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We investigate the stability of few-electron quantum phases in vertically coupled quantum dots under a
magnetic field of arbitrary strength and direction. The orbital and spin stability diagrams of realistic devices
containing up to five electrons, from strong to weak interdot coupling, is determined. Correlation effects and
realistic sample geometries are fully taken into account within the full configuration interaction method. In
general, the magnetic field drives the system into a strongly correlated regime by modulating the single-particle
gaps. In coupled quantum dots different components of the field, either parallel or perpendicular to the
tunneling direction, affect single-dot orbitals and tunneling energy, respectively. Therefore the stability of the
quantum phases is related to different correlation mechanisms, depending on the field direction. Comparison of
exact diagonalization results with simple models allows one to identify the specific role of correlations.
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I. INTRODUCTION

Due to three-dimensional confinement on length scales
comparable to the De Broglie wavelength, the electronic
properties of semiconductor quantum dots �QDs� show sev-
eral similarities with those of atoms, the most significant
ones being their discrete energy spectrum and the resulting
shell structure.1,2 Fine structure due to the exchange interac-
tion �Hund’s rule�2–4 and Kondo physics5,6 have also been
predicted and demonstrated. QDs are therefore regarded as
artificial atoms.7–11 These systems have stimulated the inves-
tigation of the fundamentals of few body physics in semicon-
ductors, since the number of electrons �or holes� in QDs can
be controlled very accurately, and almost all relevant param-
eters influencing their strongly correlated states, such as con-
finement potential or the coupling with static magnetic fields,
can be tailored in the experiments, driving the system be-
tween very different regimes.

The analogy between artificial and natural atoms is ex-
tended to artificial molecules �AMs� by realizing tunnel-
coupled devices.12–17 The interdot tunneling introduces a en-
ergy scale which may be comparable to other energy scales,
namely the single-particle �SP� confinement energy, the
carrier-carrier interaction, and the magnetic confinement en-
ergy. In AMs it is possible to tune the coupling among QDs
basically at will, thus exploring different molecular bonding
regimes;18 this is an intriguing option with respect to natural
molecules, since for the latter the internuclear coupling is
almost fixed by the balance between nuclear repulsion and
the electrostatic attraction mediated by valence electrons.

There is a number of different techniques to fabricate
AMs. Laterally coupled AMs19–23 are obtained by creating an
electrostatic confinement in a semiconductor heterostructure,
such as a doped heterojunction, by means of the photolitho-
graphic patterning of metallic gates, deposited on the surface
of the heterostructure. Another way to realize AMs is by the
Stransky-Krastanov mechanism leading to the formation of
self-assembled QDs with nm-scale confinement with similar
sizes and regular shapes. In a stack of several layers, the
formation of QDs in the top layer, coupled through tunneling

with the ones in the underlying layer, has been recently
demonstrated.24,25

In the following we shall investigate electronic properties
of vertically coupled AMs realized starting from a triple bar-
rier heterostructure to form a mesa pillar, possibly using a
combination of dry and wet etching.14,18,26–31 Typically, the
effective diameter for electron conduction is smaller than the
geometrical diameter of the top contact. For example, with a
top contact �0.5 �m in diameter, it is estimated that the dot
diameter is �0.1 �m when the dot contains a few electrons.
Still, in this class of devices the depletion potential in the
lateral direction realizes a much softer potential than in the
growth �vertical� direction, where electrostatic confinement
is induced by the band mismatch of the layers in the hetero-
structure. In this vertical geometry transport occurs perpen-
dicularly to the plane of the dots, in response to an applied
voltage between source and drain contacts. The strength of
the coupling can be modulated by the width of the barrier
separating the QDs. In addition, a circular Schottky gate is
typically placed around the body of the pillar to control the
charging of the QDs.

In AMs, as well as in single QDs, electronic states can be
manipulated by a vertical magnetic field B�, perpendicular
to the plane of the QDs �parallel to the growth direction�,
which drives the system from a low-correlation �low-field�
regime to a strongly correlated �high-field� regime by vary-
ing the SP splittings.9 Recently, nontrivial transitions be-
tween different quantum states induced by B� and/or by
varying the interdot barrier width Lb have been predicted and
demonstrated in AMs with different coupling
regimes.17,18,32,33

While this vertical field configuration has been
widely studied both theoretically and exper-
imentally,15,18,27–42,44,43,45–52 few works have been devoted to
the in-plane field configuration,30,41,53–55 which is more com-
plicated to simulate and less intuitive, principally because of
the lack of the cylindrical symmetry and of analytical solu-
tions for the SP states. Furthermore, since in this configura-
tion angular momentum is not a good quantum number, the
computational effort increases very rapidly with the electron
number �see Sec. II B�.
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On the other hand, in vertically coupled QDs an in-plane
magnetic field B� modulates the tunneling energy, and one
may hope to induce transitions between few-particle states,
reminiscent of those that one can obtain by varying the tun-
neling energy via the barrier potential.32 In this way, different
coupling regimes would be investigated within just one
sample, which is of course an advantage, since it is almost
impossible to grow samples completely identical except for
the barrier width. It should be stressed that when the tunnel-
ing is modulated by an in-plane magnetic field in vertically
coupled QDs, the other energy scales, in particular the Cou-
lomb interaction, are only weakly affected by the field. Due
to its importance to the QD-based implementation of
quantum-information processing,41 such field configuration
has been already investigated in the two-electron case,55

whereas less attention has been devoted to the case where
more than two carriers are present, in particular when B has
both an in-plane and a perpendicular component, which is
relevant for the transport spectroscopy of such samples. In
this case we expect an interesting physics: in fact both in-
plane �due to B�� and vertical �due to B�� correlations are
involved in the transitions between quantum states.

