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Spatters and Spills: Spreading Dynamics for Partially Wetting Droplets
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2)Department of Physics and Astronomy, University of Pennsylvania, Philadelphia,
PA 19104
3)Department of Engineering, Swarthmore College, Swarthmore, PA 19081
4)Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg,
TX 78539
5)Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia,
PA 19104
6)Department of Physics, University of Chicago, Chicago, IL 60637

(Dated: 21 December 2021)

We present a solvable model inspired by dimensional analysis for the time-dependent spreading of droplets
that partially wet a substrate, where the spreading eventually stops and the contact angle reaches a nonzero
equilibrium value. We separately consider small droplets driven by capillarity and large droplets driven by
gravity. To explore both regimes, we first measure the equilibrium radius versus a comprehensive range of
droplet volumes for four household fluids, and we compare the results with predictions based on minimizing
the sum of gravitational and interfacial energies. The agreement is good, and gives a reliable measurement
of an equilibrium contact angle that is consistent in both small and large droplet regimes. Next we use
energy considerations to develop equations of motion for the time dependence of the spreading, in both
regimes, where the driving forces are balanced against viscous drag in the bulk of the droplet and by friction
at the moving contact line. Our approach leads to explicit prediction of the functional form of the spreading
dynamics. It successfully describes prior data for a small capillary-driven droplet, and it fits well to new
data we obtain for large gravity-driven droplets with a wide range of volumes. While our prediction for the
dynamics of small capillary-driven droplets assumes the case of thin nearly-wetting droplets, with a small
contact angle, this restriction is not otherwise invoked.

For submission to Physics of Fluids, special issue on “Kitchen Flows”

I. INTRODUCTION

In the kitchen, liquid ingredients splash, spill, and
spatter everywhere. With time, individual droplets flat-
ten and spread but typically stop at a finite radius and a
non-zero equilibrium contact angle θe at their outer edge
(Fig. 1). How, exactly, does the droplet height h(t) de-
crease and the droplet radius r(t) grow as a function of
time toward equilibrium? This issue is widely important
outside the kitchen, for the behavior of ink, adhesive, lu-
bricant, dye, paint, etc. Spreading dynamics has been
thoroughly reviewed1–3 for the case of complete wetting,
where θe = 0 and r(t) → ∞. The growth is a power
law, r(t) ∼ tn, but the spreading exponent n can take
many values depending on the dominant driving and dis-
sipation mechanisms (see Table II of Ref. 3). For exam-
ple, when fluid inertia and contact line friction are small,
n = 1/8 is observed for large gravity-driven droplets
whereas n = 1/10 is observed for small capillarity-driven
droplets (Tanner’s Law). Most of the subtlety lies in the
dissipation mechanisms and behavior near the moving
contact line, where special effects are required to avoid a
hydrodynamics singularity4.

a)Electronic mail: djdurian@physics.upenn.edu

For the more typical case of partial wetting, θe > 0, the
dynamics of approach to equilibrium, r(t) → re, is not
discussed in the major reviews1–3. It is, however, care-
fully modeled in Ref. 5 for small capillary-driven droplets.
The authors assume that the droplet is a spherical cap,
driven by capillarity, and that dissipation is controlled by
a friction coefficient at the contact line and by viscosity in
the bulk. The general equations of motion must be solved
numerically, but can be analyzed in different regimes. At
early times, approximate power-law growth holds with a
spreading exponent that is at first n = 1/7 and then later
n = 1/10 as the dissipation changes from contact line to
bulk. At very late times, r(t) is predicted to asymptote
exponentially to the equilibrium value re. Other works
on partial wetting dynamics considered droplet shapes,
dynamic contact angles, and dissipation mechanisms6–8.
There has also been interest in fast dynamics at early
times, when a spherical droplet initiates contact with a
substrate and inertial effects are important9–11. However,
Ref. 5 remains the only work we know that models the
approach of r(t) toward equilibrium. It does not consider
large gravity-driven droplets, and it does not report data
at long enough times to observe and test their model for
how r(t) stops growing. We seek to fill these gaps.

