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THE CHROMATIC QUASISYMMETRIC CLASS FUNCTION OF

A DIGRAPH

JACOB A. WHITE

Abstract. We introduce a quasisymmetric class function associated to a
group acting on a double poset or on a directed graph. The latter is a gen-
eralization of the chromatic quasisymmetric function of a digraph introduced
by Ellzey, while the latter is a generalization of a quasisymmetric function
introduced by Grinberg. We prove representation-theoretic analogues of clas-
sical and recent results, including F -positivity, and combinatorial reciprocity
theorems. We also deduce results for orbital quasisymmetric functions. We
also study a generalization of the notion of strongly flawless sequences.

1. Introduction

Given a graph G, let G be a subgroup of the automorphism group of G. Then
G acts on the set of k-colorings of G. If we χG(G, k) denote the number of orbits
of this action, then the resulting function is a polynomial in k, called the orbital
chromatic polynomial and studied by Cameron and Kayibi [5]. Jochemko [13] found
a combinatorial reciprocity theorem by giving a combinatorial interpretation to
(−1)nχG(G,−k).

Similarly, given a poset P , a subgroup G of the automorphism group of P acts
on the set of order-preserving maps ϕ : P → {1, . . . , k}. If we let ΩG(P, k) denote
the number of orbits of this action, we obtain the orbital order polynomial that was
introduced by Jochemko [13], who proved a combinatorial reciprocity theorem for
ΩG(P, k). These results were later generalized to quasisymmetric functions associ-
ated to a double poset by Grinberg [10]. One of our primary interests is proving
combinatorial reciprocity theorems for orbital polynomial invariants associated to
combinatorial objects.

Stapledon [19] studied the equivariant Ehrhart quasipolynomial of a polytope.
Let G be a finite group acting linearly on a lattice M ′ of rank n, and let P be
a d-dimensional G-invariant lattice polytope. Let M be a translation of the in-
tersection of the affine span of P and M ′ to the origin, and consider the induced
representation ρ : G → GL(M) If χ(m) is the permutation character associated
to the action of G on the lattice of points in the mth dilate of P , then χ(m) is
a quasipolynomial in m whose coefficients are elements of R(G), the ring of vir-
tual characters of G. Stapledon proved several results concerning the equivariant
Ehrhart quasipolynomial.

Motivated by these past results, we study quasisymmetric class functions. These
are class functions associated to the symmetry group G of a combinatorial object,
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2 JACOB A. WHITE

whose values are quasisymmetric functions. Equivalently, they are quasisymmetric
functions whose coefficients are class functions. If we let G be the trivial group,
then we obtain ordinary quasisymmetric functions (and should re-derive classical
results). In fact, we can always obtain the ordinary quasisymmetric function by
evaluating all characters at the identity element. We can also obtain corresponding
orbital quasisymmetric functions, and various polynomial specializations.

The goal of this paper is to study a quasisymmetric class function generalization
of the D-partition enumerator of a double poset and of the chromatic polynomial
of a directed graph. The former is an class function generalization of an invariant
introduced by Grinberg, which in turn is a generalization of the labeled P -partition
enumerator studied by Gessel [9]. We define double posets and related terminol-
ogy in Section 3. Given a double poset D on a set N , let G be a subset of the
automorphism group of D. Then G acts on the set of D-partitions. For g ∈ G, we
define

Ω(D,G,x; g) =
∑

σ:gσ=σ

∏

v∈N

xσ(v)

where we are summing over D-partitions fixed by g. Then Ω(D,G,x) is a QSYM-
valued class function.

Stanley introduced the chromatic symmetric function [18], a symmetric func-
tion generalization of the chromatic polynomial. This has been generalized to a
chromatic quasisymmetric function by Shareshian and Wachs [16] and to directed
graphs by Ellzey [7]. We will study a class function generalization of Ellzey’s invari-
ant, defined more explicitly in Section 4. Much like the generalization of Shareshian
and Wachs, our invariant has an extra variable t: our invariant is a class function
that takes on values in the ring of quasisymmetric functions over the field C(t).
Given a digraph G on a set N , let G be a subset of the automorphism group of
G. Then G acts on the set of proper colorings of the underlying undirected graph.
Ellzey defines a statistic asc(f) for a coloring. We show that this statistic is also
G-invariant. For g ∈ G, we define

χ(G,G,x; g) =
∑

f :gf=f

tasc(f)
∏

v∈N

xσ(v)

where we sum over proper colorings of G. Much like in the case of double posets,
the resulting invariant is a class function whose values are quasisymmetric functions
over C[t].

Our primary interest is to study generalizations of F -positivity results, inequal-
ities, and combinatorial reciprocity theorems. Let C(G,QSYM) be the set of class
functions with values in QSYM. If we take an element χ(x) of C(G,QSYM) and
a given basis B for quasisymmetric functions, we say that χ(x) is B-effective if
χ(x) can expressed in the basis B with coefficients that are characters of repre-
sentations of G. If we let χ1, . . . , χk denote the irreducible characters of G, then
R = {χiBα : i ∈ [k], Bα ∈ B} forms a basis for C(G,QSYM). If χ(x) is B-effective,
then χ(x) can be expressed as a linear combination of χiBα with nonnegative in-
teger coefficients.

We prove that the D-partition quasisymmetric class function for locally special
posets is F -effective in Theorem 17. The notion of locally special was first intro-
duced by Grinberg, under the name tertispecial. He also suggests locally special as
an alternative name. Our results specialize to both known and new results in the
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literature. We also give a proof that the corresponding orbital D-partition enumer-
ator is F -positive. This implies that locally special double posets have F -positive
D-partition enumerators, which appears to be new. It also implies F -positivity for
skew Schur functions and for labeled P -partition enumerators.

We also prove in Theorem 19 that χ(G,G,x) is also F -effective.
We study polynomial invariants as well. There are lots of results about inequal-

ities for coefficients of chromatic polynomials of graphs with respect to different
bases, including recent work that the coefficients of (−1)nχ(G,−x) are unimodal
[12] and strongly flawless [14]. Given a sequence (f0, . . . , fd), we say the sequence
is strongly flawless if the following inequalities are satisfied:

(1) for 0 ≤ i ≤ d−1
2 , we have fi ≤ fi+1.

(2) For 0 ≤ i ≤ d
2 , we have fi ≤ fd−i.

For this paper, we are focused on the sequence of coefficients for a polynomial p(x)
with respect to the basis

(

x
k

)

. We refer to these coefficients as the f -vector, and
say p(x) is strongly flawless if the f -vector is strongly flawless and nonnegative.
We have a representation-theoretic generalization: now the fi are required to be
effective characters, and we interpret inequalities of the form fi ≤ fk as saying that
fk − fi is also a character. We refer to such a sequence of characters as effectively
flawless. We show that Ω(D,G, x) and χ(G,H, x) are effectively flawless in Section
6. Then we obtain the following theorem:

We also discuss combinatorial reciprocity theorems. In [17], he defines a combi-
natorial reciprocity theorem as ‘a result which establishes a kind of duality between
two enumeration problems’. The book by Beck and Sanyal [4] is full of many ex-
amples of such results. In general, we suppose that we have a vector subspace V
of a ring of formal power series, and that V comes equipped with an involution ω.
Given two generating functions f, g ∈ V , a combinatorial reciprocity theorem is the
statement that f = ωg. This is more general than the examples that appear in Beck
and Sanyal’s book, but still fits the general notion Stanley originally proposed.

In this paper, V is usually vector space of class functions from G to quasisym-
metric functions of a fixed degree d, and ω = (−1)dS sgn. Hence a combinatorial
reciprocity theorem for a quasisymmetric class function consists of showing that
(−1)dS sgn p(x) is M -realizable by giving an explicit description of the resulting
permutation characters. The sgn term is the sign representation, which naturally
arises as G is always a a permutation group. It arises naturally in the work of
Stapledon, Grinberg and Jochemko. We are also able to deduce combinatorial reci-
procity theorems for corresponding orbital invariants, and for polynomial invariants
as well.

We prove a combinatorial reciprocity theorem for double posets in Theorem
11, which involves taking duals of partial orders, and a combinatorial reciprocity
theorem for digraphs in Theorem 14, which involves group actions on pairs (O, f),
where O is an acyclic orientation and f is a compatible coloring.

The paper is organized as follows. In Section 2, we define quasisymmetric func-
tions, review some representation theory, and discuss set compositions. We also
discuss polynomials, and quasisymmetric class functions. In Section 3, we de-
fine double posets, D-partitions and the corresponding D-partition quasisymmetric
class function. Then we prove some basic facts about Ω(D,G,x). We also discuss
some properties about locally special double posets that we need for later proofs.
In Section 4, we define the chromatic quasisymmetric class function, and provide
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a formula expressing χ(G,G,x) in terms of quasisymmetric class functions related
to double posets coming from acyclic orientations of G. In Section 5, we prove our
combinatorial reciprocity theorems for Ω(D,G,x) and χ(G,G,x). In Section 6, we
show our polynomial invariants are effectively flawless. We also show other prop-
erties about the quasisymmetric functions, and study some examples to show how
properties fail for h-vectors. In Section 7, we prove F -effectiveness for Ω(D,G,x)
and χ(G,G,x). We also establish the corresponding h-effectiveness for the related
polynomial invariants, and deduce some F -positivity results as corollaries. In Sec-
tion 8, we define our orbital quasisymmetric functions, and deduce facts about
these invariants from the results we have obtained about the quasisymmetric class
functions. Finally, in Section 9, we discuss some open problems.