In this paper we theoretically investigate the stability of
field-induced quantum states of few electrons in AMs. The
main focus is on correlation effects, largely enhanced by the
field, which determine different mechanisms �which may in-
terfere between each other� driving the transition between
different ground states, depending on the field direction and
interdot coupling. In our analysis we consider three realistic
samples with different interdot barrier, with the aim of inves-
tigating the phenomenology occurring between the two op-
posite limits of strong coupling and molecular dissociation.
Our numerical approach is based on a real-space description
of SP states, which takes into account the complexity of real
samples. Because of the competition between kinetic energy,
Coulomb interaction, and Zeeman energy, it is often neces-
sary to treat exactly �in contrast, e.g., to mean-field methods�
the few-body Hamiltonian of this kind of samples. Our
method of choice to include carrier-carrier Coulomb interac-
tion is the full configuration interaction �FCI� approach,56

which proved to be accurate and reliable,17,18,57,58 although
limited to few electrons. In order to stress correlation effects,
we contrast our numerical results with SP and Hartree-Fock
predictions of the stable quantum phases. We will see that
correlation effects play a crucial role in determining the elec-
tronic properties of the system, and that schematic pictures
neglecting these phenomena do not lead to correct predic-
tions.

The paper is organized as follows: In Sec. II we illustrate
our numerical approach to the calculation of SP and interact-
ing states; in Sec. III we discuss the results concerning dif-
ferent samples in a magnetic field of arbitrary direction; and
in Sec. IV we summarize our findings.

II. THEORETICAL MODEL

We consider N interacting electrons in an AM structure.
Since we are interested in weakly confined devices, the en-
ergy region of our concern is relatively close to the semicon-

ductor band gap and we may use the single-band approxima-
tion for the conduction band. In this framework the carriers
are described by the effective-mass Hamiltonian

H = �
i=1

N � 1

2m*�− i��i +
�e�
c

A�ri�	2

+ V�ri�

+

1

2�
i�j

e2

��ri − r j�
+

g*�B

�
B · S . �1�

Here m*, �, and g* are the effective mass, dielectric constant,
and g-factor, respectively, �B is the Bohr magneton, S is the
total spin, A�r� is the vector potential at position r, and B is
the magnetic field, with B=��A. Equation �1� neglects
nonparabolicity effects, but it includes otherwise in the con-
finement potential V�r� the full three-dimensional nature of
quantum states in realistic samples, such as layer width, tun-
neling, and finite band offsets.

In the following the potential V�r� describes two identical
vertically coupled disk-shaped QDs. Since in this kind of
samples the confinement is much tighter in the growth direc-
tion z than in the xy plane, we separate the potential as
V�r�=V�x ,y�+V�z�, where V�z� represents two identical
square quantum wells of width LW, separated by a barrier of
width Lb and conduction band mismatch V0. We perform the
usual choice of a parabolic in-plane confinement of natural
frequency �0:

V�x,y� =
1

2
m*�0

2�x2 + y2� . �2�

Adequacy of Eq. �2� has been demonstrated by both theoret-
ical calculations59,60 and far infrared spectroscopy
experiments.61,62 Note, however, that our numerical approach
does not assume any symmetry and may treat different con-
finement potentials; in particular, the vector potential A�r� is
not limited to describe the z-directed field. We suppose that
the active region of the AM is sufficiently well-separated
from the top and substrate contacts that we can reasonably
neglect interactions with the leads in our model.18 The en-
ergy splitting ��0 between SP eigenvalues of the in-plane
confinement,10 given by Eq. �2�, is an input parameter of the
model. Such quantity mimics the effects of electrode screen-
ing and interaction with the environment, and in real charg-
ing experiments it is modified by the Schottky gate.18 Here,
for the sake of simplicity, ��0 is kept fixed as N is varied. A
qualitative discussion of this issue is postponed to the end of
Sec. III.

Schematically, our algorithm is the following. First, we
numerically calculate the electron SP states, mapping the SP
Hamiltonian on a real-space grid. Then, the SP orbitals thus
obtained are used to evaluate Coulomb matrix elements and
finally to represent the interacting Hamiltonian on the basis
of Slater determinants �SDs�, according to the FCI approach.
These steps are described below in detail.