Here we report experimental results obtained at home
during the COVID-19 pandemic, using fluids commonly
found in the kitchen. Our focus is on the growth and
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FIG. 1. (a) The interfaces between solid-vapor, solid-
liquid, and liquid-vapor are characterized by surface ten-
sions {γSV , γSL, γ}, respectively, specifying their energy per
unit area or equivalently their tensile force per unit length.
The spreading force per length along the contact line is thus
γSV − γSL − γ cos θ = γ(cos θe − cos θ), where θ is the dy-
namic contact angle; it vanishes at the equilibrium contact
angle, θ(t) → θe, given by Eq. (1). Spreading dynamics can
be characterized by the time-dependent droplet radius r(t)
and height h(t), but droplet shape depends on volume: (b)
Small droplets are spherical caps, dominated by capillarity.
(c) Large droplets are flat pancakes, dominated by gravity.

approach to equilibrium for the case of partially wetting
Newtonian droplets of high viscosity and low inertia. Fol-
lowing the recipe of Lord Rayleigh12 we cook up models
to account for the observed behavior by using dimen-
sional analyses and back-of-the-envelope calculations.

II. PREDICTIONS

In this section we develop approximate equations of
motion that can be solved analytically for the time-
dependent droplet radius, r(t) versus time t. To begin,
we first we consider the equilibrium radius toward which
r(t) grows, then we make dimensional arguments for the
form of the equations, and finally we use energy con-
servation to arrive at our main results for predicted the
time-dependent spreading dynamics.

A. Equilibrium Droplet Radius

The equilibrium radius re of a partially wetting droplet
can be computed in terms of parameters that can be
varied by choice of materials: the droplet volume V , the
equilibrium contact angle θe, and physical constants. The
contact angle is set by the solid-vapor, solid-liquid, and
liquid-vapor surface tensions and the Young equation

γSV = γSL + γ cos θe (1)

representing force balance at the contact line (Fig. 1a). If
this equation is not satisfied, then the spreading force per

unit length along the contact line is γSV −γSL−γ cos θ =
γ(cos θe − cos θ); see Fig. 1.

1. Small Capillarity-Dominated Droplets

If the droplet is small enough to neglect gravity, then it
has constant internal pressure and hence forms a spher-
ical cap (Fig. 1b). The equilibrium droplet radius re,
height he, and radius of curvature Re, are determined
from V and θe by geometry alone. The three ingre-
dients are V = πhe(3r

2
e + h2e)/6, sin θe = re/Re, and

R2
e = r2e + (Re − he)2. These can be solved for droplet

radius, height, and curvature as a function of volume and
contact angle:

re =

[
6V cos3 θe2

π(2 + cos θe) sin θe
2

]1/3
≈
(

4V

πθe

)1/3

(2)

he =
re(1− cos θe)

sin θe
≈ reθe

2
=

(
V θ2e
2π

)1/3

(3)

Re =
re

sin θe
≈ re
θe

=

(
4V

πθ4e

)1/3

(4)

where the approximations are from an expansion for
small contact angles (θe � 1 radian), near complete wet-
ting. In this limit, the droplet is a thin spherical cap and
its volume is V ≈ πr2ehe/2. While the full expressions
in Eqs. (2-4) are exact for all θe, the small θe limit will
be invoked later for the dynamics of spreading. We note
that Eq. (2) gives clearly correct results for 90◦ and 180◦

contact angles, and its small θe expansion matches the
expression given in the Bonn et al. review3.

2. Large Gravity-Dominated Droplets

If the droplet is sufficiently large, then it is shaped like
a pancake (Fig. 1c) no matter what the contact angle.
Now the equilibrium height he and spreading radius re
are determined by minimizing the total surface and grav-
itational potential energy

U = (AS − πr2)γSV + πr2(γ + γSL) +mg(h/2) (5)

where AS is the area of the solid, m = ρV is the mass of
the droplet, ρ is its mass density, and V = πr2h is its ap-
proximate volume. While AS−πr2 represents the area of
the solid-vapor interface, the resulting ASγSV term is an
arbitrary additive constant in the potential energy that
has no influence on behavior. We neglect a small correc-
tion of order rhγSV from the rounded edge of the droplet
that would vary with time and the dynamic contact an-
gle. With this simplification, the total potential energy
versus spreading radius simplifies to

U(r) = Uo + πr2γ(1− cos θe) +
ρgV 2

2πr2
. (6)
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Minimizing versus r then gives the equilibrium radius
and height as

re =

[
(V/λc)

2

2π2(1− cos θe)

]1/4
≈
(
V/λc
πθe

)1/2

(7)

he =
V

πr2e
= λc

√
2(1− cos θe) ≈ λcθe (8)

where λc =
√
γ/(ρg) is the capillary length and the

approximations are for small θe. Naturally enough,
the droplet height is proportional to λc independent of
droplet volume. Note too that re diverges and he van-
ishes for complete wetting, θe = 0, for both small and
large droplets. The full expressions in Eqs. (7-8) are cor-
rect for arbitrary θe as long as the droplet is pancake
shaped.

