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Abstract

For much of the last three decades Monte Carlo-simulation methods have been the standard 

approach for accurately calculating the cyclization probability, J, or J factor, for DNA models 

having sequence-dependent bends or inhomogeneous bending flexibility. Within the last ten years 

approaches based on harmonic analysis of semi-flexible polymer models have been introduced, 

which offer much greater computational efficiency than Monte Carlo techniques. These methods 

consider the ensemble of molecular conformations in terms of harmonic fluctuations about a well-

defined elastic-energy minimum. However, the harmonic approximation is only applicable for 

small systems, because the accessible conformation space of larger systems is increasingly 

dominated by anharmonic contributions. In the case of computed values of the J factor, deviations 

of the harmonic approximation from the exact value of J as a function of DNA length have not 

been characterized. Using a recent, numerically exact method that accounts for both anharmonic 

and harmonic contributions to J for wormlike chains of arbitrary size, we report here the apparent 

error that results from neglecting anharmonic behavior. For wormlike chains having contour 

lengths less than four times the persistence length the error in J arising from the harmonic 

approximation is generally small, amounting to free energies less than the thermal energy, kBT. 

For larger systems, however, the deviations between harmonic and exact J values increase 

approximately linearly with size.

I. INTRODUCTION

We recount in this section some key developments in the theoretical treatment of DNA 

cyclization since the early 1980s, emphasizing the role that Don Crothers and his 

collaborators played in advancing this field. Although the Crothers group also contributed 

greatly to the experimental DNA-cyclization literature (sometimes in papers that combined 
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experiments and theory), we elected not to review those important contributions here in 

order to avoid a lengthy digression.

Rigorous experimental measurements of the cyclization free energy of DNA molecules have 

been carried out since the ground-breaking work of Shore et al. 1 and Shore and Baldwin.2,3 

At that time experiments were well ahead of available theory for the dependence of the 

cyclization probability on DNA size and helical phase. The lack of a useful theoretical 

framework was due to the inherently challenging problem of modeling a stiff polymer chain 

having chain-end constraints in a way that also accounts for thermal fluctuations in such 

systems. The treatment of conformational fluctuations is important because they are 

significant even for DNA molecules with contour lengths substantially less than the 

polymer’s persistence length.4,5

A major theoretical advance came from the work of Shimada and Yamakawa,6,7 who 

developed a semi-numerical approach based on a series approximation to the cyclization 

probability of a uniform helical wormlike chain. The rigor and numerical accuracy of this 

theory permitted values of the persistence length, torsional rigidity, and helical repeat to be 

extracted from Shore and Baldwin’s experimental data with confidence. However, there was 

a significant limitation to this approach, namely that the theory applied to an isotropically 

flexible polymer whose minimum-energy conformation in the linear state is that of a straight 

rod. By the early- to mid-1980s experiments showed that sequence-dependent 

conformational properties of DNA can contribute to deviations from the straight-rod 

minimum-energy state.8,9 These observations motivated the development of Monte Carlo-

based computational tools that could account for sequence-dependent effects on the 

cyclization probability.

Levene and Crothers10,11 used Monte Carlo simulation to compute the distributions of chain 

end-to-end distance, mutual orientations of chain termini, and an estimate of the writhe 

distribution in closed chains required to compute the cyclization probability.12 These 

calculations were combined, under the assumption of independent twist and writhe 

variables, with an analytical treatment of the closed-chain twist distribution in order to arrive 

at a comprehensive treatment of the cyclization problem. The problem of sample attrition, 

which is significant in the case of limited Monte Carlo ensembles of chain conformations, 

was dealt with by using a combinatorial chain-dimerization method, first explored by 

Alexandrowicz.13 Around the same time, Hagerman,14 and later Ramadevi and Hagerman,15 

published a Monte Carlo method that was based mainly on the contributions to the 

cyclization probability derived from the chain’s axial degrees of freedom.

Motivated by the discovery of sequence-dependent intrinsic bends in DNA,8 the Monte 

Carlo method showed that an intrinsic DNA bend comparable in magnitude to one that was 

experimentally characterized16 can affect the value of the torsion-independent cyclization 

probability by fifty fold or more.10 This result suggested that cyclization measurements are a 

powerful method for measuring the extent of intrinsic DNA bending due either to DNA-

sequence-dependent conformational preferences or bending distortion induced by site-

specific protein binding. Measurements of DNA bending by ligase-catalyzed cyclization was 
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used with great effectiveness by Don Crothers and numerous coworkers during the last two 

decades of his career.17–23

As with most simulation-based methods, computing cyclization probabilities by Monte 

