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Improved leukemia classification and tailoring of
therapy have greatly improved patient outcome particu-
larly for children with acute leukemia (AL). Using
immunophenotyping, molecular genetics and cytogene-
tics the low hanging fruits of biomedical research have
been successfully incorporated in routine diagnosis of
leukemia subclasses. Future improvements in the
classification and understanding of leukemia biology
will very likely be more slow and laborious.

Recently, gene expression profiling has provided a
framework for the global molecular analysis of hemato-
logical cancers, and high throughput proteomic analysis of
leukemia samples is on the way. Here we consider
classification of acute leukemia samples by flow cytometry
using the marker proteins of immunophenotyping as a
component of the proteome. Marker protein expressions are
converted into quantitative expression values and sub-
jected to computational analysis. Quantitative multivariate
analysis from panels of marker proteins has demonstrated
that marker protein expression profiles can distinguish
MLLre from non-MLLre ALL cases and also allow to
specifically distinguish MLL/AF4 cases. Potentially, these
quantitative expression analyses can be used in clinical
diagnosis. Immunophenotypic data collection using flow
cytometry is a fast and relatively easily accessible techno-
logy that has already been implemented in most centers for
leukemia diagnosis and the translation into quantitative
expression data sets is a matter of flow cytometer settings
and output calibration. However, before application in
clinical diagnostics can occur it is crucial that quantitative
immunophenotypic data set analysis is validated in
independent experiments and in large data sets.
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INTRODUCTION

The outcome for children with acute leukemia (AL)
has improved remarkably over the past three decades.
Current therapies achieve an event free survival of
more than 75% for paediatric acute lymphoblastic
leukemia (ALL) patients. But a significant challenge
remains and it is believed that refined subclassifica-
tion of leukemia and the identification of prognostic
determinants will guide precisely tailored therapy
and improve patients’ outcome.

At present the diagnosis of patients with AL
includes a series of clinical features and a combination
of laboratory methods to classify the bone marrow
and peripheral blood (BM/PB) sample of patients.
The biological classification of AL samples has
merged from a morphology-based system towards a
molecular diagnostic system that involves the
recognition of the cell lineage of origin and the
presence of somatically acquired genetic abnorma-
lities. The recognition of the cell lineage of origin is
aided by immunologic surface and cytoplasmic
markers and is found to be an important application
using flow cytometry. Today immunophenotyping
using flow cytometry is one of the fastest and most
widely applied diagnostic methods in leukemia
diagnosis and minimal residual disease evaluation.
Much progress in the immunophenotyping of AL was
made, thanks to the production of a palette of distinct
fluorochromes and monoclonal antibodies (mAbs) to
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a variety of antigens expressed by normal and
neoplastic hematopoietic cells and instrumentation
that allows the simultaneous measurements of several
cellular antigen expressions, cell size and cytoplasmic
complexity (see for a recent review Schabath et al. [1]
and several reviews herein). Nationwide and inter-
national cross laboratory validation studies [2–6]
have arrived to the general consensus that multi-
parameter flow cytometry is a powerful diagnostic
tool for the characterization of ALs and that it can be
used to define subclasses that correlate with
prognosis. Classifications include immunopheno-
typic subgroups of precursor B-, T-cell ALL, and
immature acute myeloid leukemia (AML) [2,4–6].
Expression of empirically discovered single antigens
or composite immunophenotypic patterns are used
for this classification and have resulted in diagnostic
screening of AL patient samples with panels of
antibodies. More recently several efforts have been
made to identify immunophenotypic characteristics
of the major genotypic leukemia categories (see for a
complete review Hrusak and Porwit-MacDonald [7]).
In fact, recurrent genetic aberrations in AL samples
are recognized to have important prognostic value
(reviewed by Caroll et al. [8]).

HIGH THROUGHPUT LEUKEMIA PROFILING

The complete sequencing of the human genome and
advancement in technologies, specifically the intro-
duction in basic and applied research of microarrays,
has engaged a number of investigators in applying
these technologies to clinical leukemia samples. With
the aim to improve diagnosis and risk classification
and to understand the biology of leukemic cells, gene
expression patterns (transcriptome) of patient
samples are explored for the identification of
leukemia subtype-specific expression signatures.