3. Crossover Volume

The crossover volume between capillary- and gravity-
dominated regimes, where Eqs. (2,7) are equal, is given
by

Vc =
9πλ3c sin6 θe

2 sin5(θe/2)(2 + cos θe)2
≈ 16πλ3cθe (9)

For nearly-wetting droplets, with θe � 1 radian, note
that Vc is considerably smaller than the capillary volume
λ3c , and he is considerably less than λc. See Ref. 13 for an
alternative approach, where the transition is identified by
equating droplet height expressions from the two regimes.

Since the equilibrium radius re scales with different
powers of V for large and small droplets, the values of
{θe, λc} could be reliably extracted from asymptotic anal-
ysis of re versus V data. Intermediate size droplets, and
the exact droplet geometry, might be found by variational
calculus, satisfying both Young’s equation and pressure
balance κ(z)γ = ρgz where κ(z) is total interface cur-
vature at distance z below the top of a droplet of fixed
volume.

B. Dimensional Analysis

In order for a spreading droplet to reach equilibrium,
its excess gravitational and surface potential energies
must be dissipated. This could be dominated by flow
throughout the bulk of the droplet, as set by the viscos-
ity η of the fluid. Or it could be dominated by “fric-
tion” at the moving contact line, as set by a coeffi-
cient ζ that has dimensions of viscosity and encapsulates
molecular effects5,14. Altogether there are nine relevant
quantities {r, ṙ, re, V, γ, ρ, g, η, ζ} whose dimensions are
a combination of three basis units {g, cm, s}. Accord-
ing to the Buckingham Π theorem15, which formalizes
Rayleigh’s method of dimensional analysis, one may con-
struct 9 − 3 = 6 independent dimensionless quantities.

However, it’s actually useful to consider more than just
six: [

ηṙ

γ

]
=

[
ζṙ

γ

]
=

[
ηṙ

ρgr2

]
=

[
ζṙ

ρgr2

]
= 1 (10)[

V

r3

]
=

[
r

re

]
= 1 (11)[

ρrṙ

η

]
=

[
ρrṙ

ζ

]
= 1 (12)

In the first line, the numerators and denominators have
units of force/length and represent the ratio of dissipa-
tion (in bulk or at contact line) to driving (capillarity
or gravity); the first two of these are capillary numbers.
The two in the middle line represent geometrical scales.
The two in the third line are Reynolds numbers, which
we assume are small on approach to equilibrium.

In practice, it often happens that only one driving
mechanism and one dissipation mechanism dominate be-
havior. The case can be judged by the value of two other
dimensionless numbers:

Bo =
ρgr2

γ
=

(
r

λc

)2

(13)

Co =
ζV

ηr3
(14)

The first is the Bond number, which represents the ratio
of gravity to capillarity. The second is a number we have
not previously encountered, which we name the “Con-
tact” number and which represents the ratio of dissipa-
tion at the contact line to that in the bulk. The geo-
metrical factor of V/r3 was included in hindsight based
on calculations given below; it is specific to droplets and
would not apply to capillary rise, for example.

If the two Reynolds numbers are small, and if Bo and
Co are both either large or small compared to 1, then
three of the four numbers in Eq. (10) are irrelevant and
the one remaining number must equal f(V/r3)g(r/re) for
some functions f() and g() of the numbers in Eq. (11).
The spirit of dimensional analysis is to guess and test
reasonable forms for these function. Since r(t) grows as
a power law for the case of complete wetting, and since
ṙ must vanish at r → re, presumably exponentially, one
reasonable ansatz for the general equation of motion is

ṙ

v
= c

(
V

r3

)α [
1−

(
r

re

)β]
(15)

where the characteristic speed scale v is one of
{γ/η, γ/ζ, ρgr2/η, ρgr2/ζ}, and where {c, α, β} are
numbers that may be computed or found by experi-
ment. At short times, when r(t) is small compared to
re, the equation of motion reduces to ṙ/v = c(V/r3)α

and predicts power-law growth. At long times, near
equilibrium, the equation of motion reduces to ṙ/v =
c(V/r3e)

α[β(re−r)/re] and hence predicts an exponential
rise of r(t) toward re. These behaviors are born out in
the next sub-section, where we also compute values for
the exponents.



4

C. Equations of Motion

Equations of motion for the growth of the droplet ra-
dius can be derived using energy conservation, by equat-
ing the rate of loss of potential energy with the power dis-
sipated in flow. The predictions are all of form Eq. (15)
if only one driving mechanism and only one dissipation
mechanism dominate.