Carlo techniques involves a trade-off between speed and accuracy. The large amounts of 

computer time required to calculate cyclization probabilities for any specified DNA 

conformation limited the theory’s usefulness as a tool for fitting experimental data. This 

limitation led Zhang and Crothers to develop a new statistical-mechanical approach in the 

early 2000s that was based on approximating the chain-conformation distribution in terms of 

harmonic fluctuations about the chain’s mechanical-energy minimum.24 Termed the 

harmonic approximation (HA), this method was the natural successor to the Shimada-

Yamakawa theory, but had the virtue that calculations could be done for inhomogeneous 

DNA conformations having non-zero values of the helical parameters tilt and roll, or 

sequence-dependent elastic-energy constants. The harmonic approximation was 

subsequently extended to the problem of protein-mediated DNA looping, wherein the 

protein assembly mediating the loop was treated as a connected set of rigid subunits 

interacting through the same harmonic expression that governs interactions between base 

pairs in the DNA loop.25 The entire looped structure, DNA and associated protein subunits, 

was treated as a circular polymer with the virtual chain segments defining protein-DNA and 

protein-protein contacts assumed to adopt non-canonical helical parameters. HA calculations 

are about four orders of magnitude faster than Monte Carlo simulations of the same system, 

which made it possible to carry out systematic analyses of lac-repressor-mediated DNA 

looping in vitro26 and in vivo.27

The applicability of HA is limited to systems for which the accessible conformation space is 

dominated by harmonic fluctuations about a well-defined elastic-energy minimum. This 

assumption is justified, e.g., for biopolymers with L ≪ P where L is the contour length and P 
is the persistence length. However, for larger systems HA results are expected to deviate 

from exact behavior because for increasing ratios L/P the accessible conformation space is 

increasingly dominated by anharmonic contributions. For example, in the limit of long, 

flexible polymer chains the entropy of a circular chain of contour length L decreases relative 

to the entropy of a linear chain of same length as −3/2 ln (L);28,29 this logarithmic decrease 

as a function of L is absent in the HA result for the entropy of this system. The accuracy and 

applicability of HA as a function of system size, for example the contour length L of a 

cyclized DNA or a DNA loop, have not been systematically investigated. HA therefore 

remains an uncontrolled approximation for most systems.

The objective of the present study is to test the validity of HA for the cyclization probability 

or J factor of a simple homogeneous wormlike chain without torsional elastic energy. To this 

end, we compare values of the J factor computed by the method of normal-mode analysis 

(NMA), which is rigorously equivalent to HA computations,24 with the corresponding exact 

result for the J factor computed by a new method that combines NMA with thermodynamic 

integration, a technique we denote TI-NMA.30 This allows us to characterize the validity of 

HA (and NMA) in terms of a universal, model-independent function which depends only on 

the ratio L/P, where L is the contour length and P is the persistence length of the 

semiflexible chain. Although we consider here the simple case of a homogeneous wormlike 
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chain without torsional elastic energy, we argue that our result for the deviation of HA (and 

NMA) from the exact behavior as a function of L/P qualitatively holds for any semiflexible 

macromolecular system that can be characterized by a contour length L and a persistence 

length P, including helical wormlike chains, looped DNA, and DNA having intrinsic bends 

or other local defects.

The rationale of this hypothesis is as follows. As discussed above, the validity of HA (and 

NMA) is based on the assumption that the system undergoes harmonic fluctuations about a 

well-defined elastic-energy minimum. For increasing system size, e.g., increasing contour 

length L of a semiflexible biopolymer, it is the large-scale conformational fluctuations of the 

system, i.e., those occurring on length scales large compared with the persistence length P, 

that generate the anharmonic contributions to the accessible conformation space and result in 

deviations of HA (and NMA) from the exact behavior. The precise form of the 

conformational fluctuations, and thus the free energy, of a complex macromolecular system 

depends of course on details such as monomer composition and solution conditions; 

however, the length scale on which these conformational fluctuations result in anharmonic 

behavior is set, by definition, by the persistence length P. This implies that the range of 

validity of HA and NMA is controlled by a single parameter, namely the ratio of system size 

to persistence length, or L/P. Due to the universal nature of our results for the deviation of 

HA (and NMA) from the exact behavior, as a function of L/P, we expect our results to 

remain qualitatively valid for more complex macromolecular systems.

II. THEORY AND RESULTS

1. The cyclization probability, or J factor

Cyclization probabilities are expressed in terms of a thermodynamic quantity J, also called 

the J factor. J is defined as a ratio of equilibrium constants for intra- and intermolecular 

synapsis reactions of chains with N vertices (or monomers) (Fig. 1),

J(N) =
Kc (N)

Kb
.

