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Abstract

Concentrations of traffic-related air pollutants are frequently higher within commuting vehicles 

than in ambient air. Pollutants found within vehicles may include those generated by tailpipe 

exhaust, brake wear, and road dust sources, as well as pollutants from in-cabin sources. Source-

specific pollution, compared to total pollution, may represent regulation targets that can better 

protect human health. We estimated source-specific pollution exposures and corresponding 

pulmonary response in a panel study of commuters. We used constrained positive matrix 

factorization to estimate source-specific pollution factors and, subsequently, mixed effects models 

to estimate associations between source-specific pollution and pulmonary response. We identified 

four pollution factors that we named: crustal, primary tailpipe traffic, non-tailpipe traffic, and 

secondary. Among asthmatic subjects (N=48), interquartile range increases in crustal and 

secondary pollution were associated with changes in lung function of −1.33% (95% confidence 

interval (CI): −2.45, −0.22) and −2.19% (95% CI: −3.46, −0.92) relative to baseline, respectively. 

Among non-asthmatic subjects (N=51), non-tailpipe pollution was associated with pulmonary 

response only at 2.5 hours post-commute. We found no significant associations between 

pulmonary response and primary tailpipe pollution. Health effects associated with traffic-related 
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pollution may vary by source, and therefore some traffic pollution sources may require targeted 

interventions to protect health.

Keywords

source apportionment; pulmonary health; air pollution; traffic pollution; commuting; on-road 
exposures

1. INTRODUCTION

Short-term exposure to traffic-related air pollution has been associated with adverse health 

outcomes including mortality (1), hospitalizations (2,3), and pediatric asthma (4). On 

average, US adults spend approximately one hour within a vehicle each day (5), and 

previous studies have found in-vehicle concentrations of harmful pollutants, such as fine 

particulate matter (PM2.5), frequently exceed ambient concentrations (6–9). Regulation of 

traffic pollution has focused on reducing tailpipe emissions (6); however, emissions from 

other traffic-related sources may also be associated with adverse health outcomes. As 

tailpipe regulations continue to result in lower combustion-related primary emissions from 

vehicles, pollutants generated by processes such as tire wear and brake wear will grow in 

their proportion of total mobile source pollution (6). Determining whether tailpipe and non-

tailpipe traffic-related pollution are both individually associated with adverse health 

outcomes will help develop more targeted regulation to better protect public health.

Traffic pollution is a highly heterogeneous mixture containing both volatile and semi-

volatile gases, as well as organic and inorganic particulate species that contribute to total 

ambient particulate matter (PM). Some traffic-related chemical components of PM, such as 

organic carbon (OC), elemental carbon (EC), and zinc, have been implicated in 

epidemiologic studies as either direct or indirect indicators of adverse health outcomes (10–

12), though results have not been consistent across studies examining PM components 

(13,14). Transition metals, in particular, have been implicated as potential chemical drivers 

of internal oxidative stress and inflammation, both biological processes hypothesized to play 

a role in acute adverse response to air pollution (15,16). Furthermore, short-term exposure to 

pollution from diesel and gasoline vehicles has been associated with pediatric asthma 

emergency department visits (4) and asthma symptoms (17).

Traffic-related pollutants can be generated by gasoline tailpipe emissions, diesel emissions, 

road dust, tire wear, or other sources, and each of these sources can be characterized by the 

pollutants emitted. For example, combustion of fossil fuels associated with both gasoline 

and diesel engines emits OC and EC (6). Tire wear and brake wear contribute metal particles 

including zinc and iron to total traffic-related pollution (18,19). Resuspended road dust may 

also contribute to traffic-related pollution and contains both transition metal species and 

crustal particles including aluminum and calcium (6,19).