For small droplets, Bo� 1, the rate of surface energy
loss equals the length 2πr of the contact line times the
spreading force per length (see Fig. 1) times the speed ṙ
of the contact line:

Pγ = 2πrγ(cos θe − cos θ)ṙ (16)

≈ 16γV 2

πr5

[
1−

(
r

re

)6
]
ṙ (17)

where θ is the dynamic contact angle, ṙ = dr/dt; the
approximation is for small angles, and uses Eq. (2).

For large droplets, Bo � 1, the rate of total potential
energy loss is given by differentiating Eq. (6):

Pg = −dU

dt
=
ρgV 2

πr3

[
1−

(
r

re

)4
]
ṙ (18)

using Eq. (7) without further approximation, for any con-
tact angle. As for Pγ the driving power vanishes at equi-
librium. Note that the Bond number is recognized as
Bo = Pg/Pγ in the limit r � re.

Turning now to the rate of energy dissipation, there
are two known mechanisms. The first is viscous flow
throughout the bulk of the droplet with characteristic
strain rate of ṙ/h. For pancake-shaped droplets of arbi-
trary contact angle, and for spherical cap-shaped droplets
with small contact angle (θe � 1 radian), the height is
h ∝ V/r2 and the viscous dissipation happens through-
out the whole volume. Therefore, the dissipated power is
estimated from viscosity times characteristic strain rate
squared times volume as

Pη ∝ η
(
ṙ

h

)2

V ∝ ηr4

V
ṙ2 (19)

The numerical proportionality factor depends on details
of droplet shape and fluid flow, and has a logarithmic
dependence on droplet volume compared to a length scale
that arises from cutting off the flow singularity at the
contact line.

The second dissipation mechanisms is friction at the
contact line, which is controlled by a coefficient ζ with
units of viscosity. Per Ref. 5 it is defined such that the
total dissipation rate is

Pζ = 2πrζṙ2 (20)

Note that Eqs. (19-20) justify our definition of the Con-
tact number as Co = Pζ/Pη = ζV/(ηr3).

Equating total dissipation rate Pη +Pζ to either Pγ or
Pg gives two equations of motion, respectively:(

ccnηr
9

γV 3
+
cczζr

6

γV 2

)
ṙ = 1−

(
r

re

)6

(21)(
cgnηr

7

ρgV 3
+
cgzζr

4

ρgV 2

)
ṙ = 1−

(
r

re

)4

(22)

where the numerical constants cxy subsume known and
unknown factors in Eqs. (17-20); these give ccz = π2/8
and cgz = 2π2, but the other two are unknown at this
point. The first equation of motion is for small nearly-
wetting droplets or spatters (Bo � 1 and small θ). The
second is for large droplets or spills (any θe). As a first
step towards solution, these can be rewritten with sepa-
rated variables as

dt =
Ccnr

9 + Cczr
6

1− (r/re)6
dr (23)

dt =
Cgnr

7 + Cgzr
4

1− (r/re)4
dr (24)

where the constants Cxy all have different dimensions and
depend on droplet volume. Both new expressions can
be integrated for prediction of t(r); however, the results
(below) are a bit cumbersome and cannot be analytically
inverted for r(t). So we first examine early and late times,
where the results are simpler:

At early times, when the denominator in Eqs. (23-24)
can be ignored, the dynamics are identical to the limit
re →∞ of complete wetting and integration gives

t(r) = to +
1

10
Ccn(r10 − r10o ) +

1

7
Ccz(r

7 − r7o) (25)

t(r) = to +
1

8
Cgn(r8 − r8o) +

1

5
Cgz(r

5 − r5o) (26)

where ro is the radius at time to. Note that power-law
behavior holds if one dissipation mechanism dominates
and the other can be ignored (but pure power-law growth
hold only for t � to and r � ro; at the earliest times,
the behavior is r(t) ≈ ro + vo(t − to) where the initial
spreading speed vo depends on ro and the Cxy values).
The resulting exponents are familiar, except for the r ∼
t1/5 spreading of large gravity-driven droplets or spills
with only contact line dissipation. For the other cases,
the coefficients are also known:

Ccn =
π3 ln[3V/(πa3)]η

12γV 3
(27)

Ccz =
π2ζ

8γV 2
(28)

Cgn =
35π3η

27ρgV 3
(29)

Cgz =
2π2ζ

ρgV 2
(30)

The first is implied by Eq. (33) in Ref. 5, where a is a
microscopic length scale introduced to cut off the hydro-
dynamic singularity at the moving contact line. The loga-
rithmic factor is slightly different for the case of complete



5

wetting, where there is a precursor film; see Eqs. (10,69)
in Ref. 3. The second follows from ccz = π2/8, and
is in accord with Eq. (30) of Ref. 5. The third is
from Eqs. (2.29-30) in Ref. 16. The fourth follows from
cgz = 2π2, but we are unaware of any precedent for this.
While three of the four individual power laws are known,
it appears to be a new insight that they add per Eqs. (25-
26) when both dissipation mechanisms contribute to the
dynamics.