A. Single-particle states

The SP energies �� and wave functions ���r� are obtained
from the numerical solution of the eigenvalue problem asso-
ciated to the Hamiltonian
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H0�r� =
1

2m*�− i� � +
�e�
c

A�r�	2

+ V�r� , �3�

which is the SP term appearing in the first line of Eq. �1�. We
include in Eq. �3� a magnetic field of arbitrary direction via
the vector potential A= 1

2 �B�r� �symmetric gauge�. Specifi-
cally, we find the eigenstates of Eq. �3� by mapping it on a
real-space grid of Ngrid=�i=1

3 Ni points, identified by the grid
vectors ri=�k=1

3 �	i
k−Nk /2�
kêk, with 	i

k=1, . . . ,Nk and
ê1,2,3= x̂ , ŷ , ẑ. The resulting finite-difference equation can be
rewritten in terms of a discrete eigenvalue problem, as de-
scribed in detail elsewhere.63 This results in the diagonaliza-
tion of a large, sparse matrix which is performed by the
Lanczos method.56

B. Few-particle states

Once SP states are obtained, we proceed including the
Coulomb interactions between charge carriers. The full
many-body Hamiltonian H can be rephrased, by means of
the second-quantization formalism,64 as

Ĥ = Ĥ0 + ĤC + ĤZ, �4�

where Ĥ0 is the single particle Hamiltonian

H0 = �
�

NSP

�
�

��ĉ��
† ĉ��, �5�

ĤC is the Coulomb term

ĤC =
1

2 �
���

NSP

�
���

V���ĉ��
† ĉ���

† ĉ��ĉ��, �6�

and ĤZ is the Zeeman Hamiltonian

ĤZ =
�Bg*

�
B · Ŝ . �7�

Here, ĉ��
† �ĉ��� creates �destroys� an electron in the spin-

orbital ����r ,s�=���r����s�, where ���s� is the spinor wave

function, and Ŝ is the total spin vector. In the above equa-
tions, NSP is the number of SP states that are taken into
account.

The Coulomb matrix elements, given by

V��� =� ��
*�r���

*�r��
e2

��r − r��
��r�����r�drdr�, �8�

are calculated by numerically integrating the following ex-
pression:

V��� =
e2

�
� F−1� 1

k2�̃��k�
����r�dr , �9�

where ����r�=��
*�r����r�, and �̃���k�=F����r�� is its

Fourier transform.
Since typical SP energy spacings computed from the

Schrödinger equation associated with Eq. �3� are in the meV

range, while characteristic values of the Zeeman term ĤZ are

typically two orders of magnitude smaller �e.g., �BB=5.79

�10−2 meV at 1 T�, the effect of ĤZ is first neglected in the
calculation of the electronic ground states �GSs�. Then, the

effect of ĤZ, which just lifts the �2S+1�-fold degeneracy of
the total spin S, is included as a perturbation to the first order
in the field.

Then, our algorithm proceeds forming a basis of SDs,
filling NSP spin-orbitals ����r ,s�, calculated numerically as
described in Sec. II A, with N electrons in all possible ways.
We assume that the Fock space generated by the SDs is
approximately complete, namely a generic eigenstate of the

many-body Hamiltonian Ĥ can be expressed as a linear com-
bination of SDs. One may reduce the computational effort by
exploiting the symmetries of the system. In fact, by using a
suitable combination of the SDs which diagonalize
symmetry-related operators, the Hamiltonian can be written
in a block-diagonal form.56 The larger the symmetry of the
system, the smaller the dimensions of the blocks and the time
necessary to complete the full diagonalization. In the present
case, an in-plane component of the magnetic field removes
the cylindrical symmetry C�h, which is often exploited in the
vertical field arrangement of cylindrically symmetric QDs.
However, the Hamiltonian still commutes with the square

total spin Ŝ2 and z-component Ŝz operators, respectively.
Therefore the subspaces are appropriately labeled by the val-
ues of S and the minimum positive value of Sz consistent
with S. Once the effective subspace is selected, our code

performs a unitary transformation in order to rewrite Ĥ in a
block-diagonal form. Finally, matrices obtained in this way
are handled by a Lanczos routine included in the package
DONRODRIGO65 run on a SP3 IBM system.

III. RESULTS

In this section we present the calculated field-dependent
GSs of AMs, covering the regimes from strong to weak cou-
pling. The application of the FCI method ensures that our
results have comparable accuracy in different regimes. To
this end, we have selected three realistic samples based on a
AlGaAs/GaAs heterostructure, labeled B1, B2, and B3, with
interdot barriers Lb=2.5, 3.2, and 4.0 nm, respectively. The
sample with intermediate barrier shows a full molecular
character, while B1 and B3 represent the single QD and the
molecular dissociation limits, respectively.

Except for the barrier width, parameters are common to
all samples. The lateral confinement is ��0=3.5 meV, the
band-offset between barrier and well materials of the hetero-
structure is V0=300 meV, each well width of the double
quantum well potential is LW=12 nm. Material parameters
appropriate to GaAs are m* /me=0.067, �=12.9, and g*=
−0.44. All parameters refer to a set of samples18,27 described
in literature and processed at the University of Tokyo.

A. Single-particle states

SP states in an arbitrary field have been obtained accord-
ing to Sec. II A with N1=N2=80, N3=128; the resulting
819 200�819 200 sparse Hamiltonian matrix is diagonal-
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ized by means of the Lanczos algorithm. The grid parameters
have been chosen in order to reproduce the lowest analytical
zero field �Fock-Darwin� energies �nm with an accuracy bet-
ter than 0.5 meV.