Conducting studies of source-specific health effects is challenging because concentrations of 

source-specific pollution are generally not directly measured. Commonly, source categories 

are estimated by applying source apportionment models to concentrations of multiple 
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pollutants measured at stationary monitors, also known as receptor modeling. Source 

apportionment approaches have been extensively applied in epidemiologic studies of 

ambient pollution to estimate unobserved factors that may be indicative of one or more 

pollution sources (2,12,20,21). When applied to ambient monitoring data, these models 

represent observed daily pollutant concentrations as the product of daily source-specific 

pollution concentration and the amount each pollutant contributes to each source factor. 

Factors obtained from source apportionment models are named (e.g. road dust or tailpipe 

emissions) based on the pollutant combination associated with each factor, though may truly 

represent one or more known sources of pollution.

In studies of ambient PM2.5, often only one or two traffic-related sources, such as road dust 

or gasoline emissions, can be separated using source apportionment models applied to 

available data (4,12,22). Moreover, pollutant distributions of traffic-related components (e.g. 

OC and EC) are frequently spatially heterogeneous (23), and therefore data from ambient 

monitors located far from roadways may not represent on-road traffic pollution well. Instead 

of estimating sources of traffic pollution using ambient monitoring data, another approach is 

to measure pollution closer to the source, such as within vehicles, and to incorporate prior 

information in source apportionment models that can help distinguish sources that emit 

some of the same pollutants. This approach will also help to determine what non-traffic 

pollution sources, such as secondary sources that are mixtures of pollutants formed through 

chemical reactions in the air, may impact health during commuting.

In this work, we estimated associations between source-specific pollution factors and 

pulmonary response in a panel study of commuters. To estimate source factors 

corresponding to traffic-related pollution, we incorporated prior information in a constrained 

source apportionment model.

2. MATERIAL AND METHODS

2.1 Data

We used pollution and health data collected as part of the Atlanta Commuters Exposure 

(ACE) studies (24,25). Briefly, the ACE-1 and ACE-2 studies measured in-vehicle pollution 

during scripted two-hour commutes. In ACE-1, 42 adults completed 81 scripted highway 

commutes, where most participants completed two commutes on two separate days to allow 

repeated measure assessment of highway exposure. In ACE-2, 59 adults completed scripted 

highway commutes and a subset (n=29) also completed a scripted surface street commute. 

To control for possible diurnal patterns in traffic and pulmonary response, all commutes 

were scheduled during the two-hour morning rush hour period (~7AM-9AM). The pollutants 

measured during each commute consisted of 25 chemical components of PM2.5 including 

concentrations of metals such as zinc, lead, and nickel, as well as OC, water soluble OC 

(WSOC), and black carbon (BC), which is a surrogate measure of EC (Supplementary 

Material, Table S1). In addition to PM2.5 chemical components, we also included particle-

bound polycyclic aromatic hydrocarbons (pbPAH), particle number concentration (PNC), 

and noise. Although noise is not traditionally used to identify air pollution sources, we chose 

to include it as an additional means of differentiating sources associated with sound (e.g. 

vehicle emissions) from background ambient pollution. We did not include total PM2.5 mass 
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because individual PM2.5 component concentrations are frequently correlated with total 

PM2.5 mass, which can lead to poor source estimates. Details about the pollution data 

collection methodology, including information about the filters, can be found in the 

supplementary material of Greenwald et al., (2014) (24).

Prior to and following each two-hour commute, pulmonary response was measured on each 

participant including exhaled nitric oxide (eNO) in parts per billion (ppb), a measure of 

oxidative stress and a biomarker for airway inflammation (26–28), and lung function (forced 

expiratory volume (FEV1) and forced vital capacity (FVC)). FEV1 and FVC were adjusted 

for age, sex, and race and were reported as percent (%) predicted values (29). FEV1 and 

FVC were measured using an OHD KoKo spirometer (Occupational Health Dynamics, 

Birmingham, AL, USA) and eNO was measured using a portable NIOX MINO analyzer 

(Aerocrine, New Providence, NJ, USA) (25). Health measurements were obtained for each 

participant at baseline as well as at hourly intervals following the two-hour commute (0 

hours (baseline), 2.5, 3.5, 4.5, 5.5). We also collected gender, age, body mass index (BMI), 

pre-commute cortisol, and asthma status for each commuter. The details of the ACE-1 

(24,25) and ACE-2 studies (Golan et al., in preparation) are described elsewhere. All 

participants provided informed consent prior to enrollment and both the ACE-1 and ACE-2 

studies were approved by the Emory University Institutional Review Board.