(1)

In this expression,

Kc (N) =
Qcir (N)
Qlin (N)

(2)
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is the equilibrium constant for an intramolecular cyclization reaction in which the two 

vertices at the ends of a linear chain with N vertices associate to form a circular chain with N 
vertices. Qcir(N) and Qlin(N) are conformational partition functions of a circular chain (cir) 

and a linear chain (lin) with N vertices, respectively. Partition functions are unitless by 

definition, which implies that the equilibrium constant Kc(N) in Eq. (2) is unitless. In Eq. 

(1), the quantity

Kb =
VQlin (2N)

Qlin (N) · Qlin (N)

(3)

is the equilibrium constant for an intermolecular reaction in which two vertices at the ends 

of two different linear chains with N vertices associate to form a linear chain with 2N 
vertices. The equilibrium constant Kb is independent of N because the dependence of Qlin on 

N cancels in Eq. (3), reflecting the fact that for linear chains the conformational degrees of 

freedom of vertices are independent from each other. Only the enthalpy of the additional 

bond in the 2N - chain enters Kb. Because the reaction corresponding to Eq. (3) is 

bimolecular, the quotient of partition functions in Eq. (3) is proportional to c=1/V where c is 

the concentration of linear chains and V is the available volume per chain.31 The dependence 

on the concentration c =1/V is eliminated by the factor V in the numerator of Eq. (3). This 

implies that Kb has units of volume, the J factor in Eq. (1) has units of concentration, and 

both Kb and J are independent of c=1/V. The J factor may be defined as the concentration of 

one end vertex in the vicinity of the other end vertex of the same linear chain L in the 

cyclization reaction shown in Fig. 1.32,33

The enthalpy of interaction between chain termini contributes similarly to Kc(N) and Kb, 

which implies that the J factor is independent of the interaction enthalpy and depends only 

on elastic properties of the chain (the cancelation of the interaction enthalpy between chain 

termini is based on the well-supported assumption that the equilibrium constants for 

cyclization and bimolecular ligation depend on the details of the joining reaction in the same 

way). Therefore, testing the validity of NMA using the J factor yields a universal, model-

independent result for the validity of NMA which depends only on the ratio L/P, where L is 

the contour length and P is the persistence length of the semiflexible chain (cf. Section 4). 

Conversely, the free energy of cyclization

ΔF = Fcir − Flin = − kBT ln
Qcir
Qlin

(4)
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associated with the reaction L → C shown in Fig. 1 includes the association enthalpy and 

therefore depends on details of the interaction between chain termini.

In what follows we calculate the equilibrium constants Kc(N) and Kb in Eq. (1) for a semi-

flexible harmonic model chain. In Section 2 we derive an explicit expression for the partition 

function Qlin for a linear chain. We also obtain an explicit expression for the harmonic 

approximation Qlin
(NMA) of Qlin, which is equivalent to calculating Qlin using normal-mode 

analysis (NMA). The equilibrium constants Kb and Kb
(NMA) are then calculated using Eq. (3). 

In Section 3 we discuss the numerical computation of the partition function Qcir for a 

circular chain using the TI-NMA method30 and obtain the corresponding NMA result 

Qcir
(NMA). In Section 4 we obtain the J factor, J, as a universal function of L/P and compare the 

exact result for J with the corresponding NMA result, JNMA. This allows us to assess the 

validity of NMA in terms of a universal function of L/P which is free of microscopic details 

of our model chain. We argue that our results for the validity of NMA obtained here for a 

simple homogeneous wormlike chain characterize the validity of NMA for any semiflexible 

macromolecular system which can be characterized by a contour length L and a persistence 

length P.

2. Partition function for a linear chain

We consider a semi-flexible harmonic chain as a coarse-grained mesoscopic model for 

duplex DNA. Chain elements are extensible segments with equilibrium length b0 connected 

end-to-end by semi-flexible joints, or vertices, at positions ri, i=1, …, N (Fig. 2). The 

conformational partition function of a linear chain with N vertices (including the 2 vertices 

at the chain ends) and N−1 segments suspended in a volume V is given by

Qlin (N) = ∫
V

d3r1
a3 …∫

V

d3rN

a3 exp [ − βUlin ( r )]

(5)

where Ulin(r⃗)is the total potential energy for a chain conformation r⃗ = (r1, …, rN) and β = 

(kBT)−1 (T is the temperature in Kelvin and kB is the Boltzmann constant). The constant a in 