Before presenting our results for specific samples, let us
summarize the properties of SP states in a single QD with
parabolic in-plane confinement and vertical magnetic field
B�. In this case SP states are analytical and given by the
so-called Fock-Darwin �FD� states, with energies �nm
=���2n+ �m�+1�− ���c /2�m, n=0,1 ,2 , . . . and m
=0, ±1, ±2, . . . being the principal and azimuthal quantum
numbers, respectively. The effective oscillator frequency �
is defined by �=��0

2+�c
2 /4, and �c=eB /m*c is the cyclo-

tron frequency. A perpendicular magnetic field splits the de-
generacies of the states and reduces the energy gap between
energy levels with increasing angular momentum �see solid
lines in Fig. 1�; this favors transitions in the few-electron
states in order to increase in-plane correlations, as explained
in the next section. In symmetric AMs, FD levels are repli-
cated, rigidly shifted by 
SAS, the energy gap between the
lowest symmetric �S� and antisymmetric �AS� states arising
from the double-well potential along the growth direction
�highest confined states along the growth direction need not

be considered if LW is sufficiently small�.18 Figure 1 shows
the S �solid lines� and AS �dashed lines� replicas of FD states
for the three samples as a function of B�. Note that the S/AS
labeling is valid only as far as the field is entirely along the
z axis, namely the motions in the xy plane and along z are
completely uncoupled, and the splitting 
SAS does not de-
pend on B�. The symmetry group, in this highly symmetric
case, is C�h.

Figure 2 shows calculated SP levels for B1, B2, and B3 as
a function of the in-plane field B�. Contrary to the vertical-
field configuration, the parallel field B�, which we take to lie
along the x axis, couples the motion along the in-plane y and
the vertical z directions, and it reduces the symmetry group
of the system from C�h to C2h. Therefore SP wave functions
lose their well-defined component of the orbital angular mo-
mentum as well as the S/AS character along z. Besides, the
states labeled S and AS when B� =0, respectively, get closer
as B� increases, and tunneling is progressively suppressed.
Clearly, the tunneling suppression occurs at different values
of the field for different samples, since the in-plane field may
significantly affect tunneling only when �c

� =eB� /m*c
�
SAS/�.55

Although the application of B� strongly reduces the sym-
metry group of the system, it still preserves two residual
symmetries: �i� the reflection x→−x with respect to the yz

FIG. 1. Fock-Darwin energy levels of samples B1, B2, and B3
�see text� vs vertical magnetic field, B�. Solid and dashed lines
represent energies �nm arising from the lowest S and AS levels of
the double quantum well confinement along the growth direction,
respectively.

FIG. 2. Single-particle states of samples B1, B2, and B3 vs
in-plane field B� at B�=0.
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plane perpendicular to the field direction and �ii� the rotation
of 180° around the x axis. The four irreducible representa-
tions of the residual group C2h, namely Au, Ag, Bu, and Bg,66

are associated to the appropriate SP states in Fig. 2, together
with the alternative labeling at zero field. It is possible to
understand qualitatively the behavior of the SP states with
the parallel field B� by taking into account the energy gap
between the orbitals with the same symmetry; the smaller the
gap, the larger the “repulsion” between levels. For example,
we expect strong repulsion between the second and the
fourth state, and a weaker effect for the first and the fifth
state because of the larger energy gap between them.

The effect of the in-plane field on SP states is demon-
strated in Fig. 3, which shows the SP charge densities
���x ,y��2 at a fixed value of z inside one well for the three
lowest levels �their quantum numbers are indicated in the
figure�, for three selected values of B�. The field increases the
confinement, squeezing the electronic wave functions. More-
over, FD orbitals with different angular momentum and be-
longing to different energy shells are mixed by B�, leading to
charge density modulation and nodal surfaces.

In presence of a magnetic field of arbitrary direction
�tilted magnetic field� also the C2h symmetry is broken, and
we observe simultaneously the reduction of both tunneling
and intradot energy gaps between FD states as the field is
increased.55 An example of the SP states’ behavior in a mag-
netic field which is tilted at �=45° with respect to the growth
direction is reported in Fig. 4.

B. Few-particle states

In the following, we will investigate the stability of few-
particle �2�N�5� quantum phases as a function of an ap-
plied field with both in-plane and vertical components. In
AMs, due to tunneling and the ensuing formation of bonding
and antibonding levels, the number of SP orbitals which en-
sures convergence of the FCI calculation depends on the
splitting, 
SAS, and on the number of charge carriers, N, we
take into account. Results presented in this work are obtained
using NSP=20 for 2�N�4. In order to limit the computa-
tional effort, which increases very rapidly with the number of
electrons, we reduce to NSP=15 the set of SP states for N
=5. With these values, the calculated SP states, which at
arbitrary values of the field are in general nondegenerate,
turn continuously into close zero field degenerate shells. The

FIG. 3. �Color online� Contour plots of ���x ,y��2, at a fixed value of z inside one well, of selected SP states �see labels on top� of sample
B3 with an in-plane field B� =0 �top row�, B� =4 T �center row�, and B� =8 T �bottom row�. B� lies along the x axis. Symmetry labels refer
to the lowest-energy SP orbitals of a given representation �cf. bottom panel of Fig. 2�.

FIG. 4. Calculated single-particle energy levels of sample B2 vs
field, B=B�x̂+B�ẑ, forming a 45° angle with respect to the growth
direction of the heterostructure.
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convergence of the FCI calculations at zero field with respect
to the selected SP states has been carefully investigated in
Ref. 56.