At late times, when re − r is small, the numerator in
Eqs. (23-24) is constant and the denominator expands to
1 − (r/re)

β ≈ β(re − r)/re. The predicted approach to
equilibrium,

re − r(t) ∝ exp

[
− 6t

Ccnr10e + Cczr7e

]
(31)

re − r(t) ∝ exp

[
− 4t

Cgnr8e + Cgzr5e

]
(32)

is thus exponential in time for both small and large

droplets. Note that the exponential relaxation times de-
pend on the final spreading radius, as well as the same
coefficients that appear in the early-time power laws. For
small capillary-driven droplets, our result agrees with
Eq. (37) of Ref. 5. For large gravity-driven droplets, our
prediction seems to be a new result.

The general solution of Eqs. (21-22) for small and large
droplets, respectively, can be written as follows based on
Eqs. (23-24):

t(r) = to + Ccnr
10
e I96(r) + Cczr

7
eI66(r) (33)

t(r) = to + Cgnr
8
eI74(r) + Cgzr

5
eI44(r) (34)

Iij(r) =

∫ r/re

ro/re

xidx

1− xj
(35)

The Iij(r) are dimensionless functions of droplet radius,
which we compute to be

I96(r) =
1

12
ln

[
(r2e − r2o)2(r4e + r2er

2 + r4)

(r2e − r2)2(r4e + r2er
2
o + r4o)

]
+

√
3

6

[
arctan

(
re + 2r√

3re

)
− arctan

(
re + 2ro√

3re

)

+ arctan

(
re − 2r√

3re

)
− arctan

(
re − 2ro√

3re

)]
−
(
r4 − r4o

4r4e

)
(36)

I66(r) =
1

12
ln

[
(re + r)2(re − ro)2(r2e + rer + r2)(r2e − rero + r2o)

(re − r)2(re + ro)2(r2e − rer + r2)(r2e + rero + r2o)

]
+

√
3

6

[
arctan

(
re + 2r√

3re

)

− arctan

(
re + 2ro√

3re

)
− arctan

(
re − 2r√

3re

)
+ arctan

(
re − 2ro√

3re

)]
−
(
r − ro
re

)
(37)

I74(r) =
1

4
ln

(
r4e − r4o
r4e − r4

)
−
(
r4 − r4o

4r4e

)
(38)

I44(r) =
1

4
ln

[
(re + r)(re − ro)
(re − r)(re + ro)

]
+

1

2

[
arctan

(
r

re

)
− arctan

(
ro
re

)]
−
(
r − ro
re

)
(39)

Note that these functions all vanish for r → ro and di-
verge logarithmically for r → re as expected.

III. EXPERIMENTS

We now test the above predictions, first using digitized
data from a prior publication on the capillary-driven
spreading dynamics for a small partial-wetting droplet5,
and then using data from our at-home experiments. For
the latter, we first describe the materials and methods,
then we test behavior for (1) equilibrium radius versus
droplet volume and for (2) radius versus time spreading
dynamics of large gravity-driven droplets.

A. de Ruijter et al. 1999

The only prior radius versus time data for partial
wetting droplets that we can locate is in Fig. 3 of the
1999 publication by de Ruijter et al.5 To compare with
our predictions, we first extract their data points us-
ing WebPlotDigitizer (version 4.4, currently available at
https://apps.automeris.io/wpd). The authors provide
values for γ = 34.3 mN/m, η = 19.6 mPa-s, ζ = 130η,
and a = 1.4µm, where they obtained the latter two and
θe = 0.10 degrees by fit to numerical integration of their
model of capillary-driven dynamics; however, they do not
specify the droplet volume. So we plotted their data as
t versus r and fit to our Eq. (25) by adjusting V at fixed
to = 0 s and ro = 0.21 cm. This gives V = 5.2 mm3, in
accord with the range 5.0–9.5 mm3 they state in a prior
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TABLE I. Measured values of mass density ρ, dynamic viscosity η, and liquid-vapor surface tension γ; computed capillary
lengths λc =

√
γ/(ρg); fit values for the equilibrium contact angle θe, for four fluids. Note that they have a wide range of

viscosities, but are otherwise comparable.