2. Preliminaries

Given a basis B for a vector space V , and ~β ∈ B,~v ∈ V , we let [~β]~v denote the

coefficient of ~β when we expand ~v in the basis B.
Let x = x1, x2, . . . be a sequence of commuting indeterminates. Let n ∈ N

and let f ∈ K[[x]] be a homogeneous formal power series in x, where the degree
of every monomial in f is n. Then f is a quasisymmetric function if it satisfies
the following property: for every S = {i1, . . . , ik} with i1 < i2 < · · · < ik, and

every integer composition α1 + · · ·+ αk = n, we have [
∏k

j=1 x
αj

ij
]f = [

∏k
j=1 x

αj

j ]f .

Often, we will define quasisymmetric functions that are generating functions over
functions. Given a function f : S → N, we define xf =

∏

v∈S xf(v). For example,

the chromatic symmetric function of a graph G is defined as
∑

f :V→N

xf where the

sum is over all proper colorings of G.
Given an integer composition α = (α1, α2, . . . , αk) of n, we let

Mα =
∑

i1<···<ik

k
∏

j=1

x
αj

ij
.

These are the monomial quasisymmetric functions, which form a basis for the ring
of quasisymmetric functions.

The second basis we focus on is Gessel’s basis of fundamental quasisymmetric
functions. The set of integer compositions is partially ordered by refinement. With
respect to this partial order, the set of integer compositions forms a lattice. The
fundamental quasisymmetric function Fα are defined by:

Fα =
∑

β≥α

Mβ .

There is a well-known bijection between subsets of [n−1] of size k−1 and integer
compositions α |= n of length k, given by defining S(α) = {α1, α1+α2, . . . , α1+α2+
. . .+ αk−1}. Under this bijection, the lattice of integer compositions is isomorphic
to the Boolean lattice. Given a set A = {s1, . . . , sk−1} with s1 < s2 < · · · < sk−1,
we have S−1(A) = (s1, s2 − s1, s3 − s2, . . . , sk − sk−1, n− sk).

There is an important linear transformation on quasisymmetric functions called
the antipode:

S(Mα) = (−1)ℓ(α)
∑

β≤α

M←−
β
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where
←−
β is the composition given by reversing the order of β. Antipodes exist for

any graded connected bialgebra, and are analogous to inversion for groups.
Our proofs rely a lot on working with set compositions, and quasisymmetric

functions related to set compositions. Given a finite set N , a set composition
is a sequence (S1, . . . , Sk) of disjoint non-empty subsets whose union is N . We
denote set compositions as S1|S2| · · · |Sk, and refer to the sets Si as blocks. We
use C |= N to denote that C is a set composition of N , and let ℓ(C) = k be
the length of the composition. Given C, the associated integer composition is
α(C) = (|C1|, |C2|, . . . , |Ck|). We refer to α(C) as the type of C. We partially order
set compositions by refinement. Finally given a set composition C of type β and
α ≤ β, let Cα(C) be the unique set composition of type α such that Cα(C) ≤ C.

2.1. Group actions and class functions. Given a group action G on a set X ,
we let X/G denote the set of orbits. For x ∈ X , Gx is the stabilizer subgroup, and
G(x) is the orbit of x. Also, a transversal is a subset T ⊂ X such that |T ∩O| = 1
for every orbit O of X . Finally, for g ∈ G, we let Fixg(X) = {x ∈ X : gx = x}.

There is an action of SN on the collection of all set compositions of N . Given a
permutation g ∈ SN , and a set composition C |= N , we let

gC = g(C1)|g(C2)| · · · |g(Ck).

Then we obtain an action of SN on the collection of all set compositions of N .
We assume familiarity with representation theory of finite groups - see [8] for

basic definitions. Recall that, given any group action of G on a finite set X ,
there is a group action on CX as well, which gives rise to a representation. The
resulting representations are called permutation representations. We are working
with representations over C. We let C(G) be the ring of class functions of G.
There is an orthonormal basis of C(G) given by the characters of the irreducible
representations of G. We refer to elements χ ∈ C(G) that are integer combinations
of characters as virtual characters, and elements that are nonnegative integer linear
combinations as effective characters. Finally, we see χ is a permutation character
if it is the character of a permutation representation. We partially order C(G) by
saying χ ≤G ψ if ψ − χ is an effective character.

Let R be a C-algebra. Let C(G, R) be the set of class functions from G to R.
That is, for every g, h ∈ G, and χ ∈ C(G, R), we have χ(hgh−1) = χ(g). For our
paper, R is usually QSYM or C[x].

Let B be a basis for R. For b ∈ B, g ∈ G, and χ ∈ C(G, R), let χb(g) = [b]χ(g).
Then χb is also a class function. Thus we can write χ =

∑

b∈B

χbb. Conversely,

given a family χb of class functions, one for each b ∈ B the function χ defined by
χ(g) =

∑

b∈B

χb(g)b is a class function in C(G, R). We say that χ if B-effective if

χb is an effective character for all b ∈ B. We say that χ is B-realizable if χb is a
permutation character for all b. If B has a partial order on it, then we say χ is
B-increasing if for all b ≤ c in B, we have χb ≤G χc. Assuming χ is B-effective,
this is equivalent to saying that χc is the character for the representation of G on
some module V , and χb is the character of a representation of a submodule of V .

A quasisymmetric class function is an element of C(G,QSYM).

Proposition 1. Let χ ∈ C(G,QSYM) have degree d. If χ if F -effective, then χ is
M -increasing.
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Proof. Let χ =
∑

α|=d ψαFα. Then there exists G-modules Wα such that ψα is the

character of the representation of G on Wα. If we let Vα =
⊕

β≤αWβ , Then Vα
has character

∑

β≤α ψβ = [Mα]χ.
Let α ≤ β. Then we see that Vα is a submodule of Vβ . Hence χβ − χα is the

character of the complement of Vα in Vβ . Thus χ is M -increasing. �

Given a subgroup H of G, and a class function χ ∈ C(H, R), We define the
induced class function χ ↑GH∈ C(G, R) by

χ ↑GH (g) =
1

|H|

∑

k∈G:kgk−1∈H

χ(kgk−1).

Finally, we define a function 〈·, ·〉 : C(G, R) × C(G, R) → R by 〈χ, ψ〉 =
1
|G|χ(g)ψ(g) where x is the complex conjugate. In the case where R = C, this

is the usual inner product on class functions.

Proposition 2. Let G be a finite group, let R be a C-algebra with basis B. Fix
χ ∈ C(G, R).

(1) For b ∈ B, we have [b]
(

χ ↑GH
)

= ([b]χ) ↑GH.
(2) Given an irreducible character ψ, we have 〈χ, ψ〉 =

∑

b,c∈B

〈χb, ψc〉b · c.

(3) If χ is B-effective, and ψ is an irreducible character, then 〈ψ, χ〉 is B-
positive.

(4) Suppose B is partially ordered. Let ψ ∈ C(G). If χ is B-increasing, then
for all b ≤ c in B we have [b]〈ψ, χ〉 ≤ [c]〈ψ, χ〉.

Proof. Let g ∈ G. Then

χ ↑GH (g) =
1

|H|

∑

k∈G:kgk−1∈H

χ(kgk−1)

=
1

|H|

∑

k∈G:kgk−1∈H

∑

b∈B

χb(kgk
−1)b

=
∑

b∈B





1

|H|

∑

k∈G:kgk−1∈H

χb(kgk
−1)



 b

=
∑

b∈B

χb ↑
G
H (g)b.

Thus we see that the first result follows from comparing the coefficient of b on both
sides.

Let ψ ∈ C(G, R). Then

〈χ, ψ〉 =
1

|G|

∑

g∈G

χ̄(g)ψ(g)

=
1

|G|

∑

g∈G

(

∑

b∈B

χ̄b(g)b

)(

∑

c∈B

ψc(g)c

)

=
∑

b∈B

∑

c∈B

1

|G|

∑

g∈G

χ̄b(g)ψc(g)b · c.
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For the third claim, let ψ be an irreducible character. Let b ∈ B. Using the
second claim, we have [b]〈ψ, χ〉 = 〈ψ, [b]χ〉 ≥ 0. Hence 〈ψ, χ〉 is B-positive.

Now suppose that χ is B-increasing. Let b ≤ c ∈ B. Then there is a represen-
tation of G whose character is ρ := [c]χ − [b]χ. Using the second claim, we see
that

[c]〈ψ, χ〉 − [b]〈ψ, χ〉 = 〈ψ, [c]χ− [b]χ〉 = 〈ψ, ρ〉 ≥ 0.

Hence [c]〈ψ, χ〉 ≥ [b]〈ψ, χ〉. �

2.2. Principal specialization. Given a polynomial p(x) of degree d, define h(t) =
(1−t)d+1

∑

m≥0 p(m)tm. The sequence of coefficients of h(t) is the h-vector of p(x).

We define the f -vector (f0, ·, fd) via p(x) =
∑d

i=0 fi
(

x
i

)

. We say that p(x) is strongly
flawless if the following inequalities are satisfied:

(1) for 0 ≤ i ≤ d−1
2 , we have fi ≤ fi+1.