In order to stress the role of correlations, we will contrast
the exact correlated states, obtained by the FCI method, with
�i� the quantum phases predicted in a SP picture, i.e., filling
SP states according to the Aufbau principle, and �ii� a
Hartree-Fock-like approach.

In the SP picture the few-electron noninteracting GS en-
ergy is

ESP = �
�

�
�

��n��, �10�

where �� is the SP energy of the �th orbital and n�� is the
occupation number of the �th SP orbital with spin �. The
second model is reminiscent of the Hartree-Fock approach:
In this approximation, we calculate the energy of an elec-
tronic configuration as the expectation value of the interact-
ing Hamiltonian on the most weighted SD singled out from
the FCI expansion of the correlated wave function. We call
this the single SD �SSD� approximation. The SSD energy is
given by

ESSD = �
�

�
�

��n�� +
1

2 �
���

U���
���

n��n���

−
1

2 �
���

K���
�

n��n�� + �
�

U��n�↑n�↓. �11�

Here the interaction between charge carriers is described by
the integrals

U�� =� � ����r1��2
e2

��r1 − r2�
����r2��2dr1dr2, �12�

K�� =� � ��
*�r1���

*�r2�
e2

��r1 − r2�
���r2����r1�dr1dr2,

�13�

where U�� is the direct Coulomb integral, accounting for the
repulsion between two electrons occupying orbitals � and �,
and K�� is the exchange integral, giving the exchange inter-
action between electrons with parallel spins. U�� and K��

correspond to V���� and V���� in Eq. �8�, respectively. Note
that in both SP and SSD models the GS is given by just one
configuration, while, in general, the true GS is a linear com-
bination of different electronic SDs, due to correlation. We
also neglect the Zeeman coupling to the field at this level.

Below we shall discuss the GS of few electrons as a func-
tion of the magnetic field intensity and direction. In several
cases, we will indicate schematically �see the following fig-
ures� the GS configuration, as predicted either by the FCI
method or by the SSD calculation, in terms of arrows, point-
ing either upwards or downwards, filling in either left or
right boxes �with respect to a diagonal line�. The arrows
stand for electron spin, while superposed boxes indicate SP
orbitals of increasing energy. In the vertical-field configura-
tion, left and right boxes indicate S and AS levels, respec-
tively �right boxes are not shown if no AS states are occu-

pied�. If a finite B� component is present, the boxes indicate
the orbitals which evolve in a continuous manner from those
at B� =0 as B� is switched on �see Fig. 2�. For example, the
lowest-energy S �AS� s and p levels at B� =0 evolve continu-
ously into Ag and Au �Bu and Ag� levels, respectively, as B�

increases, while remaining identified pictorially by the same
boxes. For FCI calculation, we show only the most weighted
configurations. In some cases FCI and SSD methods predict
the same stable phase, in which case we use dotted boxes.
When the two methods disagree, we use solid boxes and
indicate the exact �FCI� result only. Typically, for a given
sample and number of carriers, the set of stable GSs pre-
dicted by the SSD method is a subset of the FCI stable
phases.

In all stability diagrams shown below, calculated GSs are
indicated with dots, and lines are only a guide to the eye
through the calculated points. Due to numerical limitations,
mainly related to the lack of cylindrical symmetry which
requires numerical calculation of the SP states, we have lim-
ited our calculations to a relatively coarse grid of points in
the �B� ,B�� plane. Although we believe that we have deter-
mined most of the GSs which are stable in the different re-
gimes, it is possible that we miss some phases which are
stable in a small range of fields.

We first consider the two-electron case.55 In a SP picture,
the lowest SP state is doubly filled in a singlet �S=0� con-
figuration which is stable in all field regimes, since no level
crossing occurs in the lowest SP state �see Figs. 1 and 2�.
Figure 5 shows, instead, that FCI predicts a singlet/triplet
transition at finite fields, both along the B� and B� axes. For
B2 the SSD phase boundary is also reported in Fig. 5 �no
qualitative differences are expected for the other samples�.

Let us focus for the moment on the SSD stability diagram
of Fig. 5. At low magnetic field the ground state has a singlet
character, with two electrons sitting on the same orbital. As
the field is increased, we observe a singlet/triplet transition,
which is different in character depending on whether B� or
B� is varied.55 In the former case, only S levels s and p
�equivalent to Ag, Au levels, respectively� are involved: the
triplet configuration minimizes the Coulomb interaction by
promoting an electron from a s to a p orbital, which is more
spatially delocalized, i.e., Uss�Usp. In this sense, only in-
plane degrees of freedom play a role in the B�-induced tran-
sition. The “Hartree” energy gain Usp−Uss compensates the
cost in terms of SP energy due to the s→p orbital promotion.
Moreover, the exchange interaction energy gain, given by the
exchange integral Ksp, favors the “ferromagnetic” triplet con-
figuration �S=1� with respect to the “antiferromagnetic” sin-
glet when the two electrons sit on the s and p orbitals, re-
spectively. Therefore the electrostatic energy of the triplet
configuration �Usp−Ksp is further reduced with respect to
the singlet one, �Usp.