Fluid ρ (g/cm3) η (g/cm·s) γ (g/s2) λc (cm) θe (deg)
Glycerol 1.250± 0.005 6.32± 0.05 62± 5 0.225± 0.009 41± 2
Molasses 1.404± 0.005 31.7± 0.5 63± 2 0.214± 0.004 42± 2
Corn Syrup 1.397± 0.005 103± 5 81± 6 0.243± 0.009 58± 2
Honey 1.440± 0.005 213± 5 71± 4 0.224± 0.006 48± 2
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1.00

0.1 1 10 100 1000 104 105 106

data	(de	Ruiter	et	al.	1999)
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FIG. 2. Radius versus time for the capillary-driven spreading
of a partial wetting droplet, digitized from Fig. 3 of Ref. 5.
The inset zooms into a portion of the main plot, but on linear
axes. The dashed curve is a fit to Eq. (25) where droplet
volume V was adjusted and all other physical parameters were
taken as published in Ref. 5. The solid curves are Eq. (33),
using these parameter and the fitted value of V , for three
assumed values of the final spreading radius re.

publication17. The data and our fit are in excellent agree-
ment, as shown in Fig. 2. Thus our simple model works
as well as the more complex one requiring numerical in-
tegration. Unfortunately, their data collection stopped
well before the equilibrium spreading radius and contact
angle were reached. We don’t understand how they fit
for θe = 0.10 degrees, since our own fits are insensitive to
the contact angle over the range of their data; however,
their value and V = 5.2 mm3 predict re = 1.5 cm using
Eq. (2). Fig. 2 also shows Eq. (33) for assumed values of
{0.5, 0.75, 1} cm for re. As seen, this choice does not af-
fect the agreement of theory and data, which is evidently

in the early-time regime where Eq. (25) holds indepen-
dent of the equilibrium contact angle and the resulting
equilibrium radius.

B. Materials and Methods

For our experiments we chose four readily available flu-
ids that are Newtonian, safe to use at home where our
experiments are performed, and have a wide range of vis-
cosities: glycerol (Eisen-Golden Laboratories, 99.7% an-
hydrous, ACS grade), blackstrap molasses (Golden Bar-
rel, unsulfered blackstrap molasses), corn syrup (Karo,
light corn syrup with real vanilla), and honey (Nature
Nate’s, 100% California pure raw & unfiltered honey).
To aid visualization, blue food coloring dye is added to
all but molasses (McCormick; 5–10 drops per 50 mL of
fluid). Physical properties are measured as follows and
collected in Table I. The mass density ρ is obtained by
weighing 50 mL of fluid in a graduated cylinder. The
shear viscosity η is measured using a stress-controlled
rheometer (TA Instruments, DHR 30) in a 50 mm diam-
eter cone-and-plate geometry. A custom-made solvent
trap is used to avoid solvent evaporation. Newtonian be-
havior is found for all fluids over the full range of strain
rates tested (0.1–100/s). The liquid-vapor surface ten-
sion γ is obtained using a 15 minute pendant drop test
with a 0.9 mm needle diameter and droplet volumes be-
tween 7 and 11 µL (KSV Instruments, Attension Theta).
Surface tensions are not sensitive to dye at the concen-
trations used, but do exhibit systematic drift during the
tests; thus, we take a straight average over all times and
use the full range as an estimate of uncertainty. Surface
tension and density results are used to compute the cap-
illary length for each fluid, λc =

√
γ/(ρg), also given in

the table.

For a solid substrate, we chose a 12 × 12 square-inch
borosilicate glass sheet, 1/4 inch thick (McMaster-Carr),
cleaned with dishwashing detergent and dried with paper
towel. It is supported about 12 inches above a table, and
made horizontal with aid of a 2 inch diameter bullseye
bubble level. A photograph of one of our setups is shown

in Fig. 3.

Droplets of controlled volume between 0.02 and 20 mL
are gently deposited using 1 mL or 10 mL plastic sy-
ringes. This can take up to several seconds, during which
the droplets begin spreading. Time zero is defined as the
end of deposition. The droplets are illuminated from
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FIG. 3. Left: One of our setups, in the kitchen, with a large
droplet of corn syrup dyed blue. Right: Example image show-
ing such several droplets.

above and photographed or recorded by video from be-
low using a smart phone in selfie mode lying on the ta-
ble. Images are imported into ImageJ (NIH) for measure-
ment of droplet area A, from which the effective radius
is computed as r =

√
A/π. The larger droplets are not

perfectly circular, but have a smooth convex shape; the
difference in major and minor axes is no more than 10%.