2.2 Traffic-related pollution estimation

We first imputed missing values in the pollutant data with sequential regression (30), which 

uses a series of regression models to predict missing values starting with the pollutant with 

the least missingness and ending with the pollutant with the most missingness. Sequential 

regression can incorporate categorical variables, such as commute type.

Next, we employed positive matrix factorization (PMF) (31) to estimate source-specific 

pollution matrices G and F that form observed pollutant concentrations xip for I 
observations for P pollutants. PMF minimizes Q where

Q = ∑i = 1
I ∑p = 1

P xip − ∑l = 1
L gil f lp

uip

2

(1)

for L source categories subject to gil ≥ 0 and flp ≥ 0 for all i,l,p. In our dataset, each row i of 

the matrix G represents impacts of sources on observation i, and each row l of F is a source 

profile that represents the composition of source category l, specifically how much each 

pollutant p contributes to that source. For health studies, the columns of G, which 

correspond to each source category, can be associated with health outcomes. The uip are 

observation- and pollutant-specific uncertainties that downweight observations with large 

errors.

A constrained PMF approach that incorporates prior information can help to resolve source 

factors that better match known sources of pollution. PMF resolves source factors using 

equation (1) as the basic source apportionment model and can also incorporate constraints 
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by minimizing Q + Qaux, where Q is defined by equation (1) and Qaux constrains elements 

of F or G. To develop the constraints in Qaux, we selected those pollutants known to be 

emitted, or known to not be emitted, by each source based on previous studies of traffic-

related pollution (6,18,19). We used inequality constraints that “pull” these pollutants up or 

down in the source profiles F and these penalties generally help to obtain traffic pollution 

factors that better match information about the sources (32). The constrained PMF model 

was fitted using the multilinear engine (ME-2) (33). The results from the PMF approach 

were scaled based on observed PM2.5 to represent μg/m3. More information about our 

constrained PMF approach can be found in the Supplementary Material, Part A.

We included observation- and species-specific uncertainties uip in equation (1) using the 

PMF framework that computes uncertainties based on the concentrations xip (34). We 

compared estimated sources from models for L=4, L=5, and L=6 source factors. To select 

the final source apportionment model, we compared the PMF results to sources known to be 

associated with traffic pollution, namely brake wear, tire wear, road dust, crustal pollution, 

and primary tailpipe emissions, as well as sources identified in ambient air, such as 

secondary sulfate.

2.3 Estimating associations with pulmonary response

We estimated associations between source-specific pollution and pulmonary response using 

the PMF-estimated source factors. We applied longitudinal mixed effects models controlling 

for temporal trends in pulmonary response post-exposure,

y jc(t) = β0 + g jclβ1 + x jβ2 + g jclx jβ3 + t β4 + ∑m = 1
5 z jcmγm + v jc(t) + ε jc(t) (2)

where yjc(t) is the difference in health from baseline (e.g., FEV) for individual subject j 
during commute c at post-exposure time point t, for t = 2.5, 3.5, 4.5, 5.5 hours post-

commute. We included gjcl, the estimated pollution concentration from source category l for 

subject j during commute c. We use c and j to represent commutes nested within individuals 

respectively, instead of observations i as in equation (1), to explicitly indicate that commutes 

are nested within individuals. This notation differs slightly from equation (1), which was 

written to be consistent with the source apportionment literature. We also included asthma 

status (asthmatic or non-asthmatic) for subject j as xj. We allowed an interaction between 

pollution and asthma status to account for possible differential health effects on asthmatic 

compared with non-asthmatic subjects. Other potential confounders included as zjcm were 

commute type (surface street or highway), age, gender, pre-commute cortisol, and BMI.

