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Study of As(III) and As(V) Oxoanion Adsorption onto Single and
Mixed Ferrite and Hausmannite Nanomaterials

Sandra Garcia, Saima Sardar, Stephanie Maldonado, Velia Garcia, C. Tamez, and J. G.
Parsons*

Department of Chemistry the University of Texas-Pan American 1201 W University Dr. Edinburg
TX, 78539

Abstract

The removal of arsenic(III) and arsenic(V) from an aqueous solution through adsorption on to

Fe3O4, MnFe2O4, 50% Mn substituted Fe3O4, 75% Mn substituted Fe3O4, and Mn3O4

nanomaterials was investigated. Characterization of the nanomaterials using XRD showed only

pure phases for Mn3O4, MnFe2O4, and Fe3O4. The 50% and 75% substituted nanomaterials were

found to be mixtures of Mn3O4 and Fe3O4. From batch studies the optimum binding pH of

arsenic(III) and arsenic(V) to the nanomaterials was determined to be pH 3. The binding capacity

for As(III) and As(VI) to the various nanomaterials was determined using Isotherm studies. The

binding capacity of Fe3O4 was determined to be 17.1 mg/g for arsenic(III) and 7.0 mg/g for

arsenic(V). The substitution of 25% Mn into the Fe3O4 lattice showed a slight increase in the

binding capacity for As(III) and As(VI) to 23.8 mg/g and 7.9 mg/g, respectively. The 50%

substituted showed the maximum binding capacity of 41.5 mg/g and 13.9 mg/g for arsenic(III) and

arsenic(V). The 75% Mn substituted Fe3O4 capacities were 16.7 mg/g for arsenic(III) and 8.2

mg/g for arsenic(V). The binding capacity of the Mn3O4 was determined to be 13.5 mg/g for

arsenic(III) and 7.5 mg/g for arsenic(V). In addition, interference studies on the effects of SO2−
4,

PO3−
4, Cl−, and NO−

3 investigated. All the interferences had very minimal effects on the As(III)

and As(V) binding never fell below 20% even in the presence of 1000 ppm interfering ions.

1. Introduction

Arsenic is an element that is ubiquitous throughout the world: found in the earth’s crust, in

both surface and ground water, and within in the human body [1,2]. The toxic effects of

arsenic in humans come from the ingestion of arsenic contaminated food and water.

However, in general the inorganic compounds of arsenic more toxic than the organic

arsenicals and are common contaminates in drinking water [1]. The As(III) (arsenite)

compounds are much more toxic than the As(V) (arsenate) compounds [2]. Arsenic has been
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linked to variety of health effects when ingested in small consistent dosages through

combined food or drinking water [1,2]. The effects of As include abnormal skin conditions,

gastrointestinal problems, neurological effects, and diabetes [1-5]. Furthermore, links

between arsenic exposure and several types of cancer have been established, which

including: lung, skin, kidney, liver, and prostate [4]. Due to the numerous health risks the

Environmental Protection Agency has set the MCL of arsenic in drinking water from to

0.010 parts per million in an effort to reduce number the health effects caused by the long-

term ingestion of arsenic in the US population. [2, 6]

There are several methods to remove arsenic from drinking water, which include

precipitation, ion exchange, membrane process, coagulation, and adsorption [7-12]. In

general technologies to remove arsenic from drinking water are generally non-specific and

expensive to water treatment plants. However, nano-adsorbents may provide a more cost

effective technology for the removal of As(III) and As(V) from contaminated water [10, 11,

14-17]. Nanomaterials are a promising emerging technology with many different

applications due to their enhanced reactivity and high surface area to volume ratio.

Adsorbents have been studied for the remediation/removal of many different ions from

aqueous solution. More recently, nanomaterials have been investigated for the removal of

inorganic contaminates from aqueous solution, including the inorganic forms of arsenic.

Adsorbents such as activated alumina, clay based materials, red mud (the waste from

aluminum processing), Al-WTR (water treatment residuals) Fe-WTR, iron oxide materials,

manganese oxide nanomaterials, granular ferric oxide, as well as metal sulfide nanomaterials

[14-19].

Studies investigating the adsorption of As(III) and As(V) using activated alumina have

shown the effect of pH, surface oxidation, and competing ions [6]. It has been shown that

between pH 7and 8 activated alumina has a net positive charge, which showed a preference

for the adsorption of anions from solution including arsenic. Acidic pHs are generally

considered optimum for arsenic removal with activated alumina. Genc-Fuhrman et al. found

arsenic adsorption using activated red mud was effective for As(V) adsorption. The

optimum pH for As(V) adsorption was 4.5 with a removal of approximately 100%. In

addition, the desorption of As(V) was found to be optimum pH 11.6 with a maximum

desorption of 40%. In contrast, the optimum pH for As(III) binding was found to be 8.5, and

the removal efficiency was dependent on the initial As(III) concentration [20]. In a similar

study Altundogan et al. also investigated the application of activated red mud on arsenic

removal [21]. Altundogan et al. showed the optimum binding pH range for As(III) was from

5.8 to .5 and the optimum pH range for As(V) binding was from 1.8 to 3.5; with a maximum

removal of As(V) was 96.52% and 87.54% for As(III) [21].