In a pivotal study Golub et al. [9] demonstrated the
feasibility of using microarrays to distinguish AML
and ALL samples on the basis of differential gene
expression signatures and showed that using a set of
genes as class predictors, unselected AL samples can
be classified. In two large-scale microarray studies
[10,11] it was shown that, using supervised learning
algorithms, AL cases cluster according to recurrent
cytogenetic aberrations associated with pediatric
ALL: T-ALL, E2A-PBX1, BCR-ABL, TEL/AML1,
MLL rearranged and hyperdiploid subtypes findings
demonstrate that these cytogenetic aberrations
define specific biological groups of ALL. But when
unsupervised learning approaches were applied, a
novel ALL subtype was discovered that lacks any of
the above or other genetic aberrations but had a
common expression profile [10]. Indeed one of the
important perspectives of the application of high
throughput technologies is the potency of class

discovery and identification of intrinsic biological
clusters of AL [8].

To analyze large data sets of gene expression
profiles two main approaches are employed.
An unsupervised learning method uses pattern
recognition algorithms and aggregates samples into
groups based on an overall similarity of gene
expression profiles without prior knowledge of
specific relationship. The identified groups can then
be verified for clinical relevance or concordance with
known subclasses. In contrast, supervised learning
technique group patient samples in classification
categories based on known differences such as
common translocations, or clinical categories and
compare expression profiles of the defined groups.

Armstrong et al. [12] used expression microarrays
for class discovery and proposed that mixed-lineage
leukemia (MLL) including patients with leukemias
involving MLL rearrangements form a distinct
clinical entity from ALL and AML. Recently,
Tsutsumi et al. [13] analyzed in a retrospective
study that a large cohort of MLL patients using
unsupervised learning algorithm could distinguish
two groups of patients with distinct gene expression
profiles. Importantly, the two subgroups occurred to
correlate exclusively with prognosis and not with
any other clinico-pathological feature.

PROTEOMICS

Transcriptome analysis, that uses microarray tech-
niques to screen large numbers of genes for mRNA
expression levels, can be considered an indirect
approach to analyze the functional status of a cell or
tissue. Actually, the functional effectors of cellular
pathways and processes are proteins that are
encoded by approximately 30,000 genes while the
number of proteins exceeds 300,000. This higher
complexity of the proteome (the entire protein
complement of a tissue or cell) is due to multiple
alternative splicing variants and post-translational
modifications. Proteomic technology has advanced
to the level where proteomic patterns can be
analyzed as fingerprints in much the same way as
microarray data are analyzed. Proteomic pattern
analysis of large cohorts of data using both
supervised and unsupervised learning methods
will in the near future uncover novel biomarkers
and distinguish prognostically relevant subclasses of
hematolymphoid neoplasms [14].

Proteomic pattern analysis is especially attractive
for exploring the presence of novel disease entities
since it is an open system; it does not require
identification or isolation of each protein composing
the overall pattern. This is in contrast to microarrays,
where only “known” target sequences can be printed
on the array and interrogated for expression levels.
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At present high throughput proteomic analysis
of leukemias has not yet been performed. Presently
investigations have focussed on a segment of the
proteome of leukemic blast cells, the cluster
differentiation (CD) antigens that were successfully
explored for AL subclass identification [15].

FLOW CYTOMETRIC IMMUNOPHENOTYPING
OF AL

Flow cytometric immunophenotyping developed
independently of other diagnostic approaches in
AL and involves the characterization of expression of
a growing number of marker proteins among which
the CD antigens are the most prominent. The first
markers extensively studied showed phenotypic
similarities between leukemic and healthy cells that
allowed the establishment of lineage of origin and
maturation stage of the pathologic cells. Later,
leukemia-associated phenotypes were identified
and a number of reports have shown that in most
precursor B-ALL cases blast cells display aberrant
phenotypes [16–20]. More recently studies have
attempted to identify immunophenotypic characteri-
stics of the major genotypic leukemia categories
(see for a complete review Hrusak and Porwit-
MacDonald [7]). The expression of a single molecule
(NG2 in the case of MLL translocations; CBFbe-
ta/SMMHC the product of inv(16), or the hybrid
PML/RARalpha protein) can rarely predict a
molecular genetic subtype and scoring strategies
have been constructed which simultaneously take
into account the expression levels of several mole-
cules to describe a phenotypic entity that corre-
sponds to a genotypic subtype of leukemia [21,22].