C. Equilibrium radius versus volume

To further characterize the four fluids and establish
the ranges for capillary- and gravity-driven spreading,
we first measure equilibrium radius re versus a range of
droplet volumes V (0.02–20 mL, as wide a range as can
be managed with the syringes and glass plate; three tri-
als per volume). The data plotted in Fig. 4 show that
the smallest droplets all increase as re ∝ V 1/3, consis-
tent with Eq. (2) for capillary-driven spreading. By con-
trast the largest droplets all increase as re ∝ V 1/2, con-
sistent with Eq. 7 for gravity-driven spreading. In the
equations for both regimes, the equilibrium contact an-
gle θe is the only unknown parameter. In order to in-
terpolate between the two regimes, we fit all the data to
a single empirical form, re = (rmsmall + rmlarge)

1/m using

Eqs. (2,7) for the small and large radii. Preliminary fits
give crossover shape exponents m ranging from 8 to 13,
so we simply fix m = 10 and then fit only for θe. The
final fits, displayed in Fig. 4, are excellent and hence give
reliable values for the equilibrium contact angles (listed
in Table I). These are large enough for rough visual con-
firmation, similar to Figs. 1,3. The crossover is quite
sharp and easy to identify in Fig. 4 as the intersection of
Eqs. (2,7), given by the crossover volume of Eq. (9). In
particular, droplets smaller than about Vc ≈ 0.3 mL are
capillary-driven while droplets larger than Vc are gravity-
driven. While our procedure to measure λc and fit for θe
provides a stringent test, future researchers could use our
equations to fit for both θe and λc provided they measure
a similarly wide range of droplet volumes on both sides
of Vc.

FIG. 4. Equilibrium radius versus droplet volume for four flu-
ids. The solid curves represent fit to re = (rmsmall+r

m
large)1/m,

where small and large droplet radii expressions are given re-
spectively by Eqs. (2,7), the crossover exponent m is taken
as 10, the capillary length λc is taken from Table I, and the
equilibrium contact angle θe is the only adjustable parameter.
Fitting results for θe are given in Table I. The dashed lines
represent the small and large radius asymptotes of the fits,
i.e. Eqs. (2,7). These intersect at the crossover volume Vc

given by Eq. (9).

D. Radius versus time for gravity-driven droplets

Now we are ready for our main task: Analysis of the
dynamics of spreading for the partially wetting droplets.
For this, we focus on corn syrup with droplet volumes of
{0.5, 1, 2, 5, 10, 20} mL, all larger than Vc ≈ 0.3 mL
and hence in the gravity-driven regime. Since our four
fluids are similar except for viscosities, we chose the one
that is most convenient in terms of handling and time
scales needed to reach equilibrium. For each volume, we
conduct three trials and extract radius versus time data
as described above. Example data are shown in Fig. 5 for
the three V = 5 mL trials, plotted as time versus radius
as per our Eq. (34) prediction. The first data points are
collected at 1 s after the end of droplet production, and
we observe that the final equilibrium radius is reached
several hundred seconds later. Due to spreading during
deposition, droplets are all within 25% of their final value
at time 1 s. We also observe about 5% variation in the
value of the final radius, consistent with the scatter seen
in Fig. 4.

The dynamics data may now be fit to our Eq. (34)
prediction, where the Cgn and Cgz coefficients for bulk
viscous drag and contact line friction are the only un-
knowns that can be used as fitting parameters. If both
are adjusted, then often Cgz is driven negative, which is
unphysical; therefore, the best fits are usually obtained
by adjusting only Cgn with fixed Cgz = 0. This is con-
sistent with the fact that contact line friction would be
most important at early stages, as for the case of capil-
lary driving5, and is also consistent with the treatment
of Ref. 16 where it was not considered. The resulting fits
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FIG. 5. Time versus radius for three different 5 mL droplets
of corn syrup (with images taken at t = 3000 s). Note that
we plot t versus r, rather than r versus t, because our predic-
tions for t(r) cannnot be inverted for r(t). The solid curves
are fits to Eq. (34), where {to, ro, re} are taken as the mea-
sured endpoints, Cgz is set to zero, and Cgn is the only fitting
parameter. The dashed curves are also fits to Eq. (34) with
{to, ro, re} taken as the measured endpoints, but now where
Cgn is taken by Eq. (29) and Cgz is the only fitting parameter.

are good, as seen by the solid curves in Fig. 5, and are
representative of fit obtained for the other droplet sizes.

