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Collision-duration time for optical-phonon emission in semiconductors
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The time required to emit an opticgdolar and intervalleyphonon by a nearly-free electron in a semicon-
ductor is evaluated using a nonequilibrium Green’s-function formalism. The leading idea of the work is that the
so-called “collision duration” is related to the time required to build up correlation between the initial and the
final state, and then to destroy this correlation as the collision is completed. The use of the nonequilibrium
Green’s-function formalism gives us the possibility to evaluate explicitly the effects of the correlations in time.
Our approach is based on two crucial assumptions: we build the self-energy from only the polarization field of
the polar-optical phonon; that is, the self-energy is a function of a single time and position, and we introduce
the electron correlation function between the initial and the final states, written in terms of a generalized
less-than Green'’s function in the momentum variables. We derive an analytical expression for the probability
for a carrier to end up in a final stakeas a consequence of the emission of a phonon as a function of time. We
find that the probability rises to the “Fermi golden rule” result within a few femtoseconds. If the total lifetime
broadening of the initial state is comparable to the scattering time, the probability oscillates as it approaches the
asymptotic value. For larger initial-state broadenifige to more scattering procesgethese oscillations
disappear.

I. INTRODUCTION find that at equilibrium the noninterference of subsequent
processes is given by a single characteristic time scale, and
In the traditional treatment of the Boltzmann equation forthat an estimator of this time scale is given approximately by
electron transport in semiconductors, collisions are, in genthe Landau liquid theory as/E, whereE is measured from
eral, assumed instantaneous in time and pointlike in spac¢he threshold for the process under consideration.
Since the interactions between the particles and the scatter- Over the past few years, the development of lasers with
ing agents have finite duration, this assumption is not correqbulse lengths as short as 6 fs has made it possible to probe
in general, not even in classical theory. Thus, scattering nowery fast nonequilibrium properties of electron-hole plasmas
mally requires a duration time. The general problem of theén semiconductor$® It is apparent that electron-electron
time required for a perturbative process to occur has been afcattering provides randomization of the initial distribution
interest for many years. Entii studied the lattice relaxation of photoexcited carriers on times as fast as a few tens of
time in a small-polaron hopping motion, which built upon femtosecond$?*® Nevertheless, detailed Monte Carlo stud-
earlier work in this ared”* Geltman investigated the time ies have indicated that a finite collision duration could affect
evolution of the ionization probability of a simple one- the observed relaxation of the hot electron plasfa.
dimensional model atom under the influence of a harmonic A surprisingly unified picture emerges from the previ-
electric field as well as a linearly polarized light, by the ously mentioned work, although the earlier work dealt with
numerical solution of the time-dependent Sclinger equa- localized electrons and the later work with nearly-free elec-
tion. He found that the duration of the radiation pulse is oftrons (describable by a single momentum sja##ll of the
crucial importance, as multiphoton absorption was seen tgstudies are concerned with a perturbative regime of single
require a certain minimum time to develop, and that pro-electron-photon(or phonon events that can be treated by
cesses that are forbidden in the long-time limit by energyperturbation theory. In all cases, the transition rate ap-
conservation are important at short times. Laaed Mittle-  proaches a constant value at long tin{@s three dimen-
man and Tip have examined the early decay of a preparedsions. A key factor, however, is that the so-called “collision
state. In particular, Lane, analyzing the decay of a proton irduration” is related to the time required to build up correla-
a nucleus, pointed out that such a decay in the pre-Ferntion between the initial and final states, and then to destroy
“golden rule” period is usually larger, except at very tiny this correlation as the collision is completed. Both
times. On the other hand, Robinson, facing the problem ofseltmari® and Lipavskyet al1°find that the approach to the
the early-time decay rate of a model system by examiningasymptotic form for long times shows weak oscillations
the evolution of the probability current at a detector locatedabout the asymptotic result. In Geltman'’s case, these oscilla-
at macroscopic distance from the source, proposed that sutions rise above unit probabilitfin units of the Fermi
deviations from Fermi's “golden rule” would not be “golden rule” resuld, indicating that the probability of scat-
observablé, although this is no longer believed to be the tering is actually enhanced for short periods of time just be-
case. Lipavskyet all® have recently used a nonequilibrium fore the constant-value plateau. On the other hand, Lipavsky
Green's-function method to investigate the time dependencet al. find that the oscillations cause decreases in the prob-
for phonon emission by an electron in semiconductors, buability for short periods of time just before the plateaus.
had trouble achieving convergent results. Nevertheless, they Here, our aim is to study the time required to emit an
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G' G- 3t O3S
Our approach follows the pioneering ideas developed by G=| - t—) and i:( - t—)
Kuhn and Ros$P and Haud®!' to study ultrafast processes G” G 273