Adsorption techniques using nanoparticles have shown promise as being an effective

technique to remove ions from water. Luther et al. showed the adsorption of As(III) to

Fe2O3 and Fe3O4 nanomaterials were 1.250 mg/g and 8.196 mg/g after one hour of contact

time, respectively [22]. However, at a contact time of 24 hours the 20 mg/g for Fe2O3 and

5.680 mg/g for Fe3O4, was observed for As(III) binding to the nanomaterials [22]. The

binding capacities for As(V) were lower in magnitude at both the one hour and 24 hour

contact time. The Fe2O3 nanomaterials had similar capacities of 4.6 mg/g and 4.9 mg/g for
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the one hour and 24 hour contact times for As(V) binding, respectively. Whereas, the Fe3O4

nanomaterial had capacities of 6.7 and 4.8 for the 1 and 24 hour contact times, respectively

for As(V) binding [22]. Parsons et al. have investigated the binding of As(III) and As(V)

binding to Mn3O4, a MnFe2O4 and Fe3O4 nanomaterials [11]. In this study the maximum

binding capacity for the Fe3O4 was 0.0322 mg/g and 1.575 mg/g for the As(III) and As(V),

respectively [11]. The binding capacity of the MnFe2O4 nanomaterial had a binding capacity

of 0.718 and 2.212 mg/g for As(III) and As(V) respectively. The Mn3O4 nanomaterial had a

binding capacity of 0.0089 and 0.211 for the As(III) and As(V), respectively [11]. In

addition, at the concentrations used the pH dependency of the arsenic binding was pH

dependent increasing from pH 2 to pH 6. Al-WTRs have been shown to have varying

between capacities for As(III) and As(V) of 1,8-15 mg/g for As(V) and between 7.500-15

mg/g for As(III) after 48 hours of equilibrium with a pH range from 6-6.5 [17]. Latterite iron

concretions have been shown to have As sorption capacities of 909 ug/g and 714 ug/g for

As(III) and (V), respectively at pH 7 [23].

In the present study the effect of Manganese (Mn) substitution into the Fe3O4 lattice from

25% to 75% and pure Mn3O4 on arsenic(III) and arsenic(V) adsorption. The nanomaterials

were synthesized through a precipitation process and characterized using XRD. Batch

studies were performed to determine the effect of pH and the effect of interfering ions on the

adsorption of both As(III) and As(V) onto the different metal oxide nanomaterials. In

addition, the binding capacities for the different materials were determined using isotherm

studies, which were found to follow the Langmuir Isotherm.

2. Methodology

2.1 Synthesis of the nanoadsorbents

The synthesis of the Fe3O4 nanomaterial a 1.0 L of metal ion solution containing 30.0 mM

of Fe(II) (from FeCl2), was prepared. For the Manganese substituted nanomaterials a

specific percentage of the Iron(II) was substituted with manganese(II) (from MnCl2). The

solution for the 25% Mn −75%Fe consisted of 7.5 mM Mn2+ and 22.5 mM Fe2+. The

solution for the synthesis of the 50% Mn-50% Fe, contained 15 mM Mn2+ and 15 mM Fe2+.

The 75% Mn-25%Fe was synthesized from a solution containing 22.5 mM Mn2+ and 7.5

mM Fe2+. Finally the solution for the synthesis of the Mn3O4 nanomaterial consisted of a

30.0 mM solution of Mn2+. The prepared solutions were then titrated using 100 mL of a 1.0

M NaOH solution to obtain a 1:3 ratio of M+:OH−, over approximately 2 hours. The

samples were then heated 90°C for hour under constant stirring. Subsequent to heating the

samples were then cooled to room temperature and centrifuged at 3000 rpm (Fisher

Scientific 8K, Houston, TX) for 5 min. The supernatants were discarded and the solid

sample was suspended in 18 Mω deionized (DI) water and centrifuged again to remove any

unreacted starting material and reaction byproducts of the reaction. The samples were

washed twice with 18 MΩ DI to ensure clean materials for the subsequent reactions. After

washing, the nanomaterials were oven dried at 70 °C until dry.
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2.2 XRD characterization

The samples were characterized using X-ray diffraction in combination and fitted for phase

using the FullProf Suite programs. The XRD patterns were collected at room temperature

using a Rigaku Miniflex X-ray powder diffractometer (Rigaku Coporation, The Woodlands,

TX). The samples were homogenized using a mortar and pestle and then placed on an

aluminum sample holder. The samples were then diffracted from 20 to 60 degrees in 2θ

using a 2 s counting time and a stepping rate of 0.001 °/min. The fittings were performed

using crystallographic data from the literature and the FullProf 2001 Suite programs using

the Le Bail fitting procedure with fixed intensities of the diffraction lines [24-27]. The

average grain size of the nanoparticles was determined using the Scherrer’s equation and a

Gaussian fitting of three independent diffraction peaks.

