.
A similar technique was later proposed by Roberti [9] that bypasses the auxiliary sub-

stitution, but works only when g(x) is also a linear function with respect to x. Nagase
[7] then used the technique of Roberti [9] to give the general solution to equations of the
form

√
ax + b = cx + d. As for the original technique by Bompart [8], it is very nice

when it works but ineffective when the radical contains a quadratic or a polynomial of
higher order. On the other hand, although not noted by either Bompart [8] or Roberti
[9], this substitution technique will also work with radical equations that follow the form
√

(ax + b)/(cx + d) = g(x) with g(x) a polynomial or rational function. Example 4.3
illustrates the technique.

Example 4.3 Solve the equation
√

2x + 3 = 3x − 6.

Solution : We define y =
√

2x + 3 and note that

y =
√

2x + 3⇐⇒ 2x + 3 = y2 ⇐⇒ 2x = y2 − 3⇐⇒ x = (1/2)(y2 − 3).

It follows that

√
2x + 3 = 3x − 6⇐⇒ y = 3(1/2)(y2 − 3) − 6⇐⇒ 2y = 3(y2 − 3) − 12

⇐⇒ 2y = 3y2 − 9 − 12⇐⇒ 3y2 − 2y − 21 = 0

⇐⇒ · · · ⇐⇒ y = 3 ∨ y = −7/3

⇐⇒
√

2x + 3 = 3 ∨
√

2x + 3 = −7/3. (50)

Noting that the second equation has no real solutions, it follows that

Eq. (50)⇐⇒
√

2x + 3 = 3⇐⇒ 2x + 3 = 9⇐⇒ 2x = 9 − 3 = 6⇐⇒ x = 3

�
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5. Equations with a sum of roots equal to zero

Equations that simplify to a sum of square roots set equal to zero can be solved directly
using Lemma 2.2. For n = 2 and n = 3, Lemma 2.2 reduces to the following equivalencies:√

f (x) +
√
g(x) = 0⇐⇒ f (x) = 0 ∧ g(x) = 0, (51)√

f (x) +
√
g(x) +

√
h(x) = 0⇐⇒ f (x) = 0 ∧ g(x) = 0 ∧ h(x) = 0. (52)

Similar statements follow for all natural numbers n > 3. These equivalencies immediately
remove the square roots, so there is no need to square both sides of the equation in order
to eliminate the roots. Furthermore, there is no need to impose any restrictions in order to
accept or reject solutions, as in the equation types discussed in Section 2 and Section 3.
The solution technique is to simply use the equivalencies that follow from Lemma 2.2 to
eliminate the square roots. We illustrate it with Example 5.1 and Example 5.2 given in the
following:

Example 5.1 Solve the equation
√

x2 − 9 +
√

x2 + 5x + 6 = 0.

Solution : Since,

√
x2 − 9 +

√
x2 + 5x + 6 = 0⇐⇒

{
x2 − 9 = 0
x2 + 5x + 6 = 0 ⇐⇒

{
(x − 3)(x + 3) = 0
(x + 2)(x + 3) = 0 (53)

⇐⇒

{
x − 3 = 0 ∨ x + 3 = 0
x + 2 = 0 ∨ x + 3 = 0 ⇐⇒

{
x = 3 ∨ x = −3
x = −2 ∨ x = −3 (54)

⇐⇒ x ∈ {3,−3} ∩ {−2,−3} ⇐⇒ x = −3, (55)

it follows that the set of all formal or strong solutions is given by S = {−3}. �

Example 5.2 Solve the equation
√

x2 − 1 +
√

x2 + 3x + 2 = −
√

x2 + 4x + 3.

Solution : Since,√
x2 − 1 +

√
x2 + 3x + 2 = −

√
x2 + 4x + 3 (56)

⇐⇒
√

x2 − 1 +
√

x2 + 3x + 2 +
√

x2 + 4x + 3 = 0 (57)

⇐⇒




x2 − 1 = 0
x2 + 3x + 2 = 0
x2 + 4x + 3 = 0

⇐⇒




(x − 1)(x + 1) = 0
(x + 1)(x + 2) = 0
(x + 1)(x + 3) = 0

(58)

⇐⇒




x − 1 = 0 ∨ x + 1 = 0
x + 1 = 0 ∨ x + 2 = 0
x + 1 = 0 ∨ x + 3 = 0

⇐⇒




x = 1 ∨ x = −1
x = −1 ∨ x = −2
x = −1 ∨ x = −3

(59)