in photoexcited semiconductors, where details such as the 47 is the identity matrix. Here the superscrintsandt_
Rabi oscillations are important. The electron is assumed tQufer (g the time-ordered and anti-time-ordered Green’s func-
interact with the_ (p(_)lar_or intervalley optlpal phonon tions G'= (= i/A)(TJW(r, .t W (ryt,)), whereT, is the
through th_e polarization f|elql (_)f the pho_non, first building UP time-ordering operator along the contaurand the angular

a correlation between the initial and final states, and theg,ackets refer to an ensemble average over the nonequilib-
breaking up this correlation as the collision is completed. Inj,m electronic states of the system. The general state of the
other words we can say that the electron is in a well-defined, siem s described in terms of electron and phonon states.
state of the momentum before the scattering evemtial  jere we consider negligible the perturbation induced by the
statg, and that it will be in a well-defined state of the mo- glectrons on the phonon population, which means that we
mentum after the scattering is completéidal statg. During  can factorize the states of the system in terms of products of
the scattering the electron state is not exactly defined. Thigjectrons and equilibrium phonon states. Since the field op-
condition will be mathematically described in terms of a gen-grators included in the definition of the electron Green’s
eralized less-than Green's function, that can be seen as ggnction act only on the electron states, we can eliminate the
polarization induced between the initial and the final state bﬁependence on the phonon states, summing over them with-
the perturbation potential. A particle is destroyed at the timg, affecting the form of the Gréen’s function. The self-
t; in the statek, and is created at the timtg in the statek,.  energys, is usually a two-point function, as indicated in the
We define the “collision duration time” as the time over g;6ye equations, and is obtained from a diagrammatic ex-
which this generalized less-than Green'’s function is d'ﬁerenbansion of the perturbation interactioHere, however, we
from zero, or, alternatively, over which the electron appre-nage two crucial deviations from the normal approahst,
ciably feels the polarization field, but we will find the actual e follow the approach of Kuhn-Ro&and Haud®’ (who
value to be somewhat arbitrary. We return to this point later,,ork with the electromagnetic field of the phoiduy intro-

The calculations are developed using the nonequilibriumy,cing only the polarization field of the longitudinal polar
Green's-function formalism, which gives us the possibility to optical phonon

evaluate explicitly the effect of the correlations in time, and
in single scattering event condition. We find, contrary to the o : .
earlier results, that the presence of oscillations in the ap- S(r,t)=2 Ng(ale 9ot 4 a el Te o) (3)
proach to the plateau values depends upon the collisional d
broadening of the initial state. Oscillations only occur when |n the case of the longitudin&polan optical phonon, we
this broadening is sufficiently narrow, and then appear in &an write the coupling constant as
manner consistent with the earlier results of Geltman and
Lane, with oscillations above the unit probability amplitude. 1 ke \¥2 1 /1 1

The paper is organized as follows. In Sec. Il, we present )‘q:a 2V wg) o ’
the theoretical model and derive the equation of motion for ] o ] )
the less-than Green’s function. A first formal integration inWherewy is the longitudinal optical phonon frequendy,is
time and a consequent Laplace transformation of this equa{be volgme, an.dzo ande., are the static and hlg_h—frequ.ency
tion for the polar-optical phonon case are given in Sec. Ill. indielectric _functlon, respectively. Alter_nauvely, in the inter-
Sec. IV, we present the analytical derivation of the scattering/@lley optical phonon case, the coupling constant becomes

rate. In Sec. V, we summarize the calculations for the case of £D2 |12
the intervalley optical phonon. The results are presented and Ng= _>
discussed in Sec. VI. 2pVwg

optical phonon by a nearly-free electron in semiconductors. .

n %e., &0

whereD is the coupling constant for the intervalley process,
Il. THEORETICAL MODEL andp is the mass density of the material. Htar&andaq are
. o ) . the creation and annihilation operators for the phonon mode
Our starting point is the equations of motion for the non-g " respectively. It should be noted that the present approach
equilibrium Green’s functior is quite general, and should work in principle with other
values forh,. This choice of the self-energy corresponds to

i i+ h?v3 G(rytyiry ) =Al the electron interacting with the dipofeeld of the phonon
dty  2m Lrt2et2) and makes the self-energy matrix diagonal, as the self-energy
n d3r3dtgi(r1,tl;rg,tg)é(r3,t3;r2,t2), ) is a single-point functiorffunction of a single time and po-