2.3 pH profile

The effect of pH binding of arsenic(III) and arsenic(V) was evaluated from pH 2 to 6 on the

synthesized nanoadsorbents Fe3O4, 25 %Mn substituted Fe3O4, 50 %Mn substituted Fe3O4,

75 %Mn substituted MnFe3O4, and the Mn3O4. Arsenic (III) and Arsenic (V) solutions were

prepared at a concentration of 300 ppb in 18 MΩ DI water and pH adjusted to pH 2.0, 3.0,

4.0, 5.0 and 6.0. The pH of the solution was adjusted using either dilute sodium hydroxide or

dilute nitric acid. A 4.0 mL aliquot of the pH adjusted solutions added to 10 mg of the

nanomaterial in a 5 mL polyethylene test tube. The reaction mixture was capped, placed on a

rocker, and equilibrated for 1 hour. Control samples containing only the arsenic ions were

treated the same as the samples. Both samples and control solutions performed in triplicate

for statistical purposes. After equilibration, the samples were centrifuged at 3000 RPM for 5

min. The supernatant from each tube was saved for analysis using ICP-OES. All ICP-OES

analyses were performed on a Perkin Elmer Optima 8300 DV (Perkin-Elmer, Shelton, CT).

All calibration curves had correlation coefficients (R2) of 0.99 or better.

2.4 Capacity studies

A mass of 10 mg of each of the nanomaterial were weighted out in triplicate, and placed in

individual test tubes. The 10 mg of nanomaterial then had 4 mL of a either an As(III) or

As(V) solution with concentrations of either 3ppm, 30ppm, 150ppm, 300ppm or 1,000ppm,

which was previously adjusted to pH 3, was added to the tube. The nanomaterials and

arsenic solutions were capped, placed on a rocker, and equilibrated for one hour. In addition,

control samples containing only the As(III) or As(V) ions were also equilibrated for one

hour. Subsequent to equilibration, the sample and control solutions were centrifuged at 3000

RMP for 5 minutes. The supernatants were decanted and saved for analysis using ICP-OES.

All ICP-OES calibration curves used had a minimum R2 of 0.99.

2.5 Interference studies

A mass of 10 mg of the nanomaterials was weighed in triplicate and placed into a 5 mL test

tube. A 4 mL aliquot of a solution containing either 300 ppb As(III) or As(V) with varying

concentrations of the ions Cl−, NO−
3, SO2−

4, or PO3−
4, pH adjusted to 3. The interfering

solutions contained individual ion concentrations of 0.3, 3, 30, 300, or 1000ppm. In

addition, combined interference samples were prepared containing all the interfering ions
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together at 0.3, 3, 30, 300, or 1000ppm, in the presence of 300 ppb As(III) or As(V). In

addition, control samples containing only the arsenic and the interfering ions were prepared

and treated the same as the samples. All samples and control reactions were performed in

triplicate for statistical purposes. The samples and controls were placed on a rocker and

equilibrated for one hour. Subsequent to equilibration, the reaction and control samples were

centrifuged at 3000rpm for 5 minutes and the supernatants were saved for analysis using

ICP-OES. All ICP-OES calibration curves obtained had a minimum R2 0.99.

2.6 ICP-OES analysis

ICP-OES analysis was performed using a Perkin Elmer Optima 8300 DV (Perkin Elmer,

Shelton CT) ICP-OES. The calibrations curves for the low concentration reactions were

performed from 0.01 ppm to 0.5 ppm using. The higher concentration, the capacity studies,

samples had calibration curves extended to 50 ppm. Samples that were above 50 ppm in

concentration were diluted to run within the calibration range. All calibration curves

obtained for analysis had R2 of 0.99 or better. The operational parameters for the ICP-OES

are shown below in Table 1.

3.0 Results and Discussion

3.1 XRD Results

Figure 1 shows the diffraction patterns obtained for the synthesized nanomaterials after

drying. In addition, the refined lattice parameters for the substitution of the Mn into the

Fe3O4 lattices from the fitting are shown in Table 2. The diffraction patterns were fitted for

both phase of the material using the Le Bail fitting procedure in the Fullproff software [24].