The random effects vjc(t) = bj0 + bj1t + ujc0 +ujc1t included both random intercepts and 

(time) slopes for each subject (bj0 + bj1t) and each commute within subject (ujc0 +ujc1t) for 

time t. These account for differences between subjects and between commutes within 

subjects in yjc(t) at the first time point, as well as differences over time. The last term, εjc(t), 
represents measurement error. The main models were fitted separately for each health 

outcome and each source category l. We also fitted multi-source models by incorporating 

multiple source factors simultaneously into equation 2. To examine nonlinear associations 
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between source-specific pollution exposure and pulmonary response over time, we fitted 

random intercept models with interactions between source, asthma status, and a categorical 

time variable.

To determine the sensitivity of our results to the imputed data, we compared source factors 

estimated using imputed data to those using complete case data only. We also determined 

whether source factors were similar (1) using data from ACE-1 and ACE-2 separately and 

(2) excluding noise, pbPAH, WSOC, and PNC to determine whether these measures had an 

impact on the estimated source factors. Last, we compared source factors estimated using 

the constrained PMF approach and using unconstrained PMF, which does not include prior 

information and may not estimate source factors that match known sources of pollution.

3. RESULTS

3.1 Traffic-related pollution estimation

The mean (minimum, maximum) of the observed pollutant data, along with missingness, can 

be found in the Supplementary Material, Table S1. Of the N=169 commutes, there were 7 

commutes where all PM2.5 elemental data were not available and therefore we were unable 

to use these commutes to estimate source factors. For the remaining N=162 commutes, the 

most missingness was for pbPAH (14.2% missing), noise (12.3%), and PNC (9.3%). The 

remaining pollutants exhibited less than 5% missing observations. Missing data were due, 

exclusively, to loss of instrument power during sampling. We imputed pollutants using 

sequential regression on the logged pollutant data because the pollutants were approximately 

log-normally distributed.

Using PMF, we identified L=4 source factors whose compositions roughly aligned with 

crustal pollution, secondary pollution, primary tailpipe emissions, and non-tailpipe 

emissions. The primary tailpipe source was dominated by tailpipe emissions but may contain 

particles from other sources. This source possibly represents commutes with free-flowing 

traffic. Similarly the non-tailpipe source may represent “stop-and-go” commutes with a 

higher proportion of brake and tire wear (24) relative to primary tailpipe emissions. In 

source apportionment studies, the naming of source factors is subjective, but these names 

were chosen based on sources identified in the literature (6,18,19). When we examined 

unconstrained PMF solutions for L=5 and L=6 source factors, the additional factors did not 

resemble known sources of traffic-related or ambient pollution. We named the four source 

factors using the source compositions in our estimated F; however, the estimated source 

factors may include impacts from other sources that emit similar pollutants. Particulate 

matter levels are subject to complex and nonlinear processing including mixing, chemical 

transformation, resuspension and removal dynamics. Brake wear components, for example, 

may be immediately emitted from vehicle braking or be present within road dust following 

deposition and resuspension.

The source profiles F are shown in Figure 1. Our non-tailpipe traffic source was high in 

metals and likely contained pollutants emitted from lubricating oils, brake pads through 

brake wear, as well as tire wear and resuspended road dust (6,18,19). Brake wear and tire 

wear are highly correlated within commutes and are therefore difficult to separate using the 
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available data. This source also contained some BC, which is associated with tailpipe 

emissions. Our crustal source was dominated by aluminum and calcium, but also included 

some elements that may be found in resuspended road dust (6,18,19). The secondary 

pollution factor represents other ambient pollution not emitted by the other sources and is 

dominated by sulfur. The fourth factor, which we named primary tailpipe, was high in BC, 

OC, pbPAH, and PNC, all of which are related to primary tailpipe emissions. This factor was 

also strongly associated with noise, consistent with being present in high traffic areas.