sition). This also leads to a cancellation of the integration in
the space and time variables () and (2). Thus, we can
o 4d 2 % o ~ separate the equations for the less-than functions from the
—ih 524' m | Crutiirzta) =4l matrix formulation.
The second crucial assumption, also following Kuhn-
~ = Rossi and Haug, is to explicitly introduce the electron corre-
+f f radtsG(ra,tyi5,te) 213, 2,ta), (@ |ation function %etween trr)le in)i/tial and final states. For this,
. . we then introduce the generalized less-than Green’s function
whereG and2 are matrices defined as (in Fourier-transformed notatiopn
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G<=G<(k1,t1;k2,t2)=i(\lfl ()W (t1)). (4) the _diagonal and the e_Iectron polarization, and its cqmplex
2 ! conjugate, on the off-diagonal. The self-energy term is also

hen th | h written as a X2 matrix, with the interaction field in the
When the two momentum arguments are equal, we have thg giagonal position, as it connects the less-than Green's

normal less-than Green's function at either the initial mo-f,nction with the polarization.
mentumk, or the finalk,. The newelectron correlation Now we will develop the details of the calculations for the
polarization however, is defined between the statgsand  polar-optical phonons case, while the procedure for the inter-

ky, in @ manner analogous to the electron-hole polarizatioyalley phonons scattering mechanism will be summarized in
discussed in Refs. 15-17. In a sense, this is an impropesec. V.

Green’s function that vanishes in equilibrium and in steady Fourier transforming with respect tg—r,, we get, in the
state. We now write the less-than function as a new22 polar-optical emission case, the equations of motion for the
matrix with the functions for the two momentum states ongeneral Green'’s function

AR AP ne? \Y2r dq (ng+n)Y?
o am | (Ketuke )= 5o am® q ¢ CTkimatike b), (5)
9 RS he? \ 12 d3q (ng+1)¥2

(_'ﬁa_tz_ 2m2)6<(k1’t1;k2’t2):(2nwo f(zm” g &Gk tiiko g to). ©

With these ideas in mind, we rewrite these equations for the specific Green’s functions of interest

pe? |12 d3 ng+1)%
) q ( q ) e_|w0t2G<(k,t1;k+q!t2)l

J
(—iﬁ Iz_8k)6<(k't1’t2):< 2m3 q @)

2nwq

he? |12 d®q’ (n. +1)¥2
) f q ( q ) e'w0t1G<(k+q,;t1;k+Q't1)’ (8)

J
i < . —
(|h ﬂtl 8k)G (k,tl,k+q,t2) ( (27T)3/2 q,

2nwq

where we have replaced’ by —q’ in (9) and &= (%k)%/2m*. Integrating formally in time(7) and (8) we find
[GT(kt1,t)=G (K ty 1kt

i 2\ 12, . N d3g (n +1)%2
< - _ I Al op(ty—t5) a—iwgt a < . ’
Go(kit1,ty) =7 (2770)0) JO dtye 2oz | o g G=(k,ty;k+q,ty), 9
i [ he? \Y2ry . o d3q’ (ng +1)¥?
< . - _ I a—iop(ty—ty) al gt q < ’ogr .
G~(k,t1;k+q,ty) 7 (_2770)0) fo dt;e el@oly PESEL T G=(k+q',t;;k+q,ty), (10

where w,=7k?/(2m) is the frequency corresponding to the electron wave vektowe have now achieved, from the
equations of motion, an equation f@&=(k,t;,t,) in terms of the correlation between the stakeandk-+q. We may then
eliminate the electron polarizatic®=(k,t,;k+q,t,) substituting(10) into (9), which leads to

1 [ he? . t . - d®q (ng+1)%2
G< k,t ,t — 7|wk(t17t2)f dt’f dt’ i(wgtwg)(ty—t )f q
(kty,t5) 72 (27]w0>e 0 9, 2€ 12 272 q

d*q’ (ng+1)¥2
(277)3/2 q/

G=(k+q’,t];k+q,t}). (11

We now recognize that, from the physical point of view, the only contributiofl) has to come from the one-particle
less-than Green’s function, which requires only a single momentum in a homogeneous *$ydtToe, we find an equation
for G=(k,ty,t,) in terms of G=(k+q,t; ,t5):

2 d3q

e— i wk(tl—tz)
(2m)°

n +1 t t . ’ ’
G<(k,t1,t2)=( (qq—z) joldtifozdtée'(“’k+“’0)<t1‘t2)G<(k+q,ti,té). (12

2h nwg

From the physical point of view, when=t,=t, (12) is an equation for the occupation number of the skat# timet, that
reads

e? ) d®q (n

(ko @n?

at 1) ftdt’fdt’e“wk*wo)“i*tbeﬂk+qt’ t)) (13)
2h nwg q° o tJo 2 BRI
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In order to reduce the two-time propagator on the right-wherey is the imaginary part of the self-energy of the initial
hand side(RHS), we introduce the generalized Kadanoff- state(which we take to be time independent and which is