⇐⇒ x ∈ {−1, 1} ∩ {−1,−2} ∩ {−1,−3} ⇐⇒ x = −1, (60)

it follows that the set of all formal or strong solutions is given by S = {−1}. �

6. Application to inverse functions

Radical equations arise naturally when attempting to find the inverse function f −1 of a
function f whose definition involves an expression with square roots of polynomials or
rational functions. Recall that given a function f : A → f (A) with A ⊆ R, we find the
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inverse function f −1 : f (A) → A by solving the equation f (y) = x with respect to y for
all x ∈ R. The domain of f −1 is the range f (A) of f , and can be calculated by finding
all x ∈ R such that the equation f (y) = x has at least one solution, when solving it
with respect to y. Furthermore, showing that whenever at least one solution exists it is
also unique, establishes the existence of the inverse function. In order to carry out such
an argument rigorously and effectively, the rigorous understanding of radical equations
promoted in this article is essential. We illustrate this procedure with Example 6.1 given
below.

Example 6.1 Define the formula and the domain of the inverse function f −1 correspond-
ing to the function f defined by f (x) = 2 + (1/3)

√
3x + 1.

Solution : First, we note that

f −1(x) = y ⇐⇒ f (y) = x ⇐⇒ 2 + (1/3)
√

3y + 1 = x (61)

⇐⇒ 6 +
√

3y + 1 = 3x ⇐⇒
√

3y + 1 = 3x − 6 (62)

⇐⇒

{
3y + 1 = (3x − 6)2

3x − 6 ≥ 0. (63)

The domain A of the inverse function f −1 is obtained by solving the restriction:

3x − 6 ≥ 0⇐⇒ x − 2 ≥ 0⇐⇒ x ≥ 2⇐⇒ x ∈ [2,+∞) ≡ A. (64)

For all x ∈ A, we have:

Eq. (63)⇐⇒ 3y + 1 = 9(x − 2)2 ⇐⇒ 3y = 9(x − 2)2 − 1 (65)

⇐⇒ y = 3(x − 2)2 − 1/3. (66)

It follows that the inverse function f −1 is defined by:

f −1(x) = 3(x − 2)2 − 1/3, ∀x ∈ [2,+∞). (67)

�

Here, the quantifier is used to indicate that the domain of f −1 is the set A = [2,∞).
In reviewing Example 6.1, it is important to emphasize that one cannot find the correct
domain of the inverse function f −1 from the resulting formula for f −1(x). Since f −1(x)
is found to be equal to a polynomial, the domain implied by the formula for f −1(x) is
the set R or all real numbers. The correct procedure for finding the domain of f −1 is by
collecting all x ∈ R for which the equation f (y) = x has a solution, when we solve with
respect to y, also showing that the solution is always unique, when it exists.

7. Conclusion

As has been reviewed in the introduction, the problem of extraneous solutions that emerge
in the course of the solution of radical equations has a long and interesting history. The
prevalent approach of most contemporary textbooks is to solve the equation with equiv-
alence violating manipulations and then identify any resulting extraneous solutions by
testing all obtained solutions against the original equation. This is conceptually unsat-
isfactory and in certain cases also impractical. In this article, I presented more rigorous
solution procedures for solving radical equations of depth 1 in a way that identifies the
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extraneous solutions in the course of the solution process, thereby making an explicit
verification of all solutions unnecessary. I have also stated and proved Lemma 2.2, Propo-
sition 3.3, and Proposition 4.2 that justify these solution procedures and illustrated them
with solved examples. It should be noted that the assumption in Proposition 3.3 and Propo-
sition 4.2 that the functions f , g be polynomials or rational functions is needed to justify
the results about the formal solutions set, but can be removed if we only want to know the
strong solutions set. The improved solution techniques can be easily taught in lower-level
coursework. The propositions and the corresponding proofs are more appropriate in an
honors course or in the context of teaching students the basics of proofwriting.

One obvious application of the improved solution procedures, where they are clearly su-
perior to the standard approach, is in tackling parametric radical equations, which emerge
naturally in the context of problems where want to state the definition and implicit domain
of the inverse of a function whose definition involves an expression where the variable
appears under at least one square root. Although the solution technique corresponding
to Proposition 4.2 was also discussed informally by Gurevich [15], I learned all of these
techniques much earlier from Pistofidis [13, 14]. Furthermore, the solution procedure for
radical equations that follow the form of Eq. (1) raises the need to clarify the difference
between formal and strong real-valued solutions, and the procedure for radical equations
that follow the form of Eq. (3) do not require any squaring or the use of restriction sets.
The distinction between formal and strong solutions, to the best of my knowledge, is
original to this article.