All source concentration distributions were right-skewed with larger mean concentrations of 

secondary pollution and primary tailpipe compared with other source factors (results not 

shown). The largest difference in source concentration by commute type was seen with 

primary tailpipe, where pollution concentrations were larger for highway commutes 

compared to surface street commutes. The means and standard deviations of the source 

factors, as well as the interquartile ranges (IQR), are shown in Table 1. Across commutes, 

non-tailpipe and crustal concentrations were highly correlated (R=0.74) and secondary 

pollution was moderately correlated with both non-tailpipe (R=0.58) and crustal (R=0.54) 

pollution (Supplementary Material, Table S2).

3.2 Estimating associations with pulmonary response

Demographic information on the commuters is summarized in Table 2. There were 99 

individual commuters contributing to a total of 161 commutes with demographic or health 

data. Of the 99 commuters, 52 were male (52.5%) and 48 were asthmatic (48.5%). There 

were slightly more asthmatics among women (57.4%) compared to men (40.4%), though 

this difference was not statistically significant. BMI was missing for three commutes (1.9% 

missing), and pre-commute cortisol was missing for 12 commutes (7.5% missing). 

Pulmonary response for the commuters across five time points is shown in Table 3. The 

number of commutes with complete health measurements varied by outcome (FEV1, FVC, 

eNO) and time point.

We estimated health effects associated with source-specific pollution using the model in 

equation 2. The results are shown in Figure 2 as the change in pulmonary response relative 

to baseline for an IQR increase in source-specific pollution (measured in μg/m3). Because 

eNO was highly right-skewed, we fitted all regression models using log(eNO). Exposure to 

crustal and secondary pollution was associated with decreased lung function only among 

asthmatics, with a change in FEV1 of −1.33% (95% confidence interval (CI): −2.45, −0.22) 

for an IQR increase in crustal pollution and −2.19% (95% CI −3.46, −0.92) for an IQR 

increase in secondary pollution, relative to baseline. In non-asthmatic subjects, non-tailpipe 

pollution was associated with decreased lung function with a change from baseline of 

−0.84% in FEV1 (95% CI: −2.27,0.58) and increased airway inflammation with a change 

from baseline of 0.04 log ppb (95% CI: 0.00,0.08) for log(eNO). However, non-tailpipe 

pollution was not associated with pulmonary response in asthmatic subjects. In general, 

associations with FVC were similar to those for FEV1. We found little evidence of 

associations between source-specific traffic pollution and log(eNO) among asthmatic 

subjects.
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We also fitted multi-source models to determine whether one or several source factors could 

explain associations identified in the single source factor models (Figure 2). Because non-

tailpipe pollution was highly correlated with crustal and moderately correlated with 

secondary pollution, we first fitted multi-source models by simultaneously including crustal, 

secondary, and primary tailpipe pollution. Then, we separately fitted multi-source models for 

non-tailpipe pollution adjusting for primary tailpipe. Among asthmatic subjects, associations 

between lung function and crustal were attenuated in multi-source models, while 

associations with secondary pollution were robust to adjustment for other sources. Among 

non-asthmatic subjects, associations with non-tailpipe pollution in multi-source models were 

similar to results from single source models. In multi-source models, we did not find 

significant associations between primary tailpipe pollution and pulmonary response.

In models allowing for non-linear associations over time, we found some indication among 

asthmatic commuters that the association between secondary pollution and pulmonary 

response was somewhat “u-shaped”, with the largest effect occurring at 4.5 hours post-

exposure (Figure 3). Additionally, we found that among non-asthmatic subjects, non-tailpipe 

pollution was only associated with pulmonary response 2.5 hours post-commute (Figure 4).

3.3 Sensitivity analysis

In our sensitivity analysis, we found estimated source factors using the imputed data were 

similar to results using only the complete case data, with high correlations between source 

contributions and similar source profiles. We found estimated source factors were similar 

when the sources were estimated for ACE-1 and ACE-2 separately and were also similar for 

models restricted to commonly used PM2.5 components. Using unconstrained PMF instead 

of constrained PMF for source apportionment did not provide interpretable results and led to 

source categories that were less well-resolved than those generated using the constrained 

model, such as a combined secondary/crustal source (results not shown).