Baym ansatZ for the initial state defined as the lifetime of the initial statand wy . is the
frequency corresponding to the electron wave vektoq.
G=(k+aq,t],t)=i[G"(k+q,t] ,t5)f(t)) Substituting(15) into (14), G=(k,t) is the occupation number

of the state of momenturk at timet, wherek is the final
—f(t)GAk+qiti,ty)]. (14 Stae ofa polar-opticall-phonon emission, gnd aI_I the possible
) ) o ] ~_initial states are considered. These relations, in contrast to
Here f(t) is the particle distribution function of the initial e ysyal Kadanoff-Baym ansatz, take the causality correctly
statek+q at timet, which can be seen either as the particlejiy account. Depending on the sequence of the time argu-

density matrix at timd or as the particle less-than Green's : < "o
function of the staté&+q in the limit in which the two times ?:nqtsit;hee ?Jf;(_j,:i?ggr\]/aallﬁéoiza?jtgs (olj‘teq[;rldézoi g?\;ec:\c;zice d
in the argument coincideG" and G? are the retarded and G ) qua ) . .
advanced Green’s functions, which may be written as reens function. Th_ese relations are e>_<a(_:t for nomnt_eractmg
particles. Note that in the equal-time limit the nondiagonal
G'(k+q.t] ,té)%_ig(ti_té)e<—iwk+q—y)(t1—té>’ spectral funct_ion vanishes, beca_use the equal-time anticom-
mutators vanish for these functions. Therefore, the equal-
o time limit of the generalized Kadanoff-Baym ansatz remains
G3(k+q,tg,th) ~if(t,—ty)elera= ("t - (15)  exact in the matrix extensiorf.Now, (13) reads

2 3
e d (ng+1) [t t . , ;o b
G<(k’t):(2ﬁ77wo)f (27:13 qqz Odtifodté{g(ti_té)el(wk+wo*wk+q)t1e*ytle*|(wk+w0*wk+q)tZeyt2f(té)
+ 0(t£—ti)ei(‘”k+ wo*wk+q)tieytie*i(wk+ wo*wk+q)t§e* Vtéf(ti)}. (16)

I1l. INTEGRATION IN TIME AND LAPLACE TRANSFORMATION

We can perform a first integration in time (6). In fact, the first term on the RHS can be integrated ayemd the same
can be done with; in the second term. Developing the calculations leads to

2 d3q (ng+1) y t t ,
G=(k,t)=2 TETN 27 qqz I fodt'f(t’)—fodt’f(t’)e*ﬂ‘*‘> I cog a(t—t')]
o ) , 1
ms”{a(t t)I ¢, (17)

where a=wy+ wo— wy1 . G7(k,t) is now expressed as the e2
difference of two terms. The first term is proportional to a G<(k,S)=2(
Lorentzian, which is the collision-broadened Fermi “golden

rule” that arises from the initial-state lifetime. The second Yy Y+ vyS—a?
term is a function of two Lorentzians, one due to the initial- X (§_ (y+9)2%+a?
state lifetime and one due to the nonconservation of the en-

ergy in the short-time limit. This latter term decays in time

and arises from the condition in which the two internal timesAccording to the Laplace transformation theory, we can now
evolve independentlyt{+t}). If we assume that the electron Verify the asymptotic behavior o6~ whent approaches

is in statek+q att=0, then the time derivative d&~(k,t)  infinity and zero, where the limits are given by thetial-
gives the probability for an electron to end up in the state and f|na|<-value th_eoret"ﬁ L as “”Loc% (k,t)

at timet as a consequence of the emission of a polar-optical” IMs-0SG (k,S) and lim_ .G~ (kt)=lims_.SG"(k,S).
phonon, in which the interaction is initiated &¢0. Sincea !N the long-time limit, we find

depends on the wave vector, the integrationsnatestraight-

forward. To verify the behavior o = in the long- and short- o2 &g (n+1)

time limits, and get the idea of what to expect as a result,|imG<(k’t):2( )f q3 q 5 . Y 5 £(0),
before we perform the actual detailed calculations wet—.« 2h (2m) q Y ta

Laplace transforni17) (19

d*g (ng+1) 1
2m)?® o y+a?