Classical immunophenotyping by flow cytometry
generates several parameters to describe the
expression of a given marker protein: the percentage
of positive cells, the mean (or the median) fluore-
scence intensity and the coefficient of variation (CV).
A common cut-off value for positivity is 20% of
positive cells, which results in a rather arbitrary
distinction between positive and negative cells. Mean
fluorescence intensity (MFI) is a principal measure of
the antigen expression that depends on the number of
antibodies bound to each gated cell. The CV describes
how much the expression of a certain molecule is
homogeneous or heterogeneous in a certain popu-
lation. Potentially, MFI and CV values of marker
expression should allow objective profiling of
leukemia samples.

QUANTITATIVE MULTIPARAMETRIC
IMMUNOPHENOTYPING

Flow cytometry is a powerful technique that allows
the analysis of the expression of a wide range

of molecules and multiple color labeling further
allows the analysis of expression in subsets of cells.
Usually flow cytometry results are simplified and
expressed in a qualitative or semiquantitative
manner. But accurate phenotyping of genotypic
leukemia classes cannot be obtained by either positive
or negative antigen definition and requires a more
accurate phenotypic description. To characterize the
phenotype of ETV6/AML1 ALLs objectively, De Zen
et al. [21] translated absolute levels of antigen
expression from arbitrary units (fluorescence
channels) into molecules equivalent of soluble
fluorochrome (MESF) and the CV was used as a
measure of the degree of antigen expression in the
population of leukemic blast cells. Using a scoring
system with Bolean logic operators the combined
expression of six antigens could be correlated with the
specific ETV6/AML1 genotype.

In an immunophenotypic study of myelodys-
plastic syndromes (MDS) Maynadie et al. [23] chose
to express fluorescence labeling in a simplified
numerical form, corresponding to the ratio of the
fluorescence of the whole cell subset gated for each
marker and the mean of autofluorescence. Applying
unsupervised learning algorithms on the data set
obtained for 207 MDS patients and 68 controls using
14 markers, they obtained a clustering of patients
that at least in part correlated with the French–
American–British (FAB) classification supporting
the view that quantitative immunophenotyping by
flow cytometry may be a future tool for the
characterization of MDS.

ALL CLASS DISCRIMINATING GENES ARE
MARKER PROTEINS

In pediatric ALL the number of class discriminating
genes identified by microarray analysis varies
markedly from group to group [8]. Importantly,
Caroll et al. [8] concluded that the number of genes
required to diagnose all of the known ALL subtypes
in parallel can be as few as 20. Similarly, Kohlmann
et al. [24] arrived at a similar observation: only a
small set of differentially expressed genes is
necessary to discriminate eight different AL sub-
types. Interestingly, among class discriminating
genes there are a number of known surface
markers including CD14, CD19, CD79a, CD24,
CD43 and CD44 that distinguish ALL from MLL
samples [12]. Yeoh et al. [10] report that CD19,
CD22, CD10 characterize B-ALL and T-ALL cases
are characterized by over-expression of genes
coding for CD2, CD3 and CD8. This has two
important implications: (i) few genes contain
a substantial amount of diagnostic information and
(ii) diagnostic classification using these and other
genes that will be discovered in the future may well
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be accomplished using methods like multiparameter
flow cytometry.

CONCORDANCE BETWEEN MARKER
PROTEIN AND GENE EXPRESSION

In order to verify concordance between protein
(flow cytometry data) and gene expression micro-
array data in ALs, Kern et al. [25] studied the protein
expression and mRNA expression in terms of
presence or absence for 39 relevant genes in 113
patients of AML, B- and T-ALL. In microarray
expression analysis of BM samples all nucleated
cells, obtained after a Ficoll-Hypaque gradient
centrifugation, are present in the preparation and
thus included in the analysis, therefore the same cell
population was also included in the flow cytometry
analysis. Protein expression of the relevant marker
genes was analyzed on all cells gated in a forward
versus side scatter plot, hence including lympho-
cytes, leukemic blast cells, monocytes, and granulo-
cytes. The presence of all nucleated cells in the
analysis has major influence on the results obtained.
Depending on the relative infiltration of leukemic
blast cells in the sample the contribution of the other
cell populations will vary.