As can be seen in the fitting shown in Figure 1 A the Fe3O4 sample diffraction patterns

matches very well with the diffraction pattern for Magnetite. This is indicated by the

presence of the diffraction peaks (Bragg Peaks) at 30.19° (220), 35.56° (311), 37.20° (222),

43.22° (400), 53.63° (422) and the diffraction peak located at 57.17° (333/511), which has

been shown in the literature corresponding to a space group of FD-3M [25]. The 25%

Mn-75Fe material presented in Figure 1 B shows the same peaks indicating that the material

retains the Fe3O4 structure and lattice, which is the MnFe2O4 crystal lattice [26]. However,

the 50% Mn-50% Fe material presented in Figure 1 C shows the presence of Mn3O4 in the

sample. The presence of the Mn3O4 is indicated by the appearance of the shoulder on the

Fe3O4 311 (35.56°) diffraction plane, which corresponds to the 211 (36.14°) and 202

(36.45°) diffraction planes of Mn3O4 phase [27]. It should be noted here the diffraction

patterns with two sets Bragg peaks that the higher Bragg peaks are for the Fe3O4 phase and

the lower Bragg peaks are for the Mn3O4 phase. Furthermore, the 75% Mn-25% Fe shown

in Figure 1 D shows the development of much stronger diffraction planes of the Mn3O4

phase. From the 75% Mn-25% Fe reaction product diffraction peaks in the sample

corresponding to the 220 (30.19°), 311 (35.56°), 222 (37.20°), 400 (43.22°), and the 333/511

(57.17°) diffraction planes for Fe3O4 are visible. In addition, in the 75% Mn-25% Fe

material the 112 (28.88°), 103 (32.33°), 211 (36.14°), 202 (36.45°), 004 (38.13°), and the

213 (45.38°) are visible in the sample [27]. Figure 1 D presents the diffraction pattern of the

Mn3O4 nanomaterial as synthesized as can from the fitting of this diffraction pattern the

following diffraction peaks were found 28.88° (112), 30.96° (200), 32.33° (103), 36.14°
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(211), 36.45° (202), 38.13° (004), 44.36° (220), 45.38° (213), 49.83° (204), 50.76° (105),

53.80° (312), 55.96° (303), 58.43° (321), 59.83° (224), which correspond to Mn3O4 in the

I41/AMD lattice [27]. In addition, the average grain size of the nanomaterials was

determined using the Scherer equation, which are presented in Table 3. As can be seen in

Table 3 the average grain sizes of the nanomaterials do not change dramatically between the

different preparation of the materials. All the synthesized nanomaterials had average grain

sizes ranging from 15-20 nm. Only in the 50% Mn-50% Fe mixed phase material that the

average grain size of the Mn3O4 nanomaterials could not be determined.

3.2 pH studies

The binding of both As(III) and As(V) to the synthesized nanomaterials are varying pH from

2.0 to 6.0 is shown in Figures 2A through E. As can be seen from Figure 2 the binding of

As(III) to the Fe3O4 and substituted MnFe2O4 is for the most part pH independent from pH

2 through pH 6. However, the binding of the As(III) to the Mn3O4 nanomaterial becomes

pH dependent with decreasing binding with increasing pH. As can be seen in Figure 3 E the

binding is almost eliminated at pH 5. In addition the As(VI) anion also follows a similar

tend as the As(III) oxoanion. However, the binding of As(V) to the MnFe2O4 nanomaterial

appears to be affected by pH, showing a decrease in the binding efficiency from

approximately 100% at pH 3 to approximately 60% at pH 5. The high binding of both

As(III) and As(V) to iron oxide based nanomaterials has been shown in the literature to be

pH independent for both As(III) and As(V) to Fe3O4 [23]. The decrease in the binding

observed with the As(III) and As(V) binding to the MnFe2O4 nanomaterial and the Mn3O4

nanomaterial may be due to the presence of the Mn ions in the phase. The XRD data

suggests that the Mn in the MnFe2O4 material is substituted into the material, whereas in the

higher combination materials there are two distinct phases the Fe3O4 and Mn3O4. The

independence in the binding of the As(III) and As(V) for the 50% Mn sample and the 75%