(2) For 0 ≤ i ≤ d
2 , we have fi ≤ fd−i.

There is a lot of interest in log-concave and unimodal sequences in combinatorics.
We consider strongly flawless sequences to also be interesting, as strongly flaw-
less unimodal sequences can be seen as a generalization of symmetric unimodal
sequences. Examples of results with strongly flawless sequences include the work
of Hibi [11] and Juhnke-Kubitzke and Van Le [14].

Given a quasisymmetric function F (x) of degree d, there is an associated poly-
nomial ps(F )(x) given by principal specialization. For x ∈ N, we set

xi =

{

1 i ≤ x

0 i > x

The resulting sequence is a polynomial function in x of degree d, which we denote
by ps(F )(x). If we write F (x) =

∑

α|=d

cαMα, then fi =
∑

α|=d:ℓ(α)=i

cα. Similarly, if

we write F (x) =
∑

α|=n

dαFα, then hi =
∑

α|=d:ℓ(α)=i

dα.

The set K[x] is a Hopf algebra, with antipode given by Sp(x) = p(−x). Also,
ϕ : QSYM→ K[x] given by ϕ(F (x)) = ps(F )(x) is a Hopf algebra homomorphism
and ϕ(SF (x)) = f(−x).

Let F (x) ∈ QSYM be of degree n, and g ∈ G. Define ps(F ) ∈ C(G,C[x]) by
ps(F )(g) = ps(F (x; g)). Then ps(F ) is also the principal specialization, resulting

in an polynomial class function. If we write ps(F ) =
d
∑

i=0

fi
(

x
i

)

, then (f0, . . . , fd) is

the equivariant f -vector of ps(F ), which consists of permutation characters. If we

write
∑

m≥0

ps(F )tm = h(t)
(1−t)n , then the coefficients of h(t) is the equivariant h-vector

of ps(F ). Note that the entries of the equivariant h-vector are virtual characters.
We say ps(F ) is h-effective if the entries are effective characters. We say that ps(F )
is effectively flawless if we have the following system of inequalities:

(1) for 0 ≤ i ≤ d−1
2 , we have fi ≤G fi+1.

(2) For 0 ≤ i ≤ d
2 , we have fi ≤G fd−i.

We can obtain results about polynomial class functions from the corresponding
quasisymmetric class functions.

Proposition 3. Let F (x) ∈ QSYM be of degree d, and g ∈ G.
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(1) If we write F (x) =
∑

α|=d

χαMα, then ps(F ) =
d
∑

i=0

χα

(

x
ℓ(α)

)

.

(2) If we write F (x) =
∑

α|=d

ψαFα, then h(t) =
∑

α|=d

ψαt
ℓ(α). If F (x) if F -

effective, then ps(F ) is h-effective.
(3) If G(x) ∈ C(G,QSYM) with (−1)d sgnSF (x) = G(x), then

(−1)d sgnps(F )(−x) = ps(G)(x).

(4) If F (x) is M -realizable and M -increasing, then ps(F ) is effectively flaw-
less.

(5) Let ψ be an irreducible character. If F (x) is F -effective, then 〈ψ, ps(F )〉
is h-positive. If F (x) is M -increasing, then 〈ψ, ps(F )〉 is strongly flawless.

Proof. The first three results are proven in a similar manner. Let g ∈ G. Then
ps(F )(x; g) = ps(F (x; g))(x). Since F (x, g) =

∑

α|=d

χα(g)Mα, we have

ps(F (x; g)) =
∑

α|=d

χα(g)

(

x

ℓ(α)

)

.

The result follows.
For the fourth result, let d be the degree of F (x). For each α |= d, let Vα be

a G-module with character [Mα]F (x). Since F (x) is M -increasing, we know there
exists injective G-invariant functions θα,β : Vα → Vβ for every α ≤ β |= d. We
let Vi =

⊕

α|=d:ℓ(α)=i

Vα. Then the character of Vi is fi. To show the inequalities,

it suffices to find G-invariant injections between Vi and Vj . Then fj − fi is the
character of the complement of Vi in Vj .

We need to recall that the boolean lattice, and hence the lattice of integer com-
positions, has a symmetric chain decomposition, a result due to DeBruijn [6]. Let
C(d) be the set of integer compositions of d. A symmetric chain decomposition is a
partition of C(d) into saturated chains c1, . . . , cm with the property that, for each
chain ci, the sum of the ranks of the first and last element of ci is d.

Fix a symmetric chain decomposition D. Fix integers i and j such that 1 ≤ i <
j ≤ d − i. Consider an integer composition α with ℓ(α) = i. Then there exists a
chain x1 < x2 < · · · < xk in D with xi−ℓ(x1)+1 = α. Define ϕi,j(α) = xj−ℓ(x1)+1.
We see that the following two facts are true:

(1) If i ≤ d−1
2 , then ϕi,i+1 is injective.

(2) If i < d
2 , then ϕi,d−i is a bijection.

Let 1 ≤ i ≤ d−1
2 , and let α |= d with ℓ(α) = i. We define θi,j : Vi → Vj by

requiring θi,j |Vα
= θα,ϕi,j(α). Then θi,j(Vα) ⊆ Vϕi,j(α).

Thus θi,j is an injective G-invariant map. Thus Vi is isomorphic to a submodule
of Vi+1, and we have fi ≤G fi+1.

Now let i ≤ d
2 . Let θi : Vi → Vd−i be given by θi|Vα

= θα,ϕi,d−i(α). By a similar
argument, θi is injective and G-invariant. Hence Vi is isomorphic to a submodule
of Vd−i, and fi ≤G fd−i.

For the last result, let ψ be an irreducible character. A simple calculation shows
that 〈ψ, ps(F )〉 = ps(〈ψ, F 〉). If F (x) is F -effective, then 〈ψ, F 〉 is F -positive. Since
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b d

a

Figure 1. A double poset.

the entries of the h-vector are non-negative sums of coefficients in the F -basis, the
h-vector of ps(〈ψ, F, 〉) is non-negative.

Finally, suppose that F (x) is M -increasing. Viewing 〈ψ, F (x)〉 as a quasisym-
metric class function for the trivial group. Then 〈ψ, F 〉 is M -increasing. Hence
ps(〈ψ, F 〉) is effectively flawless. Since we are working with the trivial group, we
conclude that 〈ψ, ps(F )〉 is strongly flawless.

�

3. Double Posets

Now we will discuss double posets. The Hopf algebra of double posets was intro-
duced by Malvenuto and Reutenauer [15]. Grinberg associated a quasisymmetric
function to any double poset, which is a generalization of Gessel’s P -partition enu-
merator. This quasisymmetric function is studied extensively by Grinberg [10], who
proved a combinatorial reciprocity theorem.

Given a finite set N , a double poset on N is a triple (N,≤1,≤2) where ≤1 and
≤2 are both partial orders on N . Often for standard poset terminology, we will use
≤i as a prefix to specify which of the two partial orders is being referred to. For
instance, a ≤1-order ideal is a subset that is an order ideal with respect to the first
partial order, and a ≤1-covering relation refers to a pair (x, y) such that x ≺1 y.

Let D be a double poset on a finite set N , and let f : N → N. Then f is a
D-partition if and only if it satisfies the following two properties:

(1) For i ≤1 j in D, we have f(i) ≤ f(j).
(2) For i ≤1 j and j ≤2 i in D, we have f(i) < f(j).

Let PD be the set of D-partitions. We define the D-partition enumerator by

(1) ΩD,ϕ(D,x) =
∑

f∈PD

∏

v∈N

xf(v)

This quasisymmetric function is studied extensively by Grinberg [10].
Given a double poset D, a pair (m,m′) ∈ M is an inversion if m <1 m

′ and
m′ <2 m. Given a set composition C |= N , we say that C is a D-set composition
if it satisfies the following two properties:

(1) For every i, C1 ∪ C2 ∪ · · · ∪ Ci is a ≤1-order ideal.
(2) For every i, there are no inversions in Ci

Let XD be the set of D-set compositions.

Proposition 4. Let D be a double poset. Then Ω(D,x) =
∑

C∈XD

Mα(C).
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Figure 2. A double poset.

Given a double poset D, an automorphism is a bijection σ : N → N such that,
for all x, y ∈ N and all i ∈ {1, 2}, we have x ≤i y if and only if σ(x) ≤i σ(y). We
let Aut(D) be the automorphism group of D. For instance, for the double poset in
Figure 3, the permutation (ac)(bd) is the only nontrivial automorphism. Similarly
the only nontrivial automorphism of the double poset in Figure 3 is the permutation
(a)(bd)(c).

Let G ⊆ Aut(D). For g ∈ G, define

Ω(D,G,x; g) =
∑

f∈Fixg(PD)

xf .

This is the D-partition quasisymmetric class function.
Naturally, there is an order polynomial class function as well: given a positive

integer n, we let Xn,D be the set of D-partitions σ : D → [n]. Then G acts on
Xn,D and we let Ω(D,G, n) be the resulting character.

We give two alternative formulas for Ω(D,G,x; g), and another formula for the
order polynomial class function. Let Xα,D be the set of D-set compositions of type
α. Then G acts on Xα,D. Let χα,D be the resulting character.