4. DISCUSSION

We conducted one of the first studies to estimate health effects associated with source-

specific pollution factors among commuters. The present study builds on the traffic pollution 

health effects literature in showing components of traffic emissions to be associated with 

acute pulmonary response in adults, but that associations may vary by source and the asthma 

status of adults. Estimating source factors using in-vehicle pollution compared with using 

ambient pollution allowed us to identify potential sources of traffic pollution, while 

modeling multipollutant exposures within a panel-based epidemiologic study. Typically, 

modeling multipollutant exposures and health response is challenging because these 

pollutants are commonly highly correlated across observations (35). In this analysis, we used 

source apportionment to effectively reduce the dimensionality of the complex, on-road 

multipollutant exposures. Moreover, we believe this approach is useful in identifying groups 

of pollutants associated with adverse health outcomes for future targeted studies that may 

focus on a smaller subset of potentially harmful pollutants or sources.

In the present study, we identified four source factors that allowed the estimation of 

pulmonary response associated with multipollutant exposures. Our primary tailpipe factor 
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contained pollutants generated by tailpipe emissions, such as BC, OC, pbPAH, and PNC, 

though also contained some Ni, V, and WSOC. Notably, Atlanta is a location characterized 

by relatively little fuel oil use (36), a common source of Ni and V (37). Ni and V have also 

been reported to be present in lubricating oil (e.g., (38,39)) and enriched in tunnel studies 

(e.g., (40)). The presence of enriched WSOC may be due to the partitioning of secondary 

organic aerosols on primary OC, which is elevated in on-road settings. WSOC has been 

previously found to be present in traffic-related sources (41). Our non-tailpipe source is a 

mixture of pollutants generated by road dust, tire wear, and brake wear. Although this 

indicator is useful for the present epidemiologic panel study, exposure studies that can 

precisely estimate individual non-tailpipe sources are needed. Our source identification from 

chemical composition data was based on previous work in Atlanta by this research team and 

others (42–45).

For crustal and secondary source factors, we observed associations with decreased lung 

function only among asthmatic subjects. Previous studies have also found associations 

between secondary sources with respiratory hospitalizations in older adults (46), and road 

dust, which contains crustal elements, with asthma symptoms in children (17). The non-

asthmatic commuters in our study ranged from 22 to 58 years old, and this age demographic 

is very different than that of previous studies of respiratory health and pollution that focused 

on children (4,17) or older adults (46,47). It is possible that associations with pulmonary 

response are stronger in populations that are sensitive to respiratory stressors such as 

children, older adults, and individuals with asthma. As in previous studies, we found some 

evidence of a “u-shaped” association between secondary pollution and pulmonary response 

among asthmatic commuters, even after adjustment for other source factors (48) (Figure 3). 

This shape may indicate a possible delay in biological response following pollution 

exposure.

In this study, we did not find statistically significant associations between primary tailpipe 

pollution and pulmonary response, and we only observed significant associations with non-

tailpipe pollution among non-asthmatic commuters 2.5 hours post-commute. Our non-

tailpipe pollution source contains metallic and transition metal species (Figure 1), some of 

which have been correlated with measures of oxidative potential (49) and also have been 

associated with adverse health outcomes in previous studies of pollution (50–52). Our study 

includes healthy individuals and asthmatic individuals, who were otherwise healthy, and 

therefore our study subjects may not represent those populations most susceptible to traffic-

related pollution. Additionally, this study was a quasi-experimental design that aimed to 

capture pollution exposures experienced while commuting. It is possible that for asthmatic 

commuters, the effect of exposure to secondary pollution in the morning before their 

scripted commute dominated the effect of exposure to traffic-related pollution during the 

commute. Future studies could control for pollution exposure prior to the commute start by 

exposing subjects to only filtered air for several hours before the study. Previous 

epidemiologic studies of traffic-related pollutants have not consistently identified the same 

pollutant or pollutants most associated with pulmonary response (13,14,48,53). In a previous 

study of healthy individuals, stronger associations have been observed between traffic-

related PM2.5 and markers of systemic inflammation compared with lung function (54); 
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however other epidemiologic studies of inflammatory biomarkers have also found 

inconsistent associations between traffic pollution exposure and health (55–57).