Mn sample may be due to the presence of the Fe3O4 phase, which is performing the binding

and not the Mn3O4 phase above pH 3. Whereas, the 25% phase the substitution of the Mn

into the Fe sites is suggested by the diffraction data and the reduction of the lattice

parameters as shown in Table 2. The substitution of the Mn2+ in crystal for the Fe2+ may

actually inhibit the binding efficiency of the material. Mn based materials have shown to

produce redox coupling with chromium and arsenic ions in solution at low pH [28, 29]. The

binding may be inhibited or decrease above pH 4 in the Mn3O4 due to the inability of the

material to produce a redox couple with the ions. Alternatively the PZC (point of zero

charge) of the nanomaterials plays an important role for the binding of metal ions to

nanomaterials. From the literature it can be seen that many of metal oxide nanomaterials

especially Fe3O4 have PZC above pH 6 (ranges from 6.5 to 9.9) [30]. However, Mn3O4 has

a PZC around pH 4.5, which helps to explain the dramatic decrease in binding observed

between pH 4 and pH 5 for the Mn3O4 nanomaterial as seen Figure 2 E [31]. At a pH of 4.5

the nanomaterial becomes neutral change and there is no preference in the binding.

However, at pH 5 the nanomaterial becomes negatively charged at the surface and will repel

the As(III) and As(V) oxoanions from binding to the surface. This effect is not observed in

the 50% and the 75% because of the presence of both Fe3O4 and Mn3O4 phases however the

Fe3O4 phase would be responsible for the binding of the As(III) and As(V) from solution.
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3.3 Isotherm studies

Table 4 shows the parameters derived from the isotherm studies which were found to follow

the Langmuir isotherm. As can be seen in Table 4 the correlation coefficient for the isotherm

studies of As(III) and As(V) binding to the nanomaterials are 0.99 to 1.0, indicating a strong

correlation to the Langmuir isotherm. The linearized form of the Langmuir equation is

shown below:

Where Ce is the equilibrium concentration, Q0 is the capacity of the nanomaterial, qe is the

amount of arsenic bound/mg of material, b is a parameter related to the material and to the

solution parameters such as pH and ionic strength.

The isotherm study indicates that the binding of arsenic from aqueous solution is occurring

on the surface in a monolayer of arsenic ions. Table 5 shows the results of the calculated

binding capacities of the different synthesized nanomaterials. As can be seen in Table 5 the

As(III) binding capacities are at least twice those determined for the As(VI) ions. The

binding capacity of the nanomaterials was found to increase from pure Fe3O4 and maximize

at the 50% Mn-50% Fe material. Both the As(III) and As(V) ion binding capacities almost

double at the 50 % Mn-50% Fe material compared to the Fe3O4 nanomaterials. In addition,

the enhancement in the binding capacity diminishes again at the 75% Mn-25%Fe sample

and continues to get smaller with the Mn3O4 nanomaterial. The enhancement observed in

the binding when Mn is added to the Iron material, initially may be do the substitution of the

Mn in the Fe3O4 lattice. However, at higher Mn percentage a second phase (Mn3O4)

develops as can be seen in Figure 1 C, a shoulder develops on the Fe 311 plane which

corresponds to the Mn3O4 211 plane. Extremely small Mn3O4 nanomaterials are suggested

by the presence of the diffraction planes for the Mn3O4 material. The small particles present

in the 50% Mn-50% Fe may be responsible for the enhanced binding observed in the

material. The synthesized Mn-Fe nanomaterials do have capacities similar and in many

cases much greater than those shown in the literature for similar types of materials. For

example Al-wtr (Al based water treatment residuals) have shown capacities of 7.5-15.0

mg/g after two days of equilibration [19]. In another study using 25% doping of diatomite

the capacity was determined to be 10.8 mg/g after 8 hours of contact time [32]. In addition

the binding of As(V) has been shown to have capacities that range from 0.6-8.6 mg/g which

is material dependent. Hematite particles have shown capacities ranging from 0.16 to 0.20

mg/g. However, Goethite, a FeOOH material has shown a sorption capacity of 11.2 mg/g for

arsenic (V) and 12.2 mg/g for As(III) [33]. Iron oxides show dramatic differences in their

binding capacities for arsenic ions. The differences observed in the binding capacities of

metal oxides can be correlated to the ions present in the materials, as well as the particle

size, and the crystallinity of the particles used in the studies. Similarly, Mn based materials

have been shown to be effective in the removal of As(III) and As(V) from aqueous solution.

MnO2 loaded polystyrene resin has shown to have a capacity of 53 mg/g for As(III) and 22

mg/g for As(V) [35]. Whereas, manganese based ore has been shown to have a capacity of

0.53 mg/g for As(III) and 15.38 mg/g for arsenic(V) at pHs around 6.5 [36]. In addition, a
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mixture of FeMn minerals has shown capacities of 14.7 and 8.5 mg/g for As(III) and As(V)

at pH 3 [37]. However, in the present study the results of the isotherm studies show

exceptional binding capacities especially with the 25%Mn-75%Fe and the 50%Mn-50% Fe

synthesized materials with capacities of 23.8 mg/g and 41.5 mg/g for the arsenic(III) ion and

7.9 and 13.9 mg/g for the arsenic(VI) ions. The observed high binding capacities may be due

to redox coupling within the materials which has been suggested in the literature for the

removal or arsenic with different metal oxides including Fe and Mn based materials. The

removal of As(III) has through redox processes has been shown in materials containing Fe

and Mn(IV and VII) to form As(VI) which is then adsorbed to the material [37].