Theorem 5. Let D be a double poset on a finite set N and let G ⊆ Aut(D). Then
we have the following identities:

(1)

Ω(D,G,x; g) =
∑

C∈Fixg(XD)

Mα(C)

(2)

Ω(D,G,x) =
∑

α|=|N |

χα,DMα

(3)

Ω(D,G, x) =
∑

α|=|N |

χα,D(D,G)

(

x

|α|

)

.

Proof. Fix a double poset D on a finite set N.
For the first formula, let f ∈ Fixg(PD). Let i1 < i2 < · · · < ik be the natural

numbers for which f−1(ij) 6= ∅. Define C(f) = f−1(i1)|f
−1(i2)| · · · |f

−1(ik). This
is the composition associated with f . We see that

Mα(C) =
∑

f∈Fixg(PD)

xf
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and that gf = f if and only if gC(f) = C(f). Thus we obtain
∑

C∈Fixg(XD)

Mα(C) =
∑

C∈Fixg(XD)

∑

f∈Fixg(PD)

xf =
∑

f∈Fixg(PD)

xf .

Given g, we have
∑

C∈Fixg(XD)

Mα(C) =
∑

α|=|N |

∑

C∈Fixg(Xα,D)

Mα =
∑

α|=|N |

χα,D(g)Mα

and so by the first formula, we conclude that Ω(D,G,x) =
∑

α|=|N |

χα,DMα.

For the third formula, let G act trivially on
(

[n]
k

)

, the collection of k-subsets of [n].

Then for any integer composition α |= |N |, we have an action of G on
( [n]
ℓ(α)

)

×Xα,D.

Given a D-partition f : D → [n], let ϕ(f) = (f(N), C(f)). Then this defines an
isomorphism of G-sets:

Xn,D ≃
⋃

α|=|N |

(

[n]

ℓ(α)

)

×Xα,D

The result follows from taking linear spans to obtain G-modules, and then taking
the trace to obtain characters. �

As an example, consider the double poset D in Figure 3, and let G = Aut(D).
Let ρ denote the regular representation. Then

Ω(D,G,x) =M2,2 + ρ(M1,1,2 +M1,1,1,1)

= F2,2 + sgn(F1,1,2 + F2,1,1 − F1,1,1,1) + ρF1,2,1.

As another example, consider the double poset D in Figure 3, and let G =
Aut(D). Let ρ denote the regular representation. Then

Ω(D,G,x) =M1,3 +M1,2,1 + ρ(M1,1,2 +M1,1,1,1)

= F1,3 + sgnF1,1,2.

3.1. Properties of Double Posets. A double poset is locally special if whenever
y ≤1-covers x, then x and y are ≤2-comparable. The double poset in Figure 3 is
locally special, while the double poset in Figure 3 is not. Grinberg gives several
examples of locally special posets, including double posets coming from skew shapes
and labeled posets.

We say that an inversion pair (x, y) is a descent pair if x ≺1 y.

Lemma 6. Let D be a locally special double poset, and let I ⊆ J be ≤1-order ideals.
If D has an inversion pair (x, y) with x, y ∈ J \ I, then D has a descent pair (w, z)
with w, z ∈ J \ I.

Proof. We prove the result by induction on |J \ I|. Let x ≺1 t ≤1 z. Since D is
locally special, we have x ≤2 t or t ≤2 x. In the latter case, we have found a descent
pair (x, t). In the former case the pair (t, y) forms an inversion pair. We observe
that then interval [t, y] is equal to (y) \ (t), where (a) is the principal order ideal
generated by a. Since |[t, y]| < |J \ I|, by induction there is a descent pair (w, z) in
[t, y], and we have x ≤1≺1 z ≤ y. �
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For any set S ⊆ N , and a partial order P on N , we let P |S denote the induced
poset on S. The same notation is also used for linear orders (which are a special
case of partial orders), and for double posets.

We say that a linear order ℓ of N is D-compatible if only if for all pairs (I, J) of
≤1-order ideals with I ⊆ J , the linear order ℓ|J\I is a ≤1-linear extension of D|J\I
if and only if D|J\I contains no inversion pairs.

Lemma 7. Let D be a double poset on a finite set N . If D is locally special, then
there exists a D-compatible linear order.

Proof. Let D be a locally special double poset. Let G(D) be the directed graph
obtained by taking the directed edges of the Hasse diagram of ≤1, and reversing the
direction on edges x ≺1 y if x >2 y. We claim that G(D) is acyclic. Suppose that
we have a directed cycle C in G(D). Let C have vertices x0, x1, . . . , xk in order.
Note that this means that xi ≺1 xi+1 or xi+1 ≺1 xi for all i. Since D is locally
special, we have xi ≤2 xi+1 for all i, which is a contradiction. Thus there is no
directed cycle.

We say x ≤P y if there is a directed path from y to x in G(D). Let ℓ be a linear
extension of P . We claim that ℓ is D-compatible.

Let I ⊆ J be ≤1-order ideals. Suppose that there are no inversions in J \I. Then
we see that P |J\I = D|J\I , and thus ℓ|J\I is a linear extension of D|J\I . Suppose
instead there is an inversion pair (x, y) in J \ I. By Lemma 6, we can choose (x, y)
to be a descent pair. Since x ≥2 y, we have (x, y) is a directed edge in G(D), and
thus x ≥P y. Since ℓ is a linear extension of P , we have x >ℓ y. Therefore ℓ|J\I is
not a linear extension of D|J\I .

�

Given a D-compatible linear order ℓ, we can lexicographically order any other
linear order of N : given two linear orders π and σ, consider the first i where πi 6= σi.
Then we say π <ℓ σ if πi <ℓ σ. Let C be a D-set composition for D. We let ℓ(C)
be the lexicographically first total refinement of C. Finally, we can also totally
preorder Xα,D, the set of D-set compositions of type α. Given C,C′ ∈ Xα,D, we
say C ≤ℓ C

′ if and only if ℓ(C) ≤ℓ ℓ(C
′). Note that it is a preorder because it is

possible for ℓ(C) = ℓ(C′).
We see that a D-set composition with only singleton blocks is a ≤1-linear ex-

tension. We prove a proposition regarding when such linear extensions are in-
creasing with respect to ℓ. We say that a ≤1-linear extension π is increasing if
π1 <ℓ π2 <ℓ · · · <ℓ πn.

Proposition 8. Let D be a locally special double poset, and let ℓ be a D-compatible
linear order. Let I ⊆ J be ≤1-order ideals of D. Then D|J\I has an increasing
≤1-linear extension σ if and only if D has no inversions in J \ I. In that case,
ℓ|J\I = σ, and σ is lexicographically least.

Proof. We prove the result by induction on k = |J \ I|. Suppose that D|J\I has
an increasing ≤1-linear extension σ. Then D|J\(I∪{σ1}) also has a ≤1-increasing
linear extension. By induction, we see that σ|J\{σ1} = ℓ|J\I∪{σ1}. Similarly, if we
let J ′ = J \ {σk} and we see that D|J′\I has an increasing ≤1-linear extension, and
thus σ|{σ1,...,σk−1} = ℓ|J′\I . Therefore, we have ℓ|J\I = σ. Hence ℓ|J\I is a linear
extension of D|J\I , and by definition of D-compatible order, this means that J \ I
does not contain any inversions.
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Figure 3. A digraph

Now we suppose that J \ I has no inversions. Then ℓ restricted to J \ I is a
linear extension of D|J\I with respect to ≤1. Moreover, ℓ|J\I is increasing.

Let σ = ℓ|J\I . Let τ be another increasing ≤1-linear extension. Suppose τ1 6= σ1.
Then τk = σ1 for some k > 1. However, then τ1 >ℓ τk, and hence τ is not increasing.
Thus τ1 = σ1. By induction, we have τ |J\{τ1} and σ|J\{σ1} are both increasing ≤1-
linear extensions of D|J\(I∪{τ1}), and hence are equal by induction. Thus σ = τ .

�

4. Digraph coloring

We refer to directed graphs as digraphs. We require that there is at most one
directed edge between any two vertices. An example appears in Figure 3.

Given a digraph G on N , a coloring is a function f : N → N which satisfies:

(1) for every edge (u, v), f(u) 6= f(v).

An edge (u, v) is an f -ascent if f(u) < f(v). We let asc(f) denote the number of
f -descents. An example of a coloring in Figure 3 is given by f(A) = 1, f(B) = 2,
f(C) = 3, and f(D) = 4. This coloring has exactly one ascent, from D to A. Let
CG denote the set of all colorings, and we let Cn,G = {f ∈ CG : f(N) ⊆ [n]}.
Finally, we let Ck,n,G = {f ∈ Cn,G : asc(f) = k}.

Definition 9. The chromatic quasisymmetric function is

χ(G, ,x) =
∑

f∈CG

tasc(f)xf .

Likewise, for n ∈ N, define the chromatic polynomial to be

χ(G,n) =
∑

f∈Cn,G

tasc(f),

where we sum over all proper colorings f : I → [n].

For example, for the digraph G in Figure 3, we have χ(G,x) = 2t2M2,2 +
4t2M2,1,1 + 4t2M1,2,1 + 4t2M1,1,2 + (4t3 + 16t2 + 4t)M1,1,1,1. For instance, 2M2,2

comes from colorings f where f(A) = f(C) and f(B) = f(D). In all such cases,
there ends up being two ascents.