In the in-plane configuration, instead, the tunneling en-
ergy separating the lowest-energy Ag and Bu orbitals is very
effectively reduced by B� �see Fig. 2�. Both orbitals are there-
fore involved in the formation of singlet and triplet states. In
the SSD approximation singlet and triplet states, the former
made of a doubly occupied Ag orbital and the latter of two
parallel-spin electrons sitting on the Ag and Bu orbitals, re-
spectively, tend to the same orbital energy. However, the

BELLUCCI et al. PHYSICAL REVIEW B 74, 035331 �2006�

035331-6



small exchange interaction KAgBu
and the Zeeman term of the

S=1 state, both included in the SSD calculation, weakly fa-
vor the triplet when the tunneling energy is reduced above a
critical value of B�.

Although the SSD scheme is able to describe, on a quali-
tative level, the singlet/triplet stability regions, neglecting
correlation effects in the SSD scheme strongly underesti-
mates the stability region of the singlet state, favoring the
polarized phase: in fact, the description of the singlet state in
terms of two electrons sitting on a Ag orbital is poor espe-
cially at high field, where an increasing contribution from the
Bu orbital gives rise to a spatial correlation along the growth
direction, i.e., with the two electrons sitting on opposite
QDs, as we have shown in a previous work.55,67 The vertical
correlation lowers the energy of the singlet state, making it
stable in a larger B�-region, although the Zeeman coupling
favors the triplet configuration. Indeed, the stability of the
singlet state in FCI may be interpreted as resulting from a
“superexchange” effect.68 The FCI singlet configuration can
be better understood after a unitary transformation of the
orbital basis to states localized on either one or the other dot.
By schematizing the AM as a two-site lattice at half filling,
the appropriate conceptual framework, when the QDs are
weakly coupled, is that of the Hubbard model,69,70 where the
system has a tendency towards “antiferromagnetism,” since
two electrons in a singlet state can lower their energy by

virtually hopping from one to the other dot, while the same
process is prohibited for a triplet state by Pauli blocking.
When tunneling energy does not pay off for antiparallel
alignment, the triplet phase becomes favorable.

On the other hand, a SSD scheme would neglect also the
correlation regarding the triplet state when both B� and B�

are present, namely the central region in the diagrams of Fig.
5. Here the triplet state is given by the sum of mainly two
components, the first one involving Ag and Au orbitals, and
the second one involving Ag and Bu orbitals, with coefficients
depending on the field strength and direction. In this case the
effects induced by both B� and B� compete in a nontrivial
manner, as well as vertical and in-plane correlations.71

Finally, we note that the stability region of the singlet
state with respect to B� depends on the interdot coupling, and
it decreases going from B1 to B3. In fact, as we have seen
before, the in-plane field affects significantly the tunneling
only when �c

� =eB� /m*c is comparable with 
SAS/�.55 Con-
sistently with the above interpretation of the singlet/triplet
transition, the critical value of B� depends on tunneling
strength only very weakly.

We next consider the N=3 case. In the SP noninteracting
scheme �Fig. 6� only two phases are present, both with S
=1/2. The field B� at which the two GS energies cross is
given by the intersection of the S s ��Ag� and p ��Au� levels
�Fig. 1�. Figure 7 shows the stability diagram obtained from
the FCI calculation; for B2 the phase boundary obtained
from the SSD approach is also shown �dashed line�. Al-
though the SSD approximation seems to describe reasonably
well the dynamics along the B� axis, where GS configura-
tions coincide with the FCI ones, except a slight shift of the
phase boundary at lower fields with respect to FCI, this
scheme fails completely at finite B�. Indeed, SSD severely
underestimates the stability region of the unpolarized phase
�S=1/2� with respect to the polarized one �S=3/2�. This fact
is mainly connected to correlation effects, as we shall see in
the following.

Let us stick for a moment to the vertical field configura-
tion. As already for N=2, also for N=3 increasing B� deter-
mines an enhancement of the in-plane correlation, leaving
unaffected the motion along the growth direction. For B1
and B2, electrons in the S orbitals undergo a number of
transitions where p and d levels are successively populated
in order to minimize the Coulomb repulsion. Eventually, the
so-called maximum density droplet �MDD�,72–75 i.e., the
densest spin-polarized configuration possible, is reached. For
B3 this phase is not observed at B� =0 in the range of B�

explored �Fig. 7�.

FIG. 5. N=2 stability diagram in the �B� ,B�� plane for B1, B2,
and B3, as predicted by the FCI calculations. Gray squares: S=1
GS; black circles: S=0 GS. Solid lines are guides to the eye. The
dashed line in B2 indicates the predicted SSD singlet/triplet bound-
ary. Insets: main components of the ground state wave functions
�see text�.

FIG. 6. N=3 stability diagram in the �B� ,B�� plane for B1, B2,
and B3, obtained within the SP noninteracting scheme.
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If B� is small or zero, electrons are prevented from occu-
pying AS orbitals by the kinetic energy cost 
SAS. As B� is
increased, however, 
SAS decreases. The range of fields
where AS occupation takes place depends, of course, on the
zero field tunneling energy, as it is easily seen comparing the
GS character at low B� of the B3 sample, where electrons
occupy both S and AS states, with that of B1 and B2
samples, where AS states are not occupied. From this point
of view, increasing B� is analogous to decreasing Lb. We will
find a similar behavior for N=4,5.