3.4 Interference study

The results for the interference studies on the binding of As(III) and As(V) to the different

nanomaterials are shown in Figure 3 and 4, respectively. As can be seen in Figure 3 the

As(III) binding the effects of the different anions on As(III) sorption to the nanomaterials

are varying. As can be seen in Figure 3 Cl−, PO3−, the SO2−
4, have little to no effect on the

binding of As(III) to the nanomaterials. SO2−
4 does have an initial effect on the binding at

low concentrations however, once the concentration of the anion reaches 30 ppm the effects

is no longer shown in the binding solution. However, nitrate has an effect on the binding of

the As(III) to the 25%Mn-75%Fe. The binding of the As(III) remains below 60% (Figure 3

B) in the presence of nitrate to the 25%Mn-75%Fe nanomaterial. In addition, the reduced

binding of the As(III) to the 25%Mn-75%Fe nanomaterial is observed in the solutions with

combinations of all the interfering ions as can be observed in Figure 3 E. However, in the

combined interference solutions with concentrations of interfering present above 30 ppm the

binding was observed continually decrease to 1000 ppm concentration of all ions in solution.

However, with respect to molar ratios this is a 16,301 moles of interfering ions to every 1

mole of As in solution. Many of the studies in the literature for the binding of As(III) and

As(V) show that either PO3−
4 or SO2−

4 have a negative effect on the binding of arsenic from

solution [38-40]. However, in the present study there is no apparent effect on the binding by

these anions which is adsorbent material dependent. The non-observed reduction in binding

in arsenic the presence of either PO3−
4or SO2−

4 may be a surface effect of the synthesized

nanomaterials, the number of active sites for adsorption of the Arsenic. Alternatively, the

materials synthesized under the conditions used in this study may present a material that has

preferential binding of Arsenic over other anions.

Similar results were obtained with the As(V) binding to the different nanomaterials in the

presence of Cl−, NO−3, SO2−
4, PO3−

4,and in the presence of all the interfering ions

combined in solution as compared to the As(III) binding studies. As can be observed in

Figure 4 A the Cl− anion had no effect on the binding of the As(V) to any of the studied

nanomaterials. Whereas the PO3−
4 anion had a detrimental effect on the binding of the of the

As(V) ion to the most of the nanomaterials with the exception of the Mn3O4 nanomaterial.

The interference on the binding was observed at concentrations of 30 ppm and above. The

PO3−
4 anion had the least effect on both the pure Fe3O4 and 75%Mn-25%Fe as can be seen

in Figure 4B. Whereas, the mixed phases were effected the most by the PO3−
4 phase. There

appears to be some synergistic effect at the high percentage of Mn with the Fe3O4 phase. As

was observed from the diffraction data the 25% Mn-75% Fe is a pure material. However, as
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the percentage of Mn is increase there appears to be the generation of two different phases in

the material until a pure Mn3O4 phase is synthesized. The presence of the two phases at

approximately the same concentration/same size seems to have a synergistic effect on the

binding in the presence of the nitrate anion. The literature suggests that PO3−
4 can compete

with arsenic adsorption due to the formation of surface complexes [38-40]. The effect of

phosphate on the binding of the nanomaterials studied here only show detrimental effects at

concentration of 300 ppm and above. It is interesting that the pure phase Mn3O4

nanomaterial exhibits the largest binding decreases in the presence of the PO3−
4 anion

followed by the 25% Mn-75%Fe and the 50% Mn-50%Fe. On the other hand the pure phase

Fe3O4 nanomaterial and the 75% Mn-2%Fe materials are the least effected by the PO3−
4

concentrations. Figure 4 C shows the binding of the As(V) in the presence of NO−
3 anion.