Eq. (5) is a microscopic length required to make the partition function unitless. For a system 

of massive point particles undergoing Newtonian dynamics, the length a corresponds to the 

thermal wavelength;34 however, in this work we are concerned only with conformational 

degrees of freedom, and consider a as a non-universal microscopic length much shorter than 

any other length scale associated with the chain. Essentially, the length a corresponds to the 

lattice constant of an underlying lattice needed to obtain a finite number of accessible 

conformations. The results for the J factor obtained in this work are independent of the 

length a, and thus largely independent of the discretization of our model chain.
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Segments are described by displacement vectors bi = ri+1 − ri with length bi and unit-length 

direction vectors b ̂
i = bi/bi. The bending angle θi at vertex ri between segments bi−1 and bi is 

given by cos(θi) = b̂
i−1 · b̂

i (Fig. 2). The total potential energy of the chain is given by

Ulin ( r ) = kBTcb ∑
i = 2

N − 1
1 − cos θi + kBT

cs
2 ∑

i = 1

N − 1 bi
b0

− 1
2
,

(6)

where cb, cs are bending and stretching elastic constants, respectively. In this work we 

neglect excluded volume interactions between chain segments, so that Ulin(r⃗) only includes 

the elastic potential energy of the chain. For a linear chain there is no elastic energy of 

bending associated with the end vertices r1 and rN which implies that the first sum in Eq. (6) 

only includes the N−2 inner vertices i = 2, …, N−1 (Fig. 2).

The bending energy constant cb in Eq. (6) is chosen such that the chain has a given 

persistence length P. Thus, cb is implicitly determined by the equation

〈 cos (θ)〉 = exp −
b0
P = exp − 1

n ,

(7)

where n = P/b0 is the number of segments with equilibrium length b0 per persistence length 

P. The thermal average 〈cos(θ)〉 is given by

〈 cos (θ)〉 =
∫ 0

πdθ sin (θ) cos (θ) exp −cb (1 − cos (θ))
∫ 0

πdθ sin (θ) exp −cb (1 − cos (θ))
.

(8)

In this work we consider chains for which n = {150, 50, 25}. These n values correspond to 

equilibrium segment lengths b0 = {1, 3, 6} ℓ where ℓ is the DNA axial rise corresponding to 

a single base pair (using P = 50 nm for DNA under physiological conditions we obtain ℓ = P 
150 = 0.3333nm). Numerically solving Eq. (7) for cb we find cb = {150.5006, 50.5017, 

25.5033}. The stretching energy constant cs in Eq. (6) is defined as cs = Ksb0/(kBT) where 

Ks is the stretching modulus. Using b0 = {0.3333,1, 2} nm, T = 300 K, and the approximate 
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value Ks = 1000 pN for DNA under physiological conditions, we find cs = {80.4775, 

241.4324, 482.8648}.

The reason for the above choice of the three n values is that numerical simulations used to 

obtain exact results for the free energy of a circular chain (Section 3) are computationally 

most efficient for chains having a number of vertices N between 50 and 300. For fixed n this 

corresponds to a range of values L/P = N/n spanning only a factor of 6 (e.g., 0.3333 ≤ L/P ≤ 

2 for n = 150 ). Given such a restricted range of N, choosing different values for n allows us 

to vary L/P over a much wider range, namely between 0.3333 (N = 50, n = 150 ) and 12 ( N 
= 300, n = 25 ), corresponding to a 36-fold range of L/P. In addition, and equally important, 

using different n values allows us to compute the J factor for the same value of L/P using 

chains with different discretization (i.e., different segment lengths b0 and associated elastic 

constants cb, cs). Because for a homogeneous chain we expect the J factor to depend only on 

the ratio L/P on general grounds, we expect that the results for the J factor computed for 

chains with different n collapse onto a single curve as a function of L/P. Using different n 
values therefore provides not only an opportunity to test the expected universal behavior of 

the J factor for a homogeneous chain (namely its dependence on L/P only, independent of 

details of the model chain), but also constitutes an important test of the validity and accuracy 

of our computational method.

The partition function Qlin(N) in Eq. (5) may be calculated explicitly by using spherical 

polar coordinates and carrying out the N−2 integrations over polar angles θi and N−1 radial 

integrations of segment lengths bi iteratively. We find

Qlin (N) = V
a3

b0
3

a3

N − 1

2(2π)3(N − 1)/2 1 − e
−2cb

cb

N − 2 1 + cs

cs
3/2

N − 1
.

(9)

To obtain Eq. (9) we used the approximation ∫ 0
∞dbi ≃ ∫ −∞

∞ dbi, i.e., extending the lower 

integration limits for integrations of bi from 0 to −∞; the error of this approximation is of 

order exp(−cs/2) and is completely negligible for the values of cs used in this work. The 

harmonic approximation to Qlin(N), equivalent to calculating Qlin(N) by normal model 

analysis (NMA), may formally be obtained as the leading contribution of Qlin(N) in Eq. (9) 

in a Taylor expansion of 1/cb and 1/cs about 1/cb = 0 and 1/cs = 0, which is given by
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Qlin
(NMA)(N) = V

a3
b0

3

a3

N − 1

2(2π)3(N − 1)/2 cb
−(N − 2)cs

−(N − 1)/2 .