Now we define the automorphism group of a digraph. Given a digraph G on a
finite set N , a bijection g : N → N is an automorphism if for every u, v ∈ N , we
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have (u, v) ∈ E(G) if and only if (g(u), g(v)) ∈ E(G). Let Aut(G) be the set of
automorphisms of G, which forms a group. For the digraph G appearing in Figure
3, the automorphism group is isomorphic to C4, the cyclic group of order 4, acting
by rotations.

Now we define the chromatic quasisymmetric class function. Let G ⊂ Aut(G).
For g ∈ G, we let

χ(G,G,x; g) =
∑

f∈Fixg(CG)

tasc(f)xf

where the sum is over all proper colorings of G. This defines a class function
on G whose values are quasisymmetric functions over Q[t]. This is the chromatic
quasisymmetric class function associated to G.

As an example, consider the digraph in Figure 3, and let G = Z/4Z act via
rotation. Let ρ denote the regular representation. Then

χ(G,G, t,x) = (1+sgn)t2M2,2+ρt(tM2,1,1+tM1,2,1+tM1,1,2)+(1+4t+t2)M1,1,1,1.

We let χi : Z/4Z→ C be given by χi(j) = ij , and χ−i : Z/4Z→ C be given by
χ−i(j) = (−i)j . Then

χ(G,G, t,x) = (1 + sgn)t2(F2,2 + 3F1,1,1,1) + t2(χi + χ−i)(F2,1,1 + F1,1,2)

+ ρ(tF1,1,1,1 + t2F1,2,1 + t3F1,1,1,1).

We detail some formulas relating the chromatic quasisymmetric class function
of a digraph G to D-partition quasisymmetric class functions. The key concept
for proving identities is an acyclic orientation. For a directed graph G, an acyclic
orientation is another digraph O on the same vertex set, with no directed cycles,
such that, for every u, v ∈ N , we have (u, v) ∈ G if and only if (u, v) ∈ E(O) or
(v, u) ∈ E(O). An O-ascent is an edge (u, v) ∈ E(D) where (u, v) ∈ E(O). We let
asc(O) be the number of O-ascents. We let A(G) be the set of acyclic orientations.
Given an acyclic orientation O, there is a natural double poset associated with O:
for x, y ∈ N , we say x ≤1 y if and only if there is a directed path from y to x in O.
Then we define x ≤2 y if and only if y ≤1 x.

Lemma 10. Let G be a directed graph and let G ⊆ Aut(G).

(1) For g ∈ G, we have

χ(G,G, t,x; g) =
∑

O∈Fixg(A(G))

tasc(O)Ω(PO,GO,x; g).

(2) We have

χ(G,G, t,x) =
∑

O∈A(G)

tasc(O)

|G(O)|
Ω(PO,GO,x) ↑

G
GO

.

(3) Let T be a transversal for the group action of G on A(G). We have

χ(G,G,x) =
∑

O∈T

tasc(O)Ω(PO,GO,x) ↑
G
GO

.

Proof. Let g ∈ G, and let f be a proper coloring of G. Let Of be the orientation
of G given by directing v to u if f(v) > f(u). Then Of is an acyclic orientation.
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We also see that gOf = Of , and that asc(f) = asc(Of ). Then f is a POf
-partition.

Thus

χ(G,G, t,x; g) =
∑

f∈Fixg(CG)

tasc(f)xf

=
∑

O∈Fixg(A(G))

tasc(O)
∑

f∈Fixg(CO):Of=O

xf

=
∑

O∈Fixg(A(G))

tasc(O)Ω(PO,GO,x; g).

To prove our second formula, we have

∑

O∈A(G)

tasc(O)

|G(O)|
Ω(PO,GO,x) ↑

G
GO

(g)

=
∑

O∈A(G)

tasc(O)

|G(O)|

1

|GO|

∑

h∈G:hgh−1∈GO

Ω(PO,GO,x; hgh
−1)

=
1

|G|

∑

h∈G

∑

O∈A(G)

hgh−1∈GO

tasc(O)Ω(PO,GO,x; hgh
−1)

=
1

|G|

∑

h∈G

∑

O∈A(G)
g∈G

h−1O

tasc(O)Ω(Ph−1O,Gh−1O,x; g)

=
1

|G|

∑

h∈G

∑

O∈A(G)
g∈GO

tasc(O)Ω(PO,GO,x; g)

=
∑

O∈Fixg(A(G))

tasc(O)Ω(PO,GO,x; g).

The first equality is a formula for computing induced characters. The second equal-
ity comes from the Orbit-Stabilizer Theorem, and changing the order of summation.
The third equality is due to the fact that our quasisymmetric functions are invari-
ants, so Ω(PO,GO,x; hgh

−1) = Ω(Ph−1O,Gh−1O,x; g). Finally, we can reindex our
summation by replacing O with hO. Since A(G) is invariant under G, we end up
with the same number of terms in the sum. Since asc(O) = asc(gO), we obtain the
fourth equality. The last equality is then immediate. �

5. Combinatorial Reciprocity Theorem

As stated in the introduction, to us the setting of a combinatorial reciprocity
theorem consists of a subspace V of a ring of formal power series in some number
of variables, and an involution ω on V . Then given two generating functions f and
g, a combinatorial reciprocity theorem is the claim that f = ωg.

For example, let V be the vector space of polynomial functions of degree d.
Given a polynomial p(x), we can consider the formal power series

∑

n≥0

p(n)tn. In

this way, V is a subspace of the ring of formal power series in t. We also know that
V is part of a Hopf algebra, and so ω = (−1)dS is an involution on V . This is the
setting for many combinatorial reciprocity theorems in the literature.
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Similarly, one can let V be the vector space of quasisymmetric functions (or
symmetric functions) of degree d, and let ω = (−1)dS, where S is the antipode.
There are several examples of combinatorial reciprocity theorems involving QSYM
or sym, including Theorem 4.2 of Stanley [18] or Theorem 4.2 of Grinberg [10].

5.1. Combinatorial Reciprocity for Double Posets. Given a double poset D,
the dual poset D∗ is obtained by reversing the first partial order ≤1 of D. We
prove a combinatorial reciprocity theorem for locally special double posets. The
orbital version of the combinatorial reciprocity theorem was previously obtained by
Grinberg [10]. We also prove a combinatorial reciprocity theorem for the chromatic
quasisymmetric class function of a digraph.

Theorem 11. Let D be a locally special double poset on a finite set N , and let
G ⊆ Aut(D).

Then (−1)|N | sgnSΩ(D,G,x) = Ω(D∗,G,x).
Also, (−1)|N | sgnΩ(D,G,−x) = Ω(D∗,G, x).

The second result follows from the first via principal specialization. Our proof
relies a lot on the work of Grinberg [10].

First, we discuss a weighted generalization of Ω(D,G,x). Given a weight function
w : N → N, a double poset D on N , and a D-partition σ, define

xw,σ =
∏

i∈N

x
w(i)
σ(i) .

We let Ω(D,w,x) =
∑

σ

xw,σ where the sum is over all D-partitions. The follow-

ing is Theorem 4.2 of Grinberg [10]:

Proposition 12. Let D be a double poset on a finite set N , and let w : N → N.
If D is locally special, then

(−1)|N |SΩ(D,w,x) = Ω(D∗,w,x).

We let Aut(D,w) be the set of automorphisms g of D with the property that
w ◦ g = w. Let G be a subgroup of Aut(D,w). Then G acts on the set of D-
partitions. We let Ω(D,w,G,x; g) =

∑

σ

xw,σ, where the sum is over allD-partitions

σ with the property that σ ◦g = σ. Since g ∈ Aut(G,w), the resulting power series
is a quasisymmetric function.

Given g ∈ G, let Cyc(g) be the set of cycles of g. We can define a new weight
function w/g : Cyc(g) → N by w/g(C) =

∑

x∈C

w(x). Given two cycles C1 and C2

of Cyc(g), and i ∈ {1, 2}, we say C1 ≤i C2 if there exists x ∈ C1 and y ∈ C2 such
that x ≤i y. This turns Cyc(g) into a double poset that we denote by D/g. The
following is a combination of parts of Propositions 7.5 and 7.6 of Grinberg [10].

Lemma 13. Let D be a double poset on a finite set N , let w : N → N, and let
G ⊆ Aut(D,w). Given g ∈ G, we have

Ω(D,w,G,x; g) = Ω(D/g, w/g,G,x).

Moreover, if D is locally special, then so is D/g.

Finally, we let 1 : N → N be the function defined by 1(n) = 1 for all n ∈ N .
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Proof of Theorem 11. We have

(−1)|N |S sgn(g)Ω(D, 1,G,x; g) = (−1)|N |(−1)|N |−cyc(g)SΩ(D/g, 1/g,G,x)

= Ω((D/g)∗, 1/g,G,x)

= Ω(D∗/g, 1/g,G,x)

= Ω(D∗, 1,G,x; g)

where the first and last equalities are due to Lemma 13, the second equality is due
to Proposition 12. �

5.2. Combinatorial Reciprocity Theorem for Digraphs. Now we discuss a
combinatorial reciprocity theorem for directed graphs. Given a digraph G on N ,
an acyclic coloring is a pair (O, f) satisfying:

(1) O is an acyclic orientation of G
(2) For every edge (u, v) ∈ E(O), f(u) ≤ f(v).