As can be seen in Figure 4C the binding of the As(V) ions in the presence of nitrate starts to

be suppressed at NO−
3 concentrations of above 3 ppm. The NO−

3 effect on binding is

carried through to 1000 ppm. The effect of NO−
3 on the binding increases with increasing

concentration for all the materials studied. However, the binding of the As(V) to the pure

Fe3O4 nanomaterial appears to be affect the most by the NO−
3 in solution. Also the As(V)

binding to the pure Mn3O4 nanomaterials is also effected greater than the As(V) binding to

the substituted materials and the mixed phase materials. Figure 4 D shows the effect of

SO2−
4 concentration on the binding of As(V) from solution. As can be seen in Figure 4D the

sulfate anion has little to no effect on the binding at concentrations up to and including 300

ppm. However at concentrations greater than 300 ppm the binding is decreased at 1000 ppm

the binding of the As(V) anion ranges from 20-50% for all the materials studied. This

decrease in Binding observed at 1000 ppm SO2−
4 is actually small considering that the

molar ratio of 1 As: 2600 SO2−
4 anions is present in the binding solution. The data indicates

that all the materials have some selectivity towards binding As(V) over the SO2−
4 anions

from aqueous solution. Figure 4 E shows the binding of the As(V) anions in the presence of

all the interfering ions combined in solution. As can be seen in the Figure 4 E the binding is

not affected as greatly, as in the study of the individual anions in solution. The reduced

interference in solution observed in the combined interference study may be a synergistic

effect of the combination of the anions. The interaction of all the ions in solution may be

interacting with each other and the arsenic causing the binding of the As to the nanomaterial

to be higher than what is observed with the ion alone. In addition, the combined interference

never completely eliminates the binding of the arsenic(V) to the different nanomaterials. At

a concentration of 1000 ppm of all the interferences combined in solution the lowest

observed binding is to the 25% Mn −75% Fe material which was approximately 20%.

However, this is a molar ratio of 1 As: 16308 interfering ions which shows selectivity of the

nanomaterials to the binding of the As(V) anion. The literature suggests that PO3−
4 can

compete with arsenic adsorption due to the formation of surface complexes [39]. It has been

shown that found that common anions such as sulfate, chloride, or bicarbonate in general

only slightly interfere with the sorption of As(III) and As(V) from aqueous solution to iron

based nanomaterials [22]. The binding of As(V) to the mixed phase nanomaterials (above

50% Mn Substitution) and the pure Mn3O4 in the presence of PO3−
4 were affected the

binding the greatest.
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Highlights

The binding of As(III) and As(V) to Fe3O4, Mn3O4 and mixtures of Fe3O4-Mn3O4

co-synthesized in solution, with approximately 20 nm in diameter was investigated.

The effects of pH and commonly found anions in natural water on the binding of

both As(III) and As(V) to the various nanomaterials was studied.

Isotherm studies were performed to determine the capacities of the various

nanomaterials.

It was determined that both As(III) and As(V) followed the Langmuir isotherm.

The highest capacity of the nanomaterials was maximized in the 50%Fe-50%Mn

with a binding capacity of 41.5 mg/g and 13.9 mg/g for As(III) and As(V),

respectively.
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Figure 1.
A. Diffraction pattern for the Fe3O4 nanomaterial taken from 20 to 60 in 2θ. B. Diffraction

pattern for the nanomaterial synthesized from 25%Mn-75% Fe mixture taken from 20 to 60

in 2θ. C. Diffraction pattern for the 50% Mn-50% Fe mixture taken from 20 to 60 in 2θ. D.
Diffraction pattern for the 75% Mn-25% Fe mixture taken from 20 to 60 in 2θ. E.
Diffraction pattern for the Mn3O4 nanomaterial taken from 20 to 60 in 2θ.
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Figure 2.
A. Arsenic(III) and arsenic(V) binding to Fe3O4 nanomaterial from pH 2 to pH 6. B.
Arsenic(III) and arsenic(V) binding to 25% Mn-75%Fe nanomaterial from pH 2 to pH 6. C.

Arsenic(III) and arsenic(V) binding to 50% Mn-50% nanomaterial from pH 2 to pH 6. D.
Arsenic(III) and arsenic(V) binding to 75% Mn-25% Fe nanomaterial from pH 2 to pH 6. E.
Arsenic(III) and arsenic(V) binding to Mn3O4 nanomaterial from pH 2 to pH 6.
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Figure 3.
A. Effect of Cl−1 on Arsenic(III) binding to Fe3O4, Mn3O4, 25% Mn-75%Fe nanomaterial,

50% Mn-50%Fe nanomaterial, and 75% Mn-25%Fe nanomaterial. B. Effect of PO3−
4 on

Arsenic(III) binding to Fe3O4, Mn3O4, 25% Mn-75%Fe nanomaterial, 50% Mn-50%Fe

nanomaterial, 75% Mn-25%Fe nanomaterial. C. Effect of NO−
3 on Arsenic(III) binding to

Fe3O4, Mn3O4, 25% Mn-75%Fe nanomaterial, 50% Mn-50%Fe nanomaterial, and 75%

Mn-25%Fe nanomaterial. D. Effect of SO2−
4 on Arsenic(III) binding to Fe3O4, Mn3O4, 25%

Mn-75%Fe nanomaterial, 50% Mn-50%Fe nanomaterial, and 75% Mn-25%Fe nanomaterial.