(10)

(This is formally equivalent to keeping for the exponent βUlin(r⃗) of the Boltzmann factor in 

Eq. (5) only the leading, quadratic terms cbθi
2 and ~cs(bi − b0)2, and evaluating the resulting 

Gaussian integrals using ∫ 0
∞dbibi

2 ≃ ∫ −∞
∞ dbibi

2 ≃ b0
2∫ −∞

∞ dbi in leading order.) The 

equilibrium constant Kb is found by inserting Qlin from Eq. (9) in Eq. (3), resulting in

Kb = b0
3 21/2 π3/2 1 − e

−2cb

cb

21 + cs

cs
3/2 .

(11)

Similarly, the NMA result Kb
(NMA) is found by inserting Qlin

(NMA) from Eq. (10) in Eq. (3), 

resulting in

Kb
(NMA) = b0

3 21/2 π3/2 cb
−2 cs

−1/2 .

(12)

As noted above, Kb has units of volume, but is independent of the concentration c = 1/V of 

linear chains; in the present case, Kb has units of volume because of the term b0
3 in Eqs. (11), 

(12), where b0 is the equilibrium length of a segment in our model chain.

3. Partition function and free energy for a circular chain

3.1. TI-NMA method—The partition function Qcir(N) for a circular chain with N vertices 

and N segments, corresponding to the circular state C shown in Fig. 1, is given by the 

expression in Eq. (5) replacing Ulin(r⃗) with
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Uel( r ) = kBTcb ∑
i = 1

N
1 − cos θi + kBT

cs
2 ∑

i = 1

N bi
b0

− 1
2

.

(13)

In this work, we neglect excluded volume interactions between chain segments and consider 

a phantom chain without topological constraint, i.e., we consider ensembles of circular 

chains which include all knot types. Furthermore, we consider the elastic energy due to 

bending and stretching of the chain only, as appropriate for nicked DNA. The only 

contribution to the potential energy of the chain is thus given by the elastic potential energy 

in Eq. (13) where the elastic constants cb, cs are the same as in Section 2. We compute the 

partition function Qcir and the free energy Fcir = −kBT ln(Qcir) using the TI-NMA method 

presented in reference 30 and summarized for the present case in Figure 3. In this method, a 

circular molecular state, C, is gradually transformed into a harmonically constrained 

reference state C0 which corresponds to the minimum energy conformation. The associated 

change in free energy, ΔF(TI), is computed by thermodynamic integration (TI). The absolute 

free energy, F0
(NMA), of the reference state C0 is computed separately by using NMA. The TI-

NMA method yields the absolute free energy of the circular state C as (Fig. 3)

Fcir = F0
(NMA) = ΔF(TI) .

(14)

3.2. Normal-mode Analysis—Applying normal-mode analysis (NMA) to the partition 

function Qcir yields an approximation, Qcir
(NMA), which is expressed in terms of the 

eigenvalues of the Hessian matrix associated with the potential function Uel(r⃗) in Eq. (13). 

The Hessian matrix is calculated at the minimum energy conformation r⃗0 of the circular 

chain, which consists of a regular polygon with N sides of length b0 (Fig. 1). Following the 

procedure outlined in 30 we obtain

Qcir
(NMA)(N) = exp −βE0

V
a3

b0
3

a3

N − 1

N3/2 8π2 IxIyIz ∏
m = 7

3N 2π
νm

1/2

(15)
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where E0 = kBTcbN[1−cos(2π/N)] is the energy of the minimum conformation r⃗0 and Ix, Iy, 

Iz are the principal moments of inertia of r⃗0 in units of b0 (we here assume that each vertex 

of the chain is associated with a unit mass). The unitless quantities vm in Eq. (15) are the 

eigenvalues of the Hessian matrix in units of kBT and b0. Assuming that the eigenvalues are 

ordered such that ν1 ≤ ν2 ≤ … ≤ ν3N one finds νm = 0 for m = 1,…, 6 and νm > 0 for m = 

7,…, 3N. The 3N−6 nonzero eigenvalues are associated with internal vibrations of the chain 

about the minimum conformation r⃗0 which incur a finite energetic cost. Conversely, the 6 

zero eigenvalues νm = 0 for m = 1,…, 6 are associated with rigid translations and rotations 

of the chain which do not incur any energetic cost. The corresponding eigenmodes 

contribute to Qcir
(NMA)(N) in Eq. (15) in terms of the number N of “particles” (vertices) and on 

the shape of the energy-minimized conformation, r⃗0, in terms of the principal moments Ix, 