4.1 Limitations

In this study, although we aimed to estimate sources of traffic-related air pollution using in-

vehicle exposures, pollution experienced while commuting may not be limited to traffic-

related pollution. For example, secondary and crustal pollution are not directly emitted by 

vehicles, but their presence within vehicles indicates that other sources of pollution still 

impact commuting populations. Further, pollutants generated in the vehicle cabin, for 

example volatile organic compounds (VOCs) emitted by upholstery and carpet, can also 

contribute to commuter exposures, potentially increasing OC concentrations. We did not 

measure specific secondary organic aerosols, but future work could potentially measure 

these to help distinguish in-vehicle sources.

Frequently, PMF is applied to estimate source factors using ambient data, where each 

sample represents one day with pollutant data. In our study, we applied PMF to in-vehicle 

exposure data, where each sample represented one commute with pollutant data. Unlike 

ambient monitoring data, these commutes took place across the city of Atlanta, and so the 

samples are not geographically fixed. However, our commutes took place within a two-hour 

time window whereas ambient monitoring data are generally averaged over 24 hours. 

Therefore, our in-vehicle pollution data are more temporally specific, and may better capture 

traffic-related pollution sources compared with ambient data. Previous studies have applied 

PMF to estimate source factors across multiple locations, where the sources can be assumed 

to be the same across sites (58,59).

We selected four factors for our constrained PMF source apportionment model that best 

matched known sources of pollution in Atlanta. Choosing the number of source factors in 

source apportionment modeling is challenging and various methods have been proposed to 

select this number (60,61). In a comparison of source estimation approaches across Phoenix, 

AZ and Washington, DC, groups of researchers selected between approximately 3 and 10 

sources for each city (62). Despite varying the numbers of source factors, estimated health 

effects were generally consistent across research groups (1,63). Using source-specific 

pollution exposure allowed us to focus on subgroups of pollutants that might be most 

harmful to commuters. This work does not eliminate the possibility that other harmful 

sources, such as wildfires, also impact commuting populations.

When source apportionment models are applied to pollutant data, source factors can be 

approximately named based on their chemical compositions. These names are approximate 

because source factors are estimated and may represent combinations of one or more known 

sources that emit the same pollutants. For example, our non-tailpipe source contains both 

processed metals and crustal elements, and so is likely a mix of brake wear, tire wear, and 

road dust (6,18,19), as well as tailpipe emissions. Our crustal source also contains some 

processed metals and may contain some road dust. It is worth emphasizing that the issue of 

properly identifying and naming source factors in source apportionment remains subjective 

(62) and therefore our specific source factor names should be viewed cautiously. It is 

possible that our source estimation could be sensitive to the specific days sampled. Future 
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work could sample a larger number of commutes, and incorporate a more detailed 

assessment of exposure including ionic aerosols, such as ammonium and nitrate, and 

hydrophilic and hydrophobic WSOC fractions (41), which may aid in separation of traffic-

related sources. However, previous research has not found the specific source apportionment 

model applied strongly influences health effect estimation (1,20,63).

Determining how to best estimate sources of pollution remains a major challenge in studies 

of source categories and health. To aid in source estimation, we used prior knowledge about 

pollutants commonly emitted by traffic-related sources to develop auxiliary equations for 

constrained PMF. In our analysis, we were unable to separately estimate sources of non-

tailpipe traffic pollution including road dust, tire wear, and brake wear. Many sources of 

traffic pollution, for example brake and tire wear, are spatially and temporally correlated and 

separating these sources is difficult even when prior information is available. Bayesian 

source apportionment models provide an alternative approach for incorporating source-

specific prior information (64,65), though they can be difficult to fit to available data.