2h nwg

£(S). (18)
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which is the collision-broadened Fermi “golden rule” multi- then describes the building up of the Fermi “golden rule”
plied by the initial-state distribution function at zero fre- result, which is the outcome that is the aim of this paper.
guency. Analogously, in the=0 limit

limG=(k,t)=2
t—0

e? )J d3q (ng+1) 1 IV. EVALUATION OF THE SCATTERING RATE

37 22
2hmwol J (2m)> Q7 yta As specified above, the time derivative 6 (k,t) gives

B _ the probability for an electron to wind up in the stdteat
X (y=y)f(=)=0. (20 time t as a consequence of the emission of a polar optical
HereG = is written as the difference of two terms that cancelphonon, in the case for which the interaction begins=ad.
each other in the very short time range. The time variationThe differentiation of(17) gives us

ok _9GT 2 e? fdg Ng+1 ftd . o o1
To proceed in developing the calculation, we consigieand N, to be independent of, and constant in timéy often is
dependent upon the energy, but this is weak and has already been ignored by asgstonirggtime independentWe also
assume that the interaction is weak so th@&j is also independent of time other than through the overall decay introduced by
v. Then, we may evaluat®l) as

2(Ng+1) [ € d3q [t _
= P — yX+lax
P(k,t) (277)2 2% g f(HR f q2 fodxe
2(Ng+1) e? d®qg 1 .
— ' _ o YXtiax
@m? | 2hpay) VR f @ y—ia 7T
_2(MNg* 1) i ()l 0 22
where
B d’g 1
X(O)——f P atiy’ (23
and
d3q e(—y+ia)t d3q e(—y+iﬁ)t
O = e 29
where
hk2 kP
B=W—m+wo. (25)

The first term can be found directly, following Lewi$as

Y

e (26)

d3
|=|m{x(0)}=f Ezg

Using the definition ofx given below(17), and settingk’=k—q andk2=k?+2m* wy/#, we get

5] % 1
N a* [(q—k)?—ki—i2m* y/a][(q—k)?>—ki+i2m* y/#]’

which is a special case of the integral solved by Letfislsing his results, the final result frof27) can be found to be

l_;(@)l’zm (Vorc+ wotiy+ V) (ot wo—iy+ )
2 | hoy (Vort wotiy— Vo) (Notwo—iy—o |

The calculation fory(t) is more complex, and the details are straightforward. The result, however, may be written as

(28)
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1/2

_ * Y
| [ a2y
wgtwg 7+a

a
5 Sin(at) + m coq at)

Va— (ot o)
Vo

Finally, substituting the last two equations if&®), the final expression for the probability of scattering into the final state by
polar optical phonon emission is found to be

Im{x(t)}=m T

] . (29

arcco(

p(kt)—i[z n (‘“’W’)OHW@)(V“’k“"o_iy”‘”—k)l—evt fw da| -~ sin(at)
Vo [ 4 [Nt oot iy= Vo) Vot og—iy= ) ocrag | VT
N @ qat) Va— (ot wg) 30
coq at) |arccof ———| ¢,
s Vo
|
where all possible frequencies of the initial state, at least as these

5 are set by the phonon energy. The individual terms of the
o 1 € / * FNL+1 (31) integral are the temporal contributions from different ener-
" 272  ligw, 7 [(Ngt1). gies, each weighted by the Lorentzian reduction for being

. non-energy-conserving.
The first term on the RHS represents the Fermi “golden 9y ¢

rule.” The second term represents the time-dependent
buildup of the scattering process. Whes0, the integral
over the possible initial frequencies of the Lorentzianain In the previous sections we gave the details of the calcu-
cancels the constant contribution of the Fermi “golden rule.”lations for the polar-optical phonon emission, here we ana-
From the physical point of view, we can say thatai the lyze the intervalley optical phonons process. The idea and
scattering is inhibited by the fact that the electron cannothe method are the same; the only difference is the analytical
identify a single well-defined phonon energy for the expression of the self-energy.

scattering* Comparing the definition ofr below (17) with The equations of motion for the general Green’s function
the equivalent if30), we see that the integration is now over in the emission case read

V. INTERVALLEY OPTICAL PHONONS

P hz 2 th 1/2
. 1241 © .
( e W)G<(kl’tl’k2’ 2)= <2pwo) f 2m (Nt DTG (ki —auty ko o) (32
P h2k2 D2 1/2
(_'ﬁa_tz‘ m)“(klytl:kz"ﬂ ( ) f —rz(n +1) Y% 902G = (y by 1kt ). (33

Following the same procedure previously used for the polar-optical scattering we find for the occupation number of the state
k at timet

D? d?
G=(k,t)= 2ﬁpw0) 2 q)g(n +1) Jdtlf dty{ 6t —ty)e'l@xt@o™ okt tig™ Mg (@it @ “’k+q)‘2e7t2f(t)
+O(t—t]) el @kt w0 wkigligMig i (kT o~ wkig)tag Yaf (1))} (34)

To display the behavior in time of the occupation number of the $tate have to carry out the integrations over the time
and the phonon wave vector included(B4).
As already done previously for the polar-optical phonons case, we can perform a first integration in ¢88e ©he first

term on the RHS can be integrated otverand the same can be done within the second term. Developing the calculations
leads to