We conclude with some points of comparison between the standard technique (verify
solutions against the original equation) and the procedures proposed earlier. The advan-
tage of the standard technique is that it is easy to teach, and if the problems have integer
solutions or if we allow use of calculators, the verification step is not too cumbersome.
As such, the standard technique may be effective in preparing students to pass easy stan-
dardized tests, but that is done at the expense of deeper conceptual understanding. The
standard technique is also very ineffective against parametric radical equations. On the
other side, our proposed solution procedures are also very simple to execute, at least for
radical equations with depth 1, have a wide range of generality, encourage conceptual
understanding and correct writing of mathematical arguments, and are a good foundation
for taking on more complex problems, such as parametric radical equations. A possible
disadvantage can be that students will have to be able to identify different equation forms
and apply the appropriate procedure for each form. However, this can also be seen as an
advantage in that confronting students with the need to choose the appropriate procedure
develops mathematical maturity that will be of use in more advanced courses. Ultimately,
the decision depends on whether the chosen learning objective is to just teach one more
skill at a very basic level, or to teach at a deeper level and promote the development of
mathematical maturity.

Acknowledgements

I was originally exposed to the technique of accepting or rejcting solutions to radical
equations via imposing appropriate restrictions by my high-school Mathematics Teacher
Mr. Alexandros Pistofidis. and have been passing it along to my students for many years
already. His original lecture notes are available by the author upon request.

Disclosure statement

No potential conflict of interest was reported by the author.



1290 REFERENCES

ORCID

Eleftherios Gkioulekas: http://orcid.org/0000-0002-5437-2534

References

[1] K.R. Manning, A history of extraneous solutions, The Mathematics Teacher 63 (1970), 165–175.
[2] J.M. Taylor, Equations, The Mathematics Teacher 2 (1910), 135–146.
[3] A.S. Hegeman, Certain cases of extraneous roots, The Mathematics Teacher 15 (1922), 110–118.
[4] R.E. Bruce, Equivalence of equations in one unknown, The Mathematics Teacher 24 (1931), 238–244.
[5] C.B. Allendoerfer, The method of equivalence or how to cure a cold, The Mathematics Teacher 59 (1966), 531–535.
[6] G.B. Huff and D.F. Barrow, A minute theory of radical equations, The American Mathematical Monthly 59 (1982),

320–323.
[7] G. Nagase, Existence of real roots of a radical equation, The Mathematics Teacher 80 (1987), 369–370.
[8] B. Bompart, An alternate method for solving radical equations, The Two-Year College Mathematics Journal 13

(1982), 198–199.
[9] J.V. Roberti, Radical solutions, The Mathematics Teacher 77 (1984), 166.

[10] J.W. Beach, Equations involving radicals, School Science and Mathematics 52 (1952), 473–474.
[11] S. Schwartz, C.E. Moulton, and J. O’Hara, Constructing radical equations with two roots–a student-generated algo-

rithm, The Mathematics Teacher 90 (1987), 742–744.
[12] S. Andreadakis, B. Katsargiris, S. Papastavridis, G. Polizos, and A. Sverkos, Algebra b lukeiou,

ITYE Diofantos, Athens, Greece, 2012, Retrieved on 2/28/2017 from https://goo.gl/L1TLzw linked from
http://ebooks.edu.gr/new/allcoursespdf.php.

[13] A. Pistofidis, Algebra. A Lukeiou, unpublished lecture notes, Thessaloniki, Greece., 1989, Retrieved on 2/26/2018
from http://faculty.utrgv.edu/eleftherios.gkioulekas/OGS/HighSchool/Pistofides/Algebra-2.pdf or equivalently from
https://goo.gl/E7fSEq.

[14] A. Pistofidis, Algebra. B Lukeiou, unpublished lecture notes, Thessaloniki, Greece., 1990, Retrieved on 2/26/2018
from http://faculty.utrgv.edu/eleftherios.gkioulekas/OGS/HighSchool/Pistofides/Algebra-3.pdf or equivalently from
https://goo.gl/XZg7Dt.

[15] V.J. Gurevich, A reasonable restriction set for solving radical equations, The Mathematics Teacher 96 (2003), 662–
664.


	Using restrictions to accept or reject solutions of radical equations
	Recommended Citation

	tmp.1647966794.pdf.BXswg