In our source estimation, we incorporated field measurement and laboratory uncertainty; 

however we did not propagate uncertainty from estimating sources into the estimated health 

effects. Incorporating uncertainty from estimating sources would somewhat increase 

uncertainty in subsequently estimated health effects (2). Importantly, previous studies have 

found that uncertainty due to source estimation is smaller than uncertainty due to the health 

associations (1,2,4,63). Additionally, to our knowledge few epidemiologic studies have used 

constrained PMF to estimate source-specific exposure, and methods for incorporating 

uncertainties from PMF into estimated health effects have not been extensively explored and 

provide an area for future study. Previous studies have incorporated uncertainty by using 

fully Bayesian source apportionment models (60,65), Bayesian ensemble source 

apportionment models (4), and block bootstrapping (2).

5. CONCLUSIONS

Using data from the Atlanta Commuters Exposure studies, we found exposures related to 

crustal and secondary pollution were associated with decreased lung function among 

asthmatic commuters. Considering multiple sources of traffic pollution and their impacts on 

human health is important for developing interventions to protect health while commuting.
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Figure 1. 
Profile matrices representing the amount each pollutant contributes to each traffic-related 

pollutant source factor. Results are shown as the percent of pollutant in each source so that 

the bars for each pollutant add to 100% across the four source factors.
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Figure 2. 
Estimated changes relative to baseline in lung function measured in predicted percent 

(FEV1, FVC) and inflammation measured in log parts per billion (eNO) for interquartile 

range (IQR) increases in each of four source factors, measured in μg/m3. Results are shown 

for both asthmatics and non-asthmatic commuters, using both single source and multi-source 

models. Airway inflammation, as measured by eNO, was right-skewed and therefore the 

results are shown for log(eNO).
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Figure 3. 
Estimated changes relative to baseline in lung function measured in predicted percent 

(FEV1, FVC) and inflammation measured in log parts per billion (eNO) for interquartile 

range (IQR) increases in each of four source factors, measured in μg/m3, where effects are 

allowed to vary at each time point. Results are shown for asthmatic commuters for both 

single and multiple source models. Airway inflammation, as measured by eNO, was right-

skewed and therefore the results are shown for log(eNO).
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Figure 4. 
Estimated changes relative to baseline in lung function measured in predicted percent 

(FEV1, FVC) and inflammation measured in log parts per billion (eNO) for interquartile 

range (IQR) increases in each of four source factors, measured in μg/m3, where effects are 

allowed to vary at each time point. Results are shown for non-asthmatic commuters for both 

single and multiple source models. Airway inflammation, as measured by eNO, was right-

skewed and therefore the results are shown for log(eNO).
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Table 1

Mean (standard deviation) in μg/m3 of source-specific traffic pollution across all commutes (Total) and by 

commute environment. Also shown are the interquartile ranges (IQR) in μg/m3 for each source.

Source IQR Total Surface street Highway

Crustal 3.01 3.16 (2.99) 3.31 (2.70) 3.13 (3.06)

Non-tailpipe 2.31 2.16 (1.84) 1.40 (1.13) 2.33 (1.92)

Primary tailpipe 3.96 7.34 (3.13) 4.60 (2.50) 7.94 (2.93)

Secondary 4.30 4.71 (4.84) 5.46 (5.48) 4.55 (4.69)
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Table 2

Demographic summary information including fixed (N = 99 commuters) and time-varying (N = 161 

commutes) information for the study population and commutes.

Variable N Statistic

Fixed

 Male, N (%) 99 52 (52.5)

 Asthmatic, N (%) 99 48 (48.5)

Time-varying

 Environment, N (%) 161 132 (82)

 Age (years), mean (SE) 161 29.93 (0.79)

 BMI, mean (SE) 158 23.68 (0.38)

 Baseline cortisol (pg/mL), mean (SE) 149 736.37 (67.44)
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