T coga(t—t)]

G=(k,t)=2 p? f o (Ng+1) Lftdt'f(t')—ftdt'f(t')eﬂ“*”
M 2kpwg (2m) Y +a® Jo 0 ¥

a
—z—azSif[a(t—t’)]”. (39



3852 PAOLO BORDONE, DRAGICA VASILESKA, AND DAVID K. FERRY 53

where a=w,+ wg— wy, 4. As in the polar-optical phonon D? d3q y
case,G<(k,t) is now expressed as the difference of two I|mG<(k,t)=2<2ﬁ )f 2m)? (ng+1) —z—2 1(0),
terms. From the comparison between the two expressions, It~ p@o 7 yora
is clear that the same general considerations valid(I@y (37)
apply to(34) as well. which is the collision-broadened Fermi “golden rule” multi-
Again, we first examine the short- and long-time behaviorplied by the initial-state distribution function at zero fre-
by examining the Laplace transform of the above expressiorfluency. Analogously, in the=0 limit
This leads to

2 3q 1
lIimG=(k,t)=2 )f Ng+1) ——
-0 (k.t) 2hpwg (271')3( gt 1) 72+a2

fdsq PO
(2m? (Nt 72 X (y—7)f()

Y Y+yS—a’
S (y+S)?%+a?

2
G=(k,9)=2 b
' 2hpwg

=0. (39)

Once agairG™~ is written as the difference of two terms that
cancel each other in the very short time range.

Even in this case, according to the Laplace transformation Using for y, Ny, andf(t) the same approximations that
theory, we can now verify the asymptotic behavior®f  were applied for the polar-optical phonons process, we can
whent approaches infinity and zero. In the long-time limit, evaluate the scattering rate from the time derivativé3d),

we find as

f(S). (36)

©

T
P(k,t)zcl‘g(\/wk-l-wo-i—i'y-l— \/wk+w0_i7,)_efytf da

COS(at)} va—(wp+ wo)] ,

4 i t)+ «
y2+a23|r‘(a) V2t

wgtwg a2
(39
|
where this presents no significant difficulty to the evaluation, par-
ticularly in relation to the asymptotic forms found above.
1 D2 2m* 3/2
€=z (ﬁp—w ) T(Nat1),

VI. RESULTS AND DISCUSSION

and the details of this derivation are also straightforward. A. Polar-optical phonons
This result is formally similar td30). The first term on
the RHS represents the Fermi “golden rule” while the sec-
ond represents the time-dependent buildup of the scatteri
process. The integral if89) is weakly divergent fot=0, but

The integral in(30) is not amenable to an analytical solu-

ntion, so we evaluate it numerically. In doing this, we consider
% bulk GaAs system. The decay parametés the imaginary
part of the self-energy, and is defined as the lifetime of the
initial state. We will use for this a constant value. In fact, for
the longitudinal-optical-phononLO-phonon emission, it

can be showf??®that y vanishes below the emission thresh-
old and remains approximately constant above that threshold
over a wide range of energies. In Fig. 1, the scattering rate
from (30) (normalized to the Fermi “golden rulg’is plotted

1.4 ]

-
[
T
1

o 0.8 as a function of time for a value of the initial state decay of
& 0.6 y=7x10"* s1?7 and for wy=5.5x10" s™* and w,=wy.
1 These values correspond to the LO mode parameters and the
0.4 . value of y is taken by an assumption that the initial state
0.2 E decay is dominated by the single interaction. We compare the
C 3 early-time results in Fig. 2 with the case for a larger value of
0 0' s 2'0' L slol ' '100 y=2.6x10" s, As already statedy is the initial-state life-

time. This means that, in principle, withipare included the
effects of all the scattering processes considered in the sys-
tem. Therefore, increasing from the value assumed for the
FIG. 1. Calculated scattering rat@ormalized to the Fermi LO-phonon scattering means adding other scattering mecha-
“golden rule” value) as a function of time for polar-optical phonon nhisms to the system. In particular, values pfanging be-
emission in GaAs. The final-state frequencyeig=5.5x108 s*  tween 18*and 13° s * correspond to a physical situation in
and the initial-state broadening {&=7x10'2s™ 1, which the initial-state decay is dominated by rapid scattering,

40 60
Time [fs]
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FIG. 2. Polar-optical phonon emission: comparison between the FIG. 3. Polar-
case fory=7x10"2 s™! (solid line) and y=2.6x10'* s™* (dashed .
line). These are discussed in the text.

optical phonon emission: scattering rates compatri-
son for three different values of the final-state frequency for
y=7X10" 571, w,=0.5m; (solid line), w,=w, (dashed ling and

o =2wq (dotted ling.