We modify the definition of descent. An O-descent is an edge (u, v) ∈ E(G) where
(v, u) ∈ E(O). Let YG be the acyclic colorings. Then G acts on YG. For g ∈ G,
define:

χ(G,G, t,x) =
∑

(O,f)∈Fixg(YG)

tdes(f)xf .

Then χ(G,G, t,x) is a class function, and hence is a quasisymmetric class function.

Theorem 14. Let G be a digraph and let G ⊆ Aut(G). Then

(−1)|N |S sgnχ(G,G, t,x) = χ(G,G, t,x)

and

(−1)|N | sgnχ(G,G, t,−x) = χ(G,G, t, x).

Proof. Let g ∈ G. Then

(−1)|N |S sgnχ(G,G, t,x; g) =
∑

O∈Fixg(A(G))

tasc(O)(−1)|N |S sgnΩ(PO,GO,x; g)

=
∑

O∈Fixg(A(G))

tasc(O)Ω(P ∗O,GO,x; g)

=
∑

O∈Fixg(A(G))

tasc(O)
∑

f :(
←−
O,f)∈Fixg(YG)

xf

=
∑

(O,f)∈Fixg(YG)

tdes(O)xf = χ(G,G, t,x; g).

where the first equality follows from Lemma 10, and the second equality is due to
Theorem 11. The third equality comes from observing that f ∈ PP∗

O
if and only

if (
←−
O, f) is an acyclic coloring. The fourth equality comes from observing that

asc(O) = des(
←−
O ), and reindexing the summation by substituting O with

←−
O . �
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6. Flawlessness

In this section, we study the property of being M -increasing or effectively flaw-
less. Let D be a double poset on a finite set N , and let G ⊆ Aut(D). For α |= |N |,
let Vα,D be the vector space with basis Xα,D. Then Vα,D is a G-module.

Given α ≤ β |= |N |, we define G-invariant injective maps θα,β : Vα,D → Vβ,D.
Given a D-set composition C of type α, we let

(2) θα,β(C) =
∑

C′∈Xβ,D :C′≥C

C′.

Proposition 15. Let D be a double poset on a finite set N . Let α ≤ β ≤ γ be
integer compositions of |N |. Then θα,β is an injective G-invariant map. Moreover,
we have θγ,β ◦ θα,β = θγ,α.

Proof. We see that θα,β is G-invariant. To see that the map is injective, it is enough
to note that the map f : Vβ,D → Vα,D given by f(C) = Cα(C) is a section for θα,β.
Hence θα,β is injective and f is surjective.

Let α ≤ β ≤ γ, and let C ∈ Xα,D. Then

θβ,γ ◦ θα,β(C) =
∑

C′∈Xβ,D :C′≥C

θβ,γ(C
′)

=
∑

C′∈Xβ,D :C′≥C

∑

C′′∈Xγ,D :C′′≥C′

C′′

=
∑

C′′∈Xγ,D :C′′≥C

∑

C′∈Xβ,D:C′′≥C′≥C

C′′

=
∑

C′′∈Xγ,D :C′′≥C

C′′ = θα,γ(C).

The penultimate equality follows from the fact that there is exactly one set com-
position C′ of type β with the property that C ≤ C′ ≤ C′′. Moreover, if C and
C′′ are D-set compositions, then C′ is as well. Hence the inner summation only
involves one term. �

Theorem 16. Let D be a double poset on a finite set N , and let G ⊆ Aut(D).
Then Ω(D,G,x) is M -increasing and Ω(D,G, x) is effectively flawless.

Let G be a digraph, and let H ⊆ Aut(G). For k ∈ N, we have [tk]χ(G,H, t,x) is
M -increasing and [tk]χ(G,H, t, x) is effectively flawless.

Proof. Let D be a double poset on a finite set N , and let G ⊆ Aut(D). For
α |= |N |, we see that [Mα]Ω(D,G,x) is the character of the representation of G on
Vα,D. Let α ≤ β |= |N |. Since θα,β is injective and G-invariant, Vα,D is isomorphic
to a submodule of Vβ,D. Thus [Mβ ]Ω(D,G,x) − [Mα]Ω(D,G,x) is the character
corresponding to the complement of θα,β(Vα,D) in Vβ,D. Hence Ω(D,G,x) is M -
increasing.

Since Ω(D,G,x) isM -increasing and Ω(D,G, x) is the principal specialization of
Ω(D,G,x), it follows from Proposition 3 (4) that Ω(D,G, x) is effectively flawless.

Let G be a directed graph, and let H ⊆ Aut(G). By Theorem 19, we see
that [tk]χ(G,H, t,x) is F -effective. Thus [tk]χ(G,H, t,x) is M -increasing. Since
ps(χ(G,H, t,x)) = χ(G,H, t, x), it follows that [tk]χ(G,G, t, x) is effectively flaw-
less. �
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a c
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Figure 4. A Hasse diagram.

{e} {σ} {σ2} {τ} {τσ} {τσ2}
χ1 1 1 1 1 1 1
χ2 1 ω ω̄ 1 ω ω̄
χ3 1 ω̄ ω 1 ω̄ ω
χ4 1 1 1 −1 −1 −1
χ5 1 ω ω̄ −1 −ω −ω̄
χ6 1 ω̄ ω −1 −ω̄ −ω

Table 1. The character table for Z3 × Z2

Now we discuss counterexamples to extending Theorem 16 to studying coeffi-
cients in the F basis and to studying the h-vector. Let D be the poset in Figure 6.
We define ≤2 to be the opposite partial order of ≤1. Hence Ω(D, x) counts strict
D-partitions. We let G = Z2 × Z3, viewed as the group 〈(abc), (de)〉. Let ω be a
cubed root of unity. If we let σ = (abc) and τ = (de), then Table 6 is the character
table for G:

Then

Ω(D,G,x) = χ1F3,2 + (χ2 + χ3)(F1,2,2 + F2,1,2) + χ4F3,1,1

+ (χ5 + χ6)(F1,2,1,1 + F2,1,1,1) + χ1F1,1,1,2 + χ4F1,1,1,1,1.

Thus Ω(D,G,x) is not F -increasing. We see that

∑

m≥0

Ω(D,G,m)tm =
χ1t

2 + (2χ2 + 2χ3 + χ4)t
3 + (2χ5 + 2χ6 + χ1)t

4 + χ4t
5

(1− t)6
.

Then the h-vector is (0, 0, χ1, 2χ2 + 2χ3 + χ4, 2χ5 + 2χ6 + χ1, χ4). We see that h2
and h3 are not comparable, so the h-vector is not strongly flawless.

Similarly, we can view the Hasse diagram in Figure 6 as a digraph G with G =
Z3×Z2. Then [t0]χ(G,G,x) = Ω(D,G,x). Thus we have an example of a directed
graph where the chromatic quasisymmetric class function is not F -increasing, and
where the h-vector of the chromatic polynomial class function is not effectively
flawless.

7. F-effectiveness and h-effectiveness

In this section, we state and prove several effectiveness theorems.

Theorem 17. Let D be a locally special double poset on a finite set N , and let
G ⊆ Aut(D). Then Ω(D,G,x) is F -effective.
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We prove Theorem 17 in the next subsection. First, we focus on corollaries and
other related theorems. First, we obtain the follow result from Proposition 2 (3).

Corollary 18. Let D be a locally special double poset on a finite set N , and let
G ⊆ Aut(D). Given an irreducible character ψ, we have 〈ψ,Ω(D,G,x)〉 is F -
positive.

We also obtain the following theorem for the chromatic quasisymmetric class
function of a digraph.

Theorem 19. Let G be a digraph, and let G ⊆ Aut(G). For any k ∈ N, we have
[tk]χ(G,G,x) is F -effective.

For any irreducible character ψ of G, we have 〈ψ, [tk]χ(G,G,x)〉 is F -positive.

The second statement follows from applying Proposition 2 (3) to the first state-
ment, so we focus on proving the first statement.

Proof. Let T be a transversal for the action of G on A(G). For each acyclic orien-
tation O ∈ T , we write Ω(PO,GO,x) =

∑

α|=|N |

ψα,PO
Fα where the characters ψα,PO

are effective. Using Lemma 10, we have

χ(G,G, t,x) =
∑

O∈T

tasc(O)Ω(PO,GO,x) ↑
G
GO

∑

O∈T

tasc(O)





∑

α|=|N |

ψα,PO
Fα



 ↑GGO

=
∑

α|=|N |

(

∑

O∈T

tasc(O)ψα,PO
↑GGO

)

Fα.

�

We also deduce results about h-effectiveness by applying Proposition 3 (2).

Corollary 20. Let D be a locally special double poset on a finite set N , and let
G ⊆ Aut(D). Then Ω(D,G, x) is h-effective.

Let G be a directed graph. Then χ(G,G, t, x) is h-effective.

7.1. Proof of Theorem 17. For α ≤ β |= |N |, define θα,β by Equation (2). Our
first step is to prove the following proposition.

Proposition 21. Let D be a double poset on a finite set N . Let α ≤ β |= |N | and
γ ≤ β. Then we have θα,β(Vα,D) ∩ θγ,β(Vγ,D) = θα∧γ,β(Vα∧γ,D).