Iy, Iz.30

3.3. Thermodynamic integration—The objective of thermodynamic integration (TI) is 

to gradually transform the original circular state C into a harmonically constrained reference 

state C0 for which the corresponding free energy, F0
(NMA), may be computed accurately by 

applying NMA to C0. To this end, we gradually replace the energy function Uel of the 

original, semi-flexible circular chain C in Eq. (13) with a potential function corresponding to 

C0 and to calculate the associated change in free energy, ΔF(TI) (Fig. 3). A switching 

parameter λ is used to effect this change in chain properties according to the following 

scheme

U(λ) =
λUha + (1 − λ)Uel, 0 ≤ λ ≤ 1

λUha, 1 ≤ λ ≤ λmax
.

(16)

The auxiliary elastic potential energy Uha serves to constrain the system to a predefined 

reference conformation, which is here given by the minimum energy conformation r ⃗0.30 The 

auxiliary energy Uha is defined by implementing phased intrinsic bends at the vertices of the 

chain in such a way that for the given reference conformation r⃗0 every chain segment points 

in its preferred direction relative to the preceding segment.

TI is carried out in two phases, i.e., ΔF(TI) = ΔF1
(TI) + ΔF2

(TI), with
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ΔF1
(TI) = ∫

0

1

dλ dU
dλ λ

= ∫
0

1

dλ〈Uha − Uel〉λ
,

(17)

ΔF2
(TI) = ∫

1

λmax

dλ dU
dλ λ

= ∫
1

λmax

dλ Uha λ
,

(18)

Here U = U(λ) is given by Eq. (16) and the symbol 〈 〉λ indicates an ensemble average taken 

at a specific value of λ. Values for 〈Uha−Uel〉λ in Eq. (17) and 〈Uha〉λ in Eq. (18) were 

obtained by Monte Carlo simulation for 11 equally spaced values λ = {0, 0.1, 0.2,…, 1.0} 

and for exponentially increasing λ values from 1 to a maximum value λmax (see 30 for 

details of the Monte Carlo simulation procedure). Starting with λ = 1.0, the values of λ were 

increased according to λi+1 = 1.05λi until λ was large enough to satisfy the criterion 〈U〉λ = 

0.5·(3N−6)kBT which holds in the harmonic regime due to the equipartition theorem (Fig. 

4). The results were linearly interpolated and integrated according to Eqs. (17), (18). Each 

simulation was started at the minimum energy conformation r⃗0 and an initial 1×106 trial 

moves were made to equilibrate the system. After initial equilibration, a new conformation 

was saved after each 1000 trial moves to produce a final ensemble. Fig. 4 shows 〈Uha −Uel〉λ 
for 0 ≤ λ ≤ 1 and 〈λUha〉λ = 〈U〉λ for 1 ≤ λ ≤ λmax for all values of λ quoted above. Each 

data point represents the average obtained from an ensemble of 105 conformations.

4. Comparison of J-factor values obtained by NMA and TI-NMA

Using Eq. (1) one may express the J factor as

− ln J(N)
c0

= ΔF(N)
kBT + ln c0Kb

(19)

where the free energy of cyclization Δ F = Fcir − Flin is calculated using Eqs. (4), (9), (14). In 

Eq. (14), the absolute free energy F0
(NMA) of the reference state C0 is calculated using 
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F0
(NMA) = − kBT ln Qcir

(NMA)  with Qcir
(NMA) from Eq. (15) (cf. Fig. 3). Note that the common 

prefactor V

a3
b0
3

a3

N − 1
 in Eqs. (9) and (15) cancels in the difference ΔF = Fcir − Flin, which 

implies that the J factor is independent of the volume V and of the microscopic length a 
introduced in Eq. (5). The equilibrium constant Kb in Eq. (19) is given by Eq. (11). The 

reference concentration c0 in Eq. (19) is required to make the arguments of the logarithms in 

Eq. (19) unitless. Note that c0 merely defines the units scale in terms of which J and Kb are 

expressed; the quantities J and Kb themselves are independent of the concentrations c0 and c 
= 1/V. In this work we express J in units of the standard molar concentration c0 = 1 M. Eq. 

(19) shows that the negative logarithm of the length-dependent J-factor J(N) is a measure of 

the length-dependent cyclization free energy ΔF(N) modulo an additive constant. Both terms 

on the right hand side of Eq. (19) are non-universal, i.e., depend on details of the model, but 

J on the left hand side of Eq. (19) is universal.