such as arises from the intervalley processes. The scattering

rate, in the .S'OW decay case, starts from zero and_rlas a faﬁllne is still arbitrary. The particular analytical form of the
rise in the first 10 fs, then converges to the Fermi “golden : ; o :
scattering rate will be our guide in this choice. (B0) the

rule” term in the long-time limit with damped oscillations. . S d .
The rise time is much faster than ”* because of the funda- Scattering probability is written as the difference of two
ferms, the first constant in time, the second given by the

mental role played by the integral over the frequency tha d ¢ ial d i f d he initial
multiplies the exponential factor. The presence of oscillation@reduct of an exponential decaying factor, due to the initial-

rising above the Fermi term indicates that the scatteringState finite lifetime, with an integral over the initial-state fre-
probability is actually enhanced for short periods of time justdUency. This suggests that one estimate of the collision du-
before the constant-value plateau. This is consistent with thEation time is the time at which the probability reaclies 1/
results obtained by Geltmah investigating the time re- ©~0.63 of the asymptotic value. In this way, the
quired for the ionization of an atom excited by electromag-contributions of the integral and the exponential factor are
netic radiation, and by Ladestudying the early decay of a comparable. In Fig. 4, the collision duration time, deter-
prepared state. For a large valueyphowever, the probabil- mined from the decay of the initial-state correlation, is plot-
ity rises rapidly, and approaches the Fermi “golden rule’ted as a function of the frequency of tliimal state. The
value without any oscillationsFor values ofy ranging be- dashed curve represents e =27/ w, behavior expected
tween 102 and 16* s7%, the time variation of the integral from the Fermi liquid theory® Although our data seem to
term gives the main contribution to the collision-duration reproduce the Fermi liquid trend very well in the medium
time. As can be seen in Fig. 2, an increase in the valug of frequency region, we find that the collision duration time
produces two main consequencéb: the collision-duration diverges much slower as the frequency approaches zero.
time decreases, an@) the oscillations are canceled, leading Moreover, the amplitude is clearly different, but the degree
to a more conventional exponential behavior. The first effecby which they differ is sensitive to the definition of the
can be understood in terms of energy broadening. As alreadyollision-duration time adopted from, e.g., Fig. 1.

discussed, on the very short time range, the scattering is in-

hibited by the impossibility of the electron to identify an

appropriate energy. Increasing the initial-state broadening 10 e
corresponds to increasing the probability for the carrier to X '-‘ 1
access an appropriate energy for the interaction, thus quick- s [ ' ]
ening the scattering process. The second effect simply dis- [ \ ]
plays the fact that the exponential function has become Z [ \ ]
strong enough to damp any possible long-time oscillations. ‘: [ \\

In Fig. 3 the scattering rates, as a function of time, for three g ,[ ° . .. ]
different values of the final-state frequencies are compared. & r Sl

As can be seen, the rise time and the period and the ampli- 2 [ * Tl k
tude of the oscillations decrease with increasing frequency. - ¢ .

We interpret this behavior in terms of the normal siyik 0 I ||..TT
behavior that accompanies the Fermi “golden rule”. In the 0 0.5 1 1.5 2 2.5 3 3.5
latter, higher energies are coupled to shorter times for the o (k)/o,

same oscillator phase here would bewt). It is this trend

that also leads to the Landau liquid behavior. FIG. 4. Polar-optical phonon emission: collison-duration time as

From Fig. 1, we can define the collision duration time asa function of the final-state frequency, normalized to the polar-
that time in which the initial and final states are correlated optical-phonon frequency. The dashed curve representsthe, 2
On the other hand, to assign a precise numerical value to thisehavior expected from Fermi-liquid thedf.
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FIG. 5. Calculated scattering rat@ormalized to the Fermi FIG. 6. Intervalley optical phonon emission: scattering rates
“golden rule” value) as a function of time in GaAs. Intervalley comparison for three different values of the final-state frequency for
optical phonon emissiorsolid ling) for a final-state frequency y=10" s™%. w,=0.50, (dotted lind, w,=wy (dashed ling and
w=wy=4.7x10" s7! and an initial state broadening=10"*s™ @, =2w, (solid line).
compared with the polar-optical phonon res(dashed ling for
o =wp=5.5x10"% s7t and y=10" s7%, In Fig. 7, the collision duration time, determined from the

decay of the initial-state correlation applying the same crite-

rion used in the polar-optical phonon case, is plotted as a
B. Intervalley phonons function of the frequency of thénal state fory=1.5x 1q14
_ s ! (triangles, y=10' s™* (diamond$ and y=0.6x10*s ™1