Fix a D-compatible linear order ℓ, which exists by Lemma 7. Let α ≤ β and
γ ≤ β. Fix ~v ∈ θα,β(Vα,D) ∩ θγ,β(Vγ,D). Consider C ∈ Xβ,D ∩ θα,β(Vα,D). Then
Cα(C) ∈ Xα,D. Let C1 = Cβ(ℓ(Cα(C))). We see that Cα(C) ≤ C1, so if C1

contained any inversions, then so does Cα(C). Since C
1 ≤ ℓ(Cα(C)), we know that

the union of the first several blocks of C1 is the union of the first several blocks of
ℓ(Cα(C)). Thus C

1 is a D-set composition.
Since Cα(C) ≤ C and C1 ≤ ℓ(Cα(C)), we have ℓ(C1) ≤ℓ ℓ(Cα(C)) <ℓ ℓ(C).

Thus C1 ≤ℓ C. Moreover, since ~v ∈ θα,β(Vα,D), we know ~v = θα,β(~w) for some
~w ∈ Vα,D. Since Cα(C) ≤ C1, it follows from the definition of θα,β that [C1]~v =
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[Cα(C)]~w. Similarly, since Cα(C) ≤ C, we have [C]~v = [Cα(C)]~w. Thus [C1]~v =
[C]~v.

Let C2 = Cβ(ℓ(Cγ(C
1))). By similar reasoning, C2 ≤ℓ C

1 and [C2]~v = [C1]~v =
[C]~v. For every integer k, we define

Ck+1 =

{

Cβ(ℓ(Cα(C
k))) k is even

Cβ(ℓ(Cγ(C
k))) k is odd

Thus we obtain a sequence of compositions Ck such that Ck+1 ≤ℓ C
k and [Ck]~v =

[C]~v for all k.
Let m be the first integer where Cm+1 = Cm. Define f(C) = Cα∧γ(ℓ(C

m)).

Lemma 22. Let ~v ∈ θα,β(Vα,D) ∩ θγ,β(Vγ,D). Consider C ∈ Xβ,D. Fix f(C) as
defined above. Then f(C) ∈ Xα∧γ,D.

Moreover, given D such that D ≥ f(C), we have f(D) = f(C).

Before we give the proof, we define another operation on set compositions.
Given C |= N , and S ⊂ N , the set composition C ∩ S is defined by taking
(C1 ∩S,C2 ∩S, · · · , Cℓ(C) ∩S), and then deleting any coordinates corresponding to
empty intersections. For instance, 123|456|789∩ {1, 7, 8} = 1|78.

Proof. We show that f(C) is a D-set composition. Write f(C) = C′1| · · · |C
′
r. Since

f(C) ≤ Cm, the set C′1∪· · ·∪C
′
i is a union of blocks of Cm, and hence is a ≤1-order

ideal. Thus, it suffices to show that that C′i does not contain any inversions. Define
D′ = Cα(C

m) ∩ C′i, which is a set composition of C′i. Let ℓ′ be the restriction of
ℓ(Cm) to C′i. Then ℓ′ is lexicographically least in C′i; if there exists τ <ℓ ℓ

′, then
we could modify ℓ(Cm) by replacing ℓ(Cm)|C′

i
with τ and obtain a new refinement

of Cm that is lexicographically smaller than ℓ(Cm). Since each block D′j of D′

contains no inversions, by Proposition 8, ℓ′|D′

j
is strictly increasing. If we let E′ =

Cγ(C
m) ∩ C′i, then by similar reasoning ℓ′ is strictly increasing when restricted to

each block of E′. We see that the finest common coarsening of D′ and E′ is the set
composition (Ci). Thus ℓ(C

m) is strictly increasing on all of C′i. By Proposition 8,
it follows that D has no inversions in C′i. Therefore C

′ is a D-set composition. We
also see that Cm = Cγ(ℓ(f(C))).

Now let D ≥ f(C). For every integer k, we define

Dk+1 =

{

Cβ(ℓ(Cα(D
k))) k is even

Cβ(ℓ(Cγ(D
k))) k is odd

Thus we obtain a sequence of compositions Dk such that Dk+1 ≤ℓ D
k and [Dk]~v =

[D]~v for all k. We observe that Dk+1 involves permuting the elements from blocks
of Dk that belong to the same block of Cα(D

k) (or Cγ(C
k)). Hence Cα∧γ(D

k+1) =
Cα∧γ(D

k) = f(C) for all k. Thus Dk+1 ≥ f(C) for all k.
If we let m be the first integer for which Dm+1 = Dm, then we have f(D) =

Cα∧γ(D
m) = f(C). �

Proof of Proposition 21. Let ~v ∈ θα,β(Vα,D) ∩ θγ,β(Vγ,D). For any C ∈ Xβ,D, let
m(C) = Cβ(ℓ(f(C))). Then we have ~vC = ~vm(C). Moreover, for any C′ ≥ f(C), by
Lemma 22, we have f(C) = f(C′). Hence m(C′) = m(C) and [C]~v = [C′]~v. Given
D ∈ Xα∧γ,D, we define [D]~w = [C]~v for any C ∈ Xβ,D such that f(C) = D. By
what we have just observed, [D]~w does not depend upon the choice of C. Also, for
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any C ∈ Xβ,D, we know that f(C) ∈ Xα∧γ,D by Lemma 22. Thus θα∧γ,β(~w) = ~v.
Hence ~v ∈ θα∧γ,β(Vα∧γ,D). �

For α |= |N |, we define Wα,D to be the complement in Vα,D of the module

span{θβ,α(Xβ,D) : β < α}

Proposition 23. Let D be a locally special double poset on a finite set N . Let
α ≤ β |= |N | and γ ≤ β. Then we have θα,β(Wα,D) ∩ θγ,β(Wγ,D) = {~0}.

Proof. Let ~v ∈ θα,β(Wα,D) ∩ θγ,β(Wγ,D). Then ~v = θα,β(~y) for some ~y ∈ Wα,D.
By Proposition 21 and Proposition 15, we have ~v ∈ θα∧γ,β(Vα∧γ,D) = θα,β ◦
θα∧γ,α(Vα∧γ,D). Thus ~v = θα,β(~z) for some ~z ∈ θα∧γ,α(Vα∧γ,D). Since θα,β is injec-

tive, we have ~y = ~z. However, by the definition of Wα,D, it follows that ~y = ~z = ~0,

and thus ~v = ~0. Hence θα,β(Wα,D) ∩ θγ,β(Wγ,D) = {~0}. �

Proof of Theorem 17. Let D be a locally special poset on N with G ⊆ Aut(D). Let
us write Ω(D,G,x) =

∑

α|=|N |

ψα,DFα where the ψα,D are virtual characters. Then

we have χα(D,G) =
∑

β≤α

ψβ,D. We claim that ψβ,D is the character of Wβ,D. It

suffices to show that

(3) Vα,D =
⊕

β≤α

θβ,α(Wβ,D) ≃
⊕

β≤α

Wβ,D

as G-modules for all α |= |N |.
We prove Equation (3) by induction on ℓ(α). We see that

span{θβ,α(Wβ,D) : β < α} ⊆ span{θβ,α(Xβ,D) : β < α}.

By induction, we have

θβ,α(Vβ,D) = θβ,α(
⊕

γ≤β

θγ,β(Wγ,D)) =
⊕

γ≤β

θγ,α(Wγ,D).

The last equality uses the fact that θβ,α is G-invariant, and the property that
θβ,α ◦ θγ,β = θγ,α. Thus we have

span{θβ,α(Xβ,D) : β < α} = span{θβ,α(Wβ,D) : β < α} =
⊕

β<α

θβ,α(Wβ,D).

Combined with the definition of Wα,D, we get

Vα,D =
⊕

β≤α

θβ,α(Wβ,D) ≃
⊕

β≤α

Wβ,D

where the last isomorphism comes from the fact that θβ,α is G-invariant and injec-
tive. �

8. Orbital Invariants

In this section we define orbital quasisymmetric function invariants. In the case
of double posets, the resulting invariant was already studied by Grinberg [10].
These are quasisymmetric functions whose coefficients count the number of orbits
of a group action. Due to Burnside’s Lemma, these invariants can be computed as
〈1, χ〉, where 1 is the trivial character, and χ is the quasisymmetric class function.
As a result, we see that we derive many results for our orbital invariants from the
class functions.



THE CHROMATIC QUASISYMMETRIC CLASS FUNCTION OF A DIGRAPH 23

We define the orbital quasisymmetric D-partition enumerator by

ΩO(D,G,x) =
1

|G|

∑

g∈G

Ω(D,G,x; g)

and the orbital order polynomial by

ΩO(D,G, x) =
1

|G|

∑

g∈G

Ω(D,G, x; g).

We also define the orbital chromatic quasisymmetric function of a digraph G by

χO(G,G, t,x) =
1

|G|

∑

g∈G

χ(G,G, t,x; g)

and the orbital chromatic polynomial by

χO(G,G, t, x) =
1

|G|

∑

g∈G

χ(G,G, t, x; g)

The following results follow from Burnside’s Lemma. Property 2 is Grinberg’s
definition of the orbital D-partition enumerator.