Similarly, the NMA result for the J factor is given by

− ln
JNMA

c0
=

ΔFNMA
kBT + ln c0Kb

(NMA) ,

(20)

where the NMA result for the free energy of cyclization, ΔFNMA, is obtained using 

ΔFNMA = − kBT ln Qcir
(NMA)/Qlin

(NMA)  with Qlin
(NMA) in Eq. (10). The NMA result Qcir

(NMA) is 

obtained by applying NMA directly to the circular state C (see Eq. (15) and Fig. 3). The 

equilibrium constant Kb
(NMA) in Eq. (20) is given by Eq. (12).

J and JNMA in Eqs. (19), (20) were calculated for chains with N = {50, 75, 100, 125, 150, 

175, 200, 225, 250, 275, 300} vertices and segments of equilibrium length b0 = {1, 3, 6}ℓ, 
where ℓ is the DNA axial rise corresponding to a single base pair (Fig. 5). The J factor, J, is 

universal in the sense that J depends only on the ratio L/P, but not on microscopic details of 

the model, such as the segment length b0. That is, when calculated using different values of 

b0, the resulting J factor collapses to a single function of L/P. This collapse confirms the 

expected universal behavior of the J factor for a homogeneous chain and constitutes an acid 

test of the validity and accuracy of our computational method (Fig. 5).

Fig. 6 shows the deviation ln (J[M])−ln (JNMA[M]) ln(J/JNMA) as a universal function of 

L/P. Note the deviation ln(J[M]) − ln(JNMA[M]) essentially corresponds to the difference in 

cyclization free energies ΔFNMA−ΔF in units of kBT, modulo an additive constant. The 

length dependence of this positive deviation is essentially linear in the ratio L/P and exceeds 

1 kBT only for L/P≳4, approximately 600 bp (assuming that P = 50 nm). Thus, using the 

harmonic approximation or NMA for systems with smaller chain lengths yields a slightly 
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underestimated J factor. Given that these results are a universal function of L/P, they should 

hold both for DNA cyclization and the more general problem of DNA looping.

III. CONCLUSIONS

There is increasing interest in the phenomenon of DNA and chromatin looping as a common 

mechanism of biological regulation.35–44 Together with recognition that cyclization J-factor 

measurements are exquisitely sensitive to helical parameters and conformational properties 

of DNA molecules, there has been strong motivation to develop advanced statistical-

mechanical models of DNA-loop formation (with cyclization as a special case). Although 

Monte Carlo methods for computing J have been the standard for problems involving 

sequence-dependent bending and flexibility, they remain challenged by finite computing 

resources. HA and NMA-based J-factor calculations are up to four orders of magnitude 

more efficient and therefore more suitable for analyzing experimental looping and 

cyclization data. As attractive as these approaches are, they have been approximations of 

unknown extent to the actual physical behavior of DNA rings and loops.

We have sought here to estimate the error in the J factor computed by HA/NMA techniques, 

which arise from anharmonic contributions to the behavior of wormlike chains and increase 

with chain size. For L/P ≤ 4, HA/NMA systematically underestimate the configurational 

free-energy cost of cyclization by an amount less than or equal to the thermal energy kBT, as 

determined by rigorously computing the exact free energy using a thermodynamic 

integration technique. Whether this error is tolerable without a TI correction or not may 

depend on the accuracy needed for a given analysis. For J-factor measurements over a 

narrow range of DNA sizes, it may be sufficient to assume that a small, multiplicative factor 

greater than unity can be applied to JNMA in order to correct for the deviation. We suggest, 

however, that such an approach should be used with caution in the case of larger chains.

Although we consider here the simple test case of a homogeneous wormlike chain without 

torsional elastic energy, we argue that our result for the deviation of the HA (and NMA) 

from the exact behavior as a function of L/P (Fig. 6) qualitatively holds for any semiflexible 

macromolecular system which can be characterized by a contour length L and a persistence 

length P, including helical wormlike chains, looped DNA, and DNA having intrinsic bends 

or other locally flexible defects (cf. the end of Section I). It would be interesting to test this 

hypothesis by systematically testing the validity of HA and NMA for more complex 

systems.

A hallmark of Don Crothers’ approach to science was his fearlessness in adapting, 

improving, or devising whatever mathematical or computational tools were needed to more 

effectively analyze experimental results. We offer the present theoretical treatment in the 

spirit of Don’s legacy.