On the other hand, in addition to the reduction of the
tunneling splitting 
SAS, a finite value of B� determines a
redistribution of the carrier density, coupling the y and z
degrees of freedom, reducing the spatial symmetry, and in-
ducing orbital hybridization, as discussed in Sec. III A. From
this point of view, increasing B� is not equivalent to decreas-
ing Lb, since it induces GS configurations different from
those occurring at large Lb. Moreover, as we show below, the
high-B� phases are brought about by genuine correlation ef-
fects, and in fact they are missed by the SSD approximation.

Let us consider the spin phase at high B� and low B� in
Fig. 7, having the Bu orbital doubly occupied in its most-
weighted SD. At high B�, the orbitals Ag, Bu are almost de-
generate �see Fig. 2�. Therefore we would expect the two
configurations with two electrons either in the Ag or in the Bu
level to occur with like probabilities. However, intraorbital
Coulomb repulsion is lower for the more delocalized Bu
state. This is shown for B3 in Fig. 8�b�, where we report the

behavior of U�� defined in Eq. �12��, where � takes the
value Ag and Bu, respectively. The modulation of UAgAg

and
UBuBu

with B� should not come as a surprise, since the SP
orbitals are strongly affected by the field �Fig. 3�, with the
appearance of nodal surfaces even in the lowest-energy SP
orbital Ag. These integrals allow one to estimate the value of
the Coulomb repulsion between two electrons both sitting in
the Ag or in the Bu orbital, as a function of the in-plane field
B�. In Fig. 8�a� we show the ground- and lowest excited-state
energies for B3 vs B�. The larger values of UAgAg

at interme-
diate fields partly explains the occurrence of the SD with two
electrons sitting on the Bu orbital. On the other hand, such
GS is not observed in a SSD picture, i.e., neglecting corre-
lation, as shown in Fig. 7 �note that the B� field range is
larger in Fig. 8 than in Fig. 7�. At high values of B�, UAgAg
�UBuBu

and the state with two particles on the Bu level be-
comes almost degenerate with the one with two particles on
the Ag level Fig. 8�a��. The results for B1 and B2 samples
�not shown� are similar.

The reduced Coulomb repulsion between electrons on the
Bu orbital is a key concept to understand the stability of the
unpolarized phase S=1/2. Indeed, the SD with the Ag orbital
singly occupied and the Bu orbital doubly occupied is always
present in the GS when applying B� �even though it is not
indicated in the graphs unless it is the dominating one�, to-
gether with other important configurations. The reason is that
correlation, namely the mixing of different SDs, allows the
system to lower its energy. At high B�, the SD mentioned
above becomes the dominating one for all considered
samples, although close in energy to the SD with the Ag
orbital doubly occupied. As in other cases, in tilted magnetic
fields the typical SDs appearing in the GS expansion, in the
central region of the diagrams, represent the competition be-

FIG. 7. N=3 stability diagram in the �B� ,B�� plane for B1, B2,
and B3, as predicted by the FCI calculations. Gray squares: S
=3/2 GS; black circles: S=1/2 GS. Solid lines are guides to the
eye. The dashed line for B2 is the SSD prediction. Insets: main
components of the GS wave functions �see text�.

FIG. 8. �a� Lowest energy levels for N=3 vs in-plane field B� at
B�=0, for sample B3. �b� Coulomb integrals UAgAg

and UBuBu
vs

in-plane field B� at B�=0, for the same sample. The Coulomb in-
tegrals U�� are defined in Eq. �12�.
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tween vertical correlation, driven by B�, and in-plane corre-
lation, driven by B�.

For N=4 the situation is more complicated due to the
larger number of possible phases, and the strong dependence
on the interdot coupling strength. SP, SSD, and FCI predic-
tions are presented separately in Figs. 9–11, respectively. The
predictions of the SP scheme in Fig. 9, if compared with
those of FCI of Fig. 11, are clearly inadequate to describe the
physics of the system: only two noninteracting singlet phases
are stable, differing for the double occupancy of either the Au
or the Bu orbital.76

As expected, the FCI calculation �Fig. 11� predicts the
familiar MDD state formation through successive occupation
of p and d orbitals; this is also predicted, even though ap-
proximately, by the SSD approximation �Fig. 10�. On the
other hand there are many differences between SSD �Fig. 10�
and FCI �Fig. 11� predictions when B� is also increased. One
major difference is the enhanced stability of the S=0 phase
in FCI calculations. This phase involves the SD made of
doubly occupied Ag and Bu orbitals, which is the dominant
one in a large field range for all samples. Analogously to the
N=3 case, the system is allowed to lower its energy through
occupation of the Bu level as B� is increased. The true GS,
however, turns out to be a nontrivial linear combination of
several other SDs, which suggests that correlations are domi-
nant here. Indeed, by neglecting correlation effects, like in
the SSD approach, the only possible energy gain is obtained
by aligning the spins in a S=1 phase, leading to the wrong
SSD prediction that the S=1 phase is always stable at small
B�, as shown in Fig. 10.