Proposition 24. Let D be a double poset on a finite set N and let G ⊆ Aut(D).
Let G be a digraph on N , and let H ⊆ Aut(G).

(1) We have [Mα]Ω
O(D,G, x) = |Xα,D/G|.

(2) Let T be a transversal for G acting on PD. Then ΩO(D,G,x) =
∑

f∈T

xf .

(3) For n ∈ N, we have ΩO(D,G, n) = |Xn,D/G|.
(4) Let T be a transversal for H acting on CG. Then ΩO(G,H,x) =

∑

f∈T

xf .

(5) For n ∈ N, and k > 0, we have [tk]χO(G,H, t, n) = |Ck,n,G/H|.

Proof. We will prove the first and second claim. The rest are similar. For the first,
we observe that

[Mα]Ω
O(D,G,x) =

1

|G|

∑

g∈G

[Mα]Ω(D,G,x; g) =
1

|G|

∑

g∈G

|Fixg(Xα,D)|.

For the second identity, we note that for any f : N → N and σ ∈ SN , we have
xσf = xf . We see that

1

|G|

∑

g∈G

Ω(D,G,x; g) =
1

|G|

∑

g∈G

∑

f∈Fixg(XD)

xf

=
1

|G|

∑

f∈XD

xf
∑

g∈Gf

1

=
∑

f∈XD

1

|G(f)|
xf

=
∑

h∈T

xh
∑

f∈G(h)

1

|Gf |
.

The second equality is just a rearrangment of terms. The third equality follows from
the Orbit-Stabilizer Theorem. The last equality involves splitting the summation
into a double sum, and recognize that xf is constant on orbits. Finally, the inner
summation simplifies to 1. �
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We also obtain several facts about the coefficients of the orbital invariants with
respect to various bases. For polynomials f(t) and g(t), we write f(t) ≤t g(t) if
g(t)− f(t) ∈ N[t].

Corollary 25. Let D be a double poset on N . Given G ⊆ Aut(D), we have
ΩO(D,G,x) is M -increasing, and ΩO(D,G, x) is strongly flawless.

Proof. Let D be a double poset on N , and let G ⊆ Aut(D). Since Ω(D,G,x) isM -
increasing, then if we take the inner product with the trivial character, Proposition
2 (4) implies that that ΩO(D,G,x) isM -increasing. Also, Proposition 3 (5) implies
that ΩO(D,G, x) is strongly flawless.

Suppose that D is locally special. Then by Corollary 18, applied with ψ being
the trivial character, we see that ΩO(D,G,x) is F -positive. Since ΩO(D,G, x) =
ps(ΩO(D,G,x)), it follows from Proposition 3 (5) that ΩO(D,G, x) is h-positive.

Let G be a directed graph, and let H ⊆ Aut(G). Fix k ∈ N. By Theorem 19, we
see that [tk]χO(G,H,x) is F -positive. Hence it is also M -increasing. By principal
specialization and Proposition 3 (5), we see that [tk]χO(G,H, x) is h-positive, and
[tk]χO(G,H, x) is strongly flawless.

�

8.1. Orbital Combinatorial Reciprocity Results. We can also obtain a com-
binatorial reciprocity for the orbital D-partition enumerator, although it involves
the notion of coeven D-partition. Given a group G ⊆ SN , and an action of G on a
set X , let we say that an element x ∈ X is G-coeven if the stabilizer subgroup Gx is
a subgroup of the alternating group AN . Let X+ be the set of G-coeven elements.
Then G acts on X+.

The following Lemma is essentially a restatement of Lemma 7.7 in Grinberg [10],
although our proof is slightly different.

Lemma 26. Let G ⊆ SN be a group acting on a finite set X.

|X+/G| =
1

|G|

∑

g∈G

sgn(g)|Fixg(X)|

Proof. We have

1

|G|

∑

g∈G

sgn(g)|Fixg(X)| =
1

|G|

∑

g∈G

∑

x∈X:gx=x

sgn(g)

=
∑

x∈X

1

|G|

∑

g∈Gx

sgn(g).

Suppose that Gx 6⊆ AN . Then H = AN ∩G is a normal subgroup of G of index 2.
Thus half the elements g of Gx are even, and half are odd, and these elements have
opposite signs under sgn. Hence the inner sum is zero in that case.

Hence we are left with those x for which Gx ⊆ AN . Then we obtain:

1

|G|

∑

g∈G

sgn(g)|Fixg(X)| =
∑

x∈X+

1

|G|

∑

g∈Gx

sgn(g)

=
1

|G|

∑

g∈G

∑

x∈Fixg(X+)

1

= |X+/G|.
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�

We define the G-coeven quasisymmetric function by

Ω+(D,G,x) =
1

|G|

∑

g∈G

sgn(g)Ω(D,G,x; g)

and the orbital polynomial by

Ω+(D,G, x) =
1

|G|

∑

g∈G

sgn(g)Ω(D,G, x; g).

By using Lemma 26, we obtain the following results.

Proposition 27. Let D be a double poset on a finite set N and let G ⊆ Aut(D).
Let G be a digraph on N , and let H ⊆ Aut(G).

(1) We have [Mα]Ω
+(D,G, x) = |X+

α,D/G|.

(2) Let T be a transversal for G acting on P+
D . Then Ω+(D,G, x) =

∑

f∈T

xf .

(3) For n ∈ N, we have Ω+(D,G, n) = |X+
n,D/G|.

(4) If T is a transversal for H acting on C+
D, then χ+(G,H, t, n) =

∑

f∈T

tasc(f)xf .

(5) For n ∈ N, and k > 0, we have [tk]χ+(G,H, t, n) = |C+
k,n,G/H|.

Now we discuss the Combinatorial Reciprocity Theorem for orbital quasisym-
metric functions. The first result is Theorem 4.7 of Grinberg [10].

Theorem 28. Let D be a locally special double poset on a finite set N , and let
G ⊆ Aut(D). Then we have the following identities.

(1) (−1)|N |SΩO(D,G,x) = Ω+(D∗,G,x).
(2) (−1)|N |SΩ+(D,G,x) = ΩO(D∗,G,x).
(3) (−1)|N |ΩO(D,G,−x) = Ω+(D∗,G, x).
(4) (−1)|N |Ω+(D,G,−x) = ΩO(D∗,G, x).

Now we discuss the Combinatorial Reciprocity Theorem for orbital chromatic
quasisymmetric functions.

Theorem 29. Let G be a digraph on a finite set N , and let G ⊆ Aut(G).
Then we have the following identities:

(1) (−1)|N |SχO(G,G, t,x) = χ+(G,G, t,x).
(2) (−1)|N |Sχ+(G,G, t,x) = χO(G,G, t,x).
(3) (−1)|N |χO(G,G, t,−x) = χ+(G,G, t, x).
(4) (−1)|N |χ+(G,G, t,−x) = χO(G,G, t, x).

Proof. All formulas are proven in a similar manner, so we only prove the first
formula. Let G be a digraph on a finite set N , and let G ⊆ Aut(G). By Theorem
14, we have

(−1)|N |SχO(G,G, t,x) =
(−1)|N |

|G|

∑

g∈G

Sχ(G,G, t,x; g)

=
1

|G|

∑

g∈G

sgn(g)χ(G,G, t,x; g)

= χ+(G,G, t,x).
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9. Future Directions

First, we note that Stapledon [19] defines a different generalization of the h∗-
vector. His work involves a group G acting on the lattice points of a polytope.
Given a quasipolynomial p(x), whose coefficients are characters, he defines

∑

n≥0

p(n)tn =
h∗(t)

(1− t) det[I − tρ]

The h∗-vector is defined for any class function that takes on values in the ring of
quasipolynomials, while our h-vector is only defined for class functions in the ring
of polynomials, so the h∗-vector is a more general invariant. When we restrict to
polynomials, the h∗-vector is different than the h-vector. Is the order polynomial
class function of a double poset h∗-effective? Is the chromatic polynomial of a
digraph h∗-effective?

There are other bases of quasisymmetric functions. A very recent basis is the
basis of quasisymmetric power sums Ψα, introduced in [3]. It has been shown
that the P -partition enumerator, and the chromatic quasisymmetric function of a
digraph are both Ψ-positive [2]. Is the D-partition quasisymmetric class function
Ψ-effective? Is the chromatic quasisymmetric class function Ψ-effective?

We also would like to have a better description of ΩO(D,G,x) in the F basis.
We know the coefficients are positive. What do they count?

On a similar note, is the f -vector ΩO(D,G, x) effectively unimodal? This would
mean that there exists an i such that fj ≤G fk for k ≤ i, and fj ≥G fk for i ≤ j.
This is still an open question even for trivial group actions. Our example in Figure
6 shows that the h-vector for a locally special double poset can fail to be effectively
unimodal. We can obtain the h-vector of ΩO(D,G, x) by taking the coefficients of
χ1 in the h-vector of Ω(D,G, x). Doing so results in the sequence (0, 0, 1, 0, 1, 0)
which fails to be unimodal.

Finally, we could consider proving our results using the theory of combinatorial
Hopf monoids, as studied by Aguiar and Mahajan [1]. We will pursue this idea
in a subsequent paper, using the theory of Hopf monoids to prove F -effectiveness
and combinatorial reciprocity results for quasisymmetric class function invariants
associated other combinatorial Hopf monoids.
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