However, in spite of variability in sample
composition, Kern et al. [25] found that overall
69.1% congruent results were obtained: congruency
both in positivity or negativity with respect to the
expression of a certain marker at RNA and protein
level. Some markers stand out for high congruency,
notably those markers that are lineage characteristic:
CD22, CD79a, CD19, CD10 and TdT for B-lineage
leukemia samples, MPO, CD13 and CD33 for AML
lineage and CD3 and TdT for T-lineage leukemia
samples. Discordant results between microarray and
flow cytometry were ascribed to genes with
low mRNA and low protein expression levels.
Congruency of microarray and flow cytometry
results for lineage-specific markers was also noted
in other studies [10,12]. The comparison between
flow cytometry and microarray data are generally
hampered by a lack of quantitative values. For
comparison purposes Kern et al. [25] used arbitrary
cut-off levels to distinguish between the presence or
absence which, especially in the case of weakly
expressed markers/genes, may have a major impact
on interpretation of congruency.

COMPUTATIONAL ANALYSIS OF FLOW-
CYTOMETRY ANTIGEN EXPRESSION
PROFILES IN PREB-ALL

Recently, we used the marker protein segment of
the proteome of ALL blast cells to investigate

samples of pediatric preB-ALL patients [15].
Expression data of 16 marker proteins included in
the AIEOP panel for routine clinical analysis of
B-ALL were converted into molecules of equivalent
soluble fluorophore (MESF); MESF data together
with CV data were compiled in a marker protein
expression data base of 145 patients. Using this
database we first tested the potential of univariate
and multivariate computational procedures to
discriminate between samples positive for mixed
lineage leukemia translocations (MLLþ ) and
samples negative for these translocations (MLL2 ).
Our analysis confirmed the results of Amstrong
et al. [12] who, using microarray expression
analysis distinguished MLLþ samples from ALL
and AML samples. For 145 samples tested, 21
variables discriminated between MLLþ and MLL2
phenotypes. However, when MLLþ and MLL2
populations were explored through an unsuper-
vised method using all 32 variables in a principal
component analysis (MESF and CV values for each
marker protein) it appeared that the MLLþ
samples were split into two distinct MLLþ
clusters. One cluster was more similar to, and
mixed with, the MLL2 cluster and another was
further separated more distinct from MLL2 .
Retrospective analysis revealed that the more
separate MLLþ cluster comprises exclusively
MLL/AF4 samples, while the other group
represented MLL with various translocation part-
ners. To our knowledge this is the first time that
phenotypic heterogeneity has been described.
Whether MLL/AF4 distinction from other MLL
samples has prognostic relevance, MLL itself being
a prognostic entity with poor prognosis, awaits
further prospective analysis (Fig. 1).

CONCLUSIONS AND FUTURE PROSPECTS

Next to global analyses of transcript and protein
expression patterns, a segmental analysis of the
proteome using phenotypic marker protein
expression will no doubt refine predictive AL
classification systems.

Potentially, these analyses can be used in clinical
diagnosis. Immunophenotypic data acquisition
using flow cytometry is a fast and relatively easily
accessible technology that has already been
implemented in most centers for leukemia diagnosis.
The translation into quantitative data sets is a matter
of cross laboratory output calibration. However,
before application in clinical diagnostics can occur,
it is crucial that quantitative immunophenotypic
data set analysis is validated in independent
experiments and in large data sets that mirror
the normal distribution of leukemia subtypes seen in
the clinical setting.
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Recently, in our laboratory a set of immuno-
phenotypic expression data of a cohort of AML
patients has been analyzed using this methodology
(in preparation). Supervised analysis of marker
protein analysis does allow to some extent the
distinction of FAB groups. However, class distinction
largely improved using unsupervised hierarchical
clustering and discriminating antigens identified
four clusters that correspond to the four major
classes of chromosomal aberrations among AML
patients: t(8;21), inv(16), t(15;17) and samples
negative for these aberration. The classification was
highly specific (96%) but had a low sensitivity for
negative samples. The sensitivity for t(8;21) and
t(15;17) samples was high, but in this case specificity
was low. The prognostic value of the four classes
described by immunophenotypic expression data
awaits further analysis.
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