Such partially polarized phases, instead, are typically
stable only in small ranges of the field, and their stability
also depends on the sample parameters, as we show below.
For N=4 the S=1 phase at B�0 is stable only in a small
field range, and its stability is reduced if the interdot cou-

pling is reduced; in sample B3 this phase is not stable, no
matter how small the field is �Fig. 11�. Indeed, this phase
requires occupation of two S p orbitals, and it results from
the payoff between the gain in exchange energy and the ki-
netic energy cost. Therefore this configuration becomes rap-
idly unfavorable with respect to the S=0 phase having the Bu
orbital doubly occupied, as B� increases. In fact, the stability
range of the S=1 phase decreases as the zero field tunneling
energy 
SAS decreases with respect to the s− p energy split-
ting ��0. Note that, according to the SSD data �Fig. 10�, the
S=1 phase is given by only one SD, instead of the FCI
superposition of two main configurations with coefficients
dependent on the value of the field. This fact, which indicates
the progressive filling of the Bu level while increasing the
field, is neglected by the less accurate SSD picture, and it is
described by the SSD model in terms of a transition between
the two SDs mentioned above. We note in Fig. 11 that a S
=1 phase sets in also between the unpolarized �S=0� and the
completely polarized �S=2� spin case. This phase, character-
ized by a nontrivial combination of configurations involving
both S and AS states, loses its stability as the interdot barrier
is increased.

Similar considerations apply to the N=5 case �see Figs.
12–14 for SP, SSD, and FCI schemes, respectively�. Typi-
cally, several transitions occur in the GS within the same
spin configuration. For example, along the B� axis of Fig. 14
several configurations occur, reflecting the crossing between
p levels in the S and AS minibands �see Fig. 2�. As the
barrier Lb is decreased, the splitting between s and p orbitals
becomes of the same order of magnitude of 
SAS, and the

FIG. 9. N=4 stability diagram in the �B� ,B�� plane for B1, B2,
and B3, as obtained within the SP noninteracting scheme.

FIG. 10. N=4 stability diagram in the �B� ,B�� plane for B2,
calculated within the SSD scheme.

FIG. 11. N=4 stability diagram in the �B� ,B�� plane for B1, B2,
and B3, as predicted by the FCI calculations. Gray triangles: S=2
GS; gray squares: S=1 GS; black circles: S=0 GS. Solid lines are
guides to the eye. Insets: main components of the GS wave func-
tions �see text�.
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number of transitions in the GS increases too. Also in this
case a SSD approach is inappropriate. As in the N=4 case,
we have an intermediate phase �S=3/2� between the unpo-
larized �S=1/2� and the completely polarized �S=5/2� ones,
which is only stable in the intermediate coupling regime; this
phase is absent in the SSD results �Fig. 13�.

The above results were obtained by keeping ��0 fixed
with respect to N. In single-electron tunneling experiments,
however, ��0 changes with the gate voltage, in order to in-
ject �extract� electrons into �from� the AM.18 A relation link-
ing �0 with N may be derived by imposing that the electron
density is approximately constant during the charging pro-
cesses, �0�N−1/4 �Refs. 9 and 18�. This allows us to quali-
tatively understand what changes the AM phases undergo if
we try to mimic the dependence of �0 on N. Indeed, if ��0
decreases as N increases, the ratios of this energy to the other
relevant energy scales—namely 
SAS, ��c, and Coulomb
matrix elements, respectively—decrease as well. This im-
plies that �i� the AM phase boundaries in the �B� ,B�� plane
move in order to “squeeze” the stability regions of “ionic”
phases; �ii� the transition to the MDD phase along the B�

axis is faster; and �iii� correlation effects are stronger.
Finally, we note that the present results for N=4,5 at

B� =0 are in agreement with the ones shown by Rontani et al.
dealing with similar samples,18 except for little discrepancies
due to different parameters used in the calculations, in par-
ticular the band-offset V0 and the lateral confinement energy
��0.

IV. CONCLUSIONS

We have investigated the relative stability of quantum
phases of interacting electrons in AMs under a magnetic

field. Such phases can be identified, e.g., in transport experi-
ments in the Coulomb blockade regime, where the addition
energy is measured.2 A very sensitive test of few-electron
phases is nonlinear transport through charged QDs, where a
few excited states in a small energy window are
accessed.17,18,77 In addition to predict the stability regions of
the different spin phases, this work confirms that correlation
effects play a fundamental role in determining the physics of
the system, and a simple picture neglecting these effects
could fail in interpreting the relevant experiments.

In particular, we have compared FCI predictions with �i� a
SP picture, neglecting all interactions, and �ii� a SSD
scheme, where only direct and exchange interactions be-
tween charge carriers are taken into account. These compari-
sons allowed us to identify the effects of correlations, par-
ticularly those induced in the coupled structure by an in-
plane magnetic field, in analogy to what happens in single
QDs with an applied vertical field. In many respects, only the
exact diagonalization of the few-body Hamiltonian is able to
provide a correct description of correlated states.
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FIG. 14. N=5 stability diagram in the �B� ,B�� plane for B1, B2,
and B3, as predicted by the FCI calculations. Gray triangles: S
=5/2 GS; gray squares: S=3/2 GS; black circles: S=1/2 GS. Solid
lines are guides to the eye. Insets: main components of the GS wave
functions �see text�.

FIG. 12. N=5 stability diagram in the �B� ,B�� plane for B1, B2,
and B3, as obtained within the SP noninteracting scheme.

FIG. 13. N=5 stability diagram in the �B� ,B�� plane for B2,
calculated within the SSD scheme.
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