IV. METHODS

Monte Carlo simulations were carried out using Fortran 90 and the same algorithm as in30 

but without monitoring excluded volume or knot checking. Averages 〈U〉λ and standard 

deviations σ were obtained from ensembles of 105 conformations each. In order to estimate 
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the number of trial moves between conformations required to generate an ensemble of 

independent conformations, we calculated the autocorrelation function acf(τ) = 〈(U(t) − 

〈U〉)(U (t+τ) − 〈U〉)〉 and fit acf(τ) to an exponential decay function exp(−τ/k) to estimate 

the value of the wait time k. Waiting times were measured in units of 1000 trial moves, i.e., 

k = 1 corresponds to a waiting time of 1000 trial moves. If k>1/3 was found, the number η 
of independent conformations in the ensemble generated by the Monte Carlo simulation was 

estimated as η = 105/(3k); if k ≤ 3 was found, we used η = 105, i.e., considered the entire 

ensemble of 105 conformations as independent. Standard errors of the mean (sem) for each 

simulation was estimated as sem = σ / η. Error in the TI procedure was estimated according 

to standard error-propagation analysis.

NMA calculations were performed using Python and Fortran 90. CPU time for this 

calculation scales as O(N2); for a chain of N = 300 an NMA calculation takes under a 

minute on a single CPU. TI-NMA calculations were performed on a 32-CPU computing 

cluster. With all processors occupied a calculation for N = 50 takes about one hour and 

scales linearly with large N (i.e., N = 300 takes six hours). This linear scaling applies only to 

calculations omitting excluded-volume- and knot-type-checking steps. Source code is 

available upon request.
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Fig. 1. 
Intra- and intermolecular synapsis reactions. For the intramolecular reaction (equilibrium 

constant Kc ) the end vertices of a linear chain, L, with N vertices and N−1 segments bind to 

form a circular chain, C, with N vertices and N segments (here N = 5). The added segment 

in the circular chain corresponds to the new chemical bond formed in the cyclization 

reaction. For the intermolecular reaction (equilibrium constant Kb ) the end vertices of two 

different linear chains L associate to form a linear chain with 2N vertices (L2).
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Fig. 2. 
Linear semi-flexible harmonic chain with N vertices at positions r⃗ = (r1, …, rN) and N−1 

segments described by displacement vectors bi = ri+1−ri, i = 1,…, N−1 (here N=6). Bending 

of the chain is described by N−2 polar angles θi located at inner vertices ri between 

segments bi−1 and bi, i = 2,…, N = 1.
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Fig. 3. 
Calculation of the cyclization free energy ΔF = Fcir − Flin between a circular molecular state 

C and a linear molecular state L (cf. Fig. 1). Thermodynamic integration (TI) yields the 

change in free energy, ΔF(TI), as the circular state C is transformed into the reference state 

C0 (red section of the curve). Normal mode analysis (NMA) yields the absolute free energy 

F0
(NMA) of C0 (blue section). The absolute free energy of the circular state C is then obtained 

as Fcir = F0
(NMA) − ΔF(TI). Typical Monte Carlo conformations of the circular state C are 

shown for the TI portion. The absolute free energy Flin of the linear state L is given by Flin = 

−kBTln(Qlin) with Qlin given in Eq. (9).
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Fig. 4. 
〈Uha−Uel〉λ and 〈λUha〉λ = 〈U〉λ in units of kBT for all λ values given in the text, for chains 

with N = 100 segments and equilibrium segment lengths a) b0 = ℓ, b) b0 = 3 ℓ, and c) b0 = 6 ℓ 
where ℓ is the axial rise per base pair in duplex DNA. In the harmonic regime obtained for 

large λ, 〈U〉λ/(kBT) converges to 0.5·(3N−6) = 147 for N = 100 due to the equipartition 

theorem (dashed lines).
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Fig. 5. 
a) −ln(J[M]) and b) −ln(JNMA[M]) as universal functions of L/P, where L is the contour 

length and P the persistence length of the chains in the cyclization reaction (cf. Fig. 1). 

Because the J factor, J, is a universal function of L/P, results obtained using chains with 

different values of the segment length b0 (here b0 = {1, 3, 6}ℓ where ℓ is the rise per base 

pair in duplex DNA) collapse onto a single curve as a function of L/P.
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Fig. 6. 
Deviation ln (J[M]) − ln(JNMA[M]) as a universal function of L/P (cf. Fig. 5) to assess the 

validity of the harmonic approximation (HA) and normal mode analysis (NMA). The solid 

curve is a piecewise-linear fit given by y = 0.166 x+0.0458 (x < 1.63) and y = 0.302 x−0.176 

(x ≥ 1.63), where x = L/P and y = ln(J[M])/JNMA[M]. The fit for x ≤ 4 is also shown on an 

expanded scale in the inset to the figure. Since the deviation is obtained as a universal 

function of L/P, we expect similar behavior for any semiflexible macromolecular system 

which can be characterized by a contour length L and persistence length P.
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