E. Effect of All interferences on Arsenic(III) binding to Fe3O4, Mn3O4, 25% Mn-75%Fe

nanomaterial, 50% Mn-50%Fe nanomaterial, and 75% Mn-25%Fe nanomaterial..
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Figure 4.
A. Effect of Cl−1 on arsenic(V) binding to Fe3O4, Mn3O4, 25% Mn-75%Fe nanomaterial,

50% Mn-50%Fe nanomaterial, 75% Mn-25%Fe nanomaterial. B. Effect of PO3−
4 on

arsenic(V binding to Fe3O4, Mn3O4, 25% Mn-75%Fe nanomaterial, 50% Mn-50%Fe

nanomaterial, 75% Mn-25%Fe nanomaterial. C. Effect of NO1−
3 on arsenic(V) binding to

Fe3O4, Mn3O4, 25% Mn-75%Fe nanomaterial, 50% Mn-50%Fe nanomaterial, 75%

Mn-25%Fe nanomaterial. D. Effect of SO2−
4 on arsenic(V) binding to Fe3O4, Mn3O4, 25%

Mn-75%Fe nanomaterial, 50% Mn-50%Fe nanomaterial, 75% Mn-25%Fe nanomaterial. E.
Effect of All interferences on arsenic(V) binding to Fe3O4, Mn3O4, 25% Mn-75%Fe

nanomaterial, 50% Mn-50%Fe nanomaterial, 75% Mn-25%Fe nanomaterial.

Garcia et al. Page 16

Microchem J. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Garcia et al. Page 17

Table 1

Parameters used for the determination of iron and manganese in the supernatants of the reaction using a Perkin

Elmer Optima 8300 DV.

Parameter Setting

RF Power 1500 W

Nebulizer Gemcone low flow

Nebulizer Flow 0.65 L/min

Plasma Flow (Ar) 8 L/min

Sample Flow rate 1.25 mL/min

Spray Chamber Glass Cyclonic

Injector Alumina 2 mm
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Table 2

Crystal lattice parameters for the substitution of Mn2+ ions into the Fe3O4 lattice and the Mn3O4

nanomaterials.

Sample Cell a b C α, β, γ

Fe3O4 FD-3M 8.396 8.396 8.396 90.0 α= β= γ

Mn0.25Fe2.75O4 FD-3M 8.382 8.382 8.382 90.0 α= β = γ

Mn0.5Fe0.5O4 FD-3M 8.407 8.407 8.407 90.0 α= β= γ

I41/AMD 5.810 5.810 9.240 90.0 α= β= γ

Mn0.75Fe0.25O4 FD-3M 8.409 8.409 8.409 90.0 α= β= γ

I41/AMD 5.815 5.815 9.227 90.0 α= β= γ

Mn3O4 I41/AMD 5.771 5.771 9.455 90.0 α= β= γ
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Table 3

Average grain size determined from the diffraction patterns of the different nanomaterials synthesized.

Sample Phase Size (nm) SE (± nm

Fe3O4 Fe3O4 19.3 0.8

25% Mn-75%Fe Fe3O4/MnxFe3-xO4 17.7 1.1

50% Mn-50%Fe Fe3O4/MnxFe3-xO4 19.2 1.3

Mn3O4 ND ND

75% Mn-25%Fe Fe3O4/MnxFe3-xO4 19.3 0.6

Mn3O4 18.7 1.9

Mn3O4 Mn3O4 15.0 0.5
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Table 4

Fitting parameters determined for arsenic(III) and arsenic(V) binding to pure Fe3O4, pure Mn3O4 and

MnxFe3-xO4 using Langmuir isotherms.

Material As(III) 1/Q0 R2 As(V) 1/Q0 R2

Fe3O4 0.058 0.999 0.143 1.00

25% Mn-75%Fe 0.060 0.998 0.122 0.99

50% Mn-75%Fe 0.024 1.000 0.073 0.99

75% Mn-25%Fe 0.042 0.998 0.149 1.00

Mn3O4 0.065 0.997 0.134 0.99
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Table 5

Binding capacities of arsenic(III) and arsenic(V) binding to pure Fe3O4, pure Mn3O4 and MnxFe1-xO4

determined from Langmuir isotherms.

Material As(III) (mg/g) SE (± mg/g) As(V) (mg/g) SE (± mg/g)

Fe3O4 17.1 0.2 7.0 0.2

25% Mn-75%Fe 16.7 0.8 8.2 0.6

50% Mn-75%Fe 41.5 0.4 13.9 0.8

75% Mn-25%Fe 23.8 0.7 7.9 0.4

Mn3O4 13.5 0.3 7.5 0.6
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