Once we have determined the frequency cutoff we evalucircles. The collision duration time increases with decreas-
ate the integral in38) numerically. We consider the same ing . This is the same effect observed in the polar-optical
bulk GaAs system used above for the polar-optical mechaphonon case and can therefore be interpreted in the same
nism. In the case of the intervalley optical phonon,js  way. For this reason the values of the collision duration times
slowly increasing with energy over a wide range offor the intervalley scattering mechanism are found to be
energie®® and can be considered with a good approximatiorlower then the ones evaluated for the polar-optical interac-
constant. In Fig. 5, the solid line represents the scattering ratéon, even if in the latter case the phonon energy is higher.
from (38) (normalized to the Fermi “golden rulg’plotted as  This is shown in Fig. 8, where the curve fpe=10"*s * and
a function of time for a value of the initial-state decay of wo=4.7x10"3s™* (diamond$ from Fig. 7 is compared with
y=10" s7120 for w,=4.7x10" s™! (corresponding to the the result obtained for the polar-optical phonon for
I'-X intervalley optical phononand w,=w,. The dashed ¥Y=7X10"s " andwy=4.7x10"s* (circles.
curve is the result obtained in the polar-optical phonon case, I Fig. 9 is presented the comparison between the scatter-
with the same value of, for w,=5.5x102%s tandw,=w,. N9 rate as a function of time foy=0.6x10**s™* (solid line)

_ 4 1 H _ _ 3
y is chosen by the assumption that the initial-state decay i&nd y=1.5x10" s™* (dashed ling for ay=wy=4.7X10"

_l . . .
dominated by the single interaction. The scattering rate, starf - Besides the already described effect of the reduction of

ing from zero, has a fast rise in the first few femtoseconds’fhe coII|s_|on duration, the Increasing qvhmpheg, as in the
then converges to the Fermi “golden rule” term in the long- polar-optical case, the decreasing of the oscillations.

time limit with damped oscillations. This is the same behav-

ior observed in the polar-optical phonon case, when the 3 S ——7—"T—"—"T—"—T—T7—
much lower values ofy (of the order of 1& s™Y) character- 3 _A _
istic of the polar-optical process are used. Again, the rise e, 3
time is much faster than the one relatedefo” because of 2.5F r
the fundamental role played by the integral over the fre- g 2 '_" ¢ 3
guency that multiplies the exponential factor. This carries the w £, ]
information of the correlation in time between the initial and g 1.5F . 3
the final states of the carrier. Fé=10" the optical-phonon & b ¢, ]
scattering rate does not show oscillations anymore, though : C ., 3
the rise times of the two mechanisms are similar. The differ- 0.5F foe .
ence in the slope of the two curves in the zero time limit 0 A
displays the different dependence of the self-energies from 0 2 4 6 8 10
the phonon wave vector. In Fig. 6 the scattering rates, as a o k),

function of time, for three different values of the final-state

frequencies are compared. As can be seen, the rise time andFIG. 7. Intervalley optical phonon emission: collison-duration
the period of the oscillations decrease with increasing fretime as a function of the final-state frequency, normalized to the
quency. Once again this is the same behavior found in thitervalley optical phonon frequency=1.5x10" s (circles,
optical-phonon case. y=10"s7* (diamond$, and y=0.6x10* s (triangles.
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FIG. 8. Collison-duration time as a function of the final-state non potential, is created and then decays. Furthermore, the
frequency, normalized to the optical-phonon frequency. Comparisogollision duration is shown to decrease with increasing the
between the result for the intervalley optical phonon with10'"* initial-state lifetime and the final-state energy. In the polar-
s andwy=4.7x10"*s™* (diamonds3 and the polar-optical phonon optical case, the behavior of the collision duration time as a

with y=7x10" s™* and wy=5.5x10" s* (circles. function of the final-state frequencyy is similar to the
Fermi liquid 2#/w, trend in the high-energy region, but has a
VIl. CONCLUSIONS much slower divergence in the low-energy region. This sug-

gests that the latter is not a meaningful approach in the low-

We have derived an analytical expression for the probabil ! ) ;
density semiconductor regime.

ity for a carrier to end up in a final statg as a consequence
of the emission of a polar-optical or of an intervally optical
phonon as a function of time. For both scattering mecha-

nisms, the probability rises rapidly to the Fermi “golden  This work has been supported by the Office of Naval
rule” result, and oscillations in the probability are damped byResearch. The authors would like to thank E. Ihrig for help-
the decay of the initial state. Our calculations show that thdul discussions. The authors are also indebted to the reviewer
collision duration time, which is found to be of the order of of the manuscript for many useful suggestions, not the least
(1-10%x10 *° s, can be defined as the time over which theof which was calling their attention to Ref. 24, which greatly
correlation of the initial and final states, induced by the phosimplified the calculations.
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