The fitted values of the Cgn coefficients, for fits of t(r)
versus r to Eq. (34) with Cgz fixed to zero, are plotted
versus droplet volume in the top plot of Fig. 6. There,
the Ref. 16 expectation of Eq. (29) for the case of com-
plete wetting is shown as a dot-dashed line. It lies be-
low but parallel to the data, which are reasonably well
described by Cgn = (140 ± 40)η/(ρgV 3), which is like
Eq. (29) but with a numerical prefactor that is a lit-
tle more than twice as large. While it is encouraging
that we find the expected Cgn ∝ 1/V 3 scaling, we can
only speculate on the discrepancy in the prefactor. One
possibility is that contact line friction is not negligible
and that our fits compensate by returning an artificially
large Cgn coefficient. This is considered below, but the
quality of fits and the observed Cgn ∝ 1/V 3 scaling ar-
gue against it. Another possibility is that the numerical
prefactor in the Cgn expression depends on details of the
hydrodynamic flow very near the contact line and hence
varies with contact angle. Indeed, for capillary-driven
spreading this is the origin of the ln[3V/(πa3)] term in
Eq. (27) for Ccn; hence there is good reason to suspect
Cgn could vary with contact angle and that our results
would be different from the complete wetting prediction.
Yet another possibility is stick-slip motion from contact
line pinning. This cannot be discounted because of the
slightly non-circular final shapes of the droplets.

While we favor the above analysis, for completeness
we attempt an alternative fitting procedure where Cgz is
adjusted to fit the t versus r dynamics data while Ggn is
fixed to the completely wetting value given by Eq. (29).
The resulting fits are reasonable, but not as good, as
represented by the dashed curves in Fig. 5. Interestingly,
the fitted values of Cgz have the expected 1/V 2 scaling,

~ ⁄1 𝑉!

~ ⁄1 𝑉"

Procedure 1:
Adjust 𝐶#$ with 𝐶#% = 0

Procedure 2:

Adjust 𝐶#% with 𝐶#$ =
!!&"'
"#(#)"

FIG. 6. Fitting coefficients versus droplet volume, for two
different procedures of fitting Eq. (34) to t(r) versus r data
on the spreading of corn syrup droplets. Top plot / first
procedure: Cgn coefficients versus droplet volume obtained
from fits such as shown in Fig. 5 where Cgz is fixed to zero.
The solid line is a fit to Cgn ∝ η/(ρgV 3), as expected from
Eq. (29), where {η, ρ} are taken from Table I and the nu-
merical prefactor is found to be 140 ± 40. For comparison,
the dot-dashed line represents Eq. (29) exactly, with numer-
ical prefactor of 35π3/27 ≈ 58.86 as predicted16 for the case
of complete wetting. Bottom plot / second procedure: Cgz

coefficients, obtained from fits the the dynamics data where
Cgn = 35π3η/(27ρgV 3) is fixed according to Ref 16 quoted
in Eq. (29). The dashed line is a fit to Eq. (30), which gives
ζ = 1100± 300 g/(cm·s).

as shown in the bottom plot of Fig. 6. Fitting to Eq. (30)
gives ζ = 1100± 300 g/(cm·s). This is roughly ten times
the bulk viscosity, in line with the factor of 30 found in
Ref. 5 for a different fluid. Based on the reasonably good
fits, the 1/V 2 scaling of Cgz with droplet volume, and the
ratio of contact line friction to bulk viscosity, we cannot
rule out this alternative analysis.

IV. CONCLUSIONS

In this paper we proposed dimensional analyses and
approximate but solvable models for time-dependent
spreading of partially wetting droplets toward equilib-
rium. These predictions for spreading dynamics appear
to be novel for the case of large gravity-driven droplets,
and are complementary to prior work requiring numerical
solution5 for the case of small capillary-driven droplets.
We also collected data for both equilibrium droplet sizes
and spreading dynamics, at home in the kitchen, and
found good comparison with our approximate models.
These advances may be helpful for characterizing the con-
tact angle and dissipation mechanisms of fluids and for
predicting their spreading behavior in a wide variety of
contexts, since issues of wetting and spreading are ubiq-
uitous not just in the kitchen but also in industry as
well as in the natural world. Our work also suggests
some lines for further research. For example, it would
be interesting to use a variational calculus approach to
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capture the crossover seen in Fig. 4 between small and
large droplets. Further data, with closely spaced droplet
volumes around Vc, would be helpful in this regard. It
would also be worthwhile to obtain additional spreading
dynamics data, and to perform hydrodynamic calcula-
tions, that could help resolve whether contact line friction
need be included for the spreading of large gravity-driven
droplets. Presuming not, as suggested but not proved
by one of our analysis procedures, it would be useful to
elucidate the value and contact angle dependence of the
numerical prefactor in Cgn ∝ η/(ρgV 3). And, finally,
it would also be interesting to include a mechanism for
contact angle hysteresis and to explore the contraction
dynamics of droplets prepared with radii greater than
the equilibrium value.
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