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Agents are problem-solving entities that can be used to develop complex and

distributed systems because they are autonomous, mobile, reactive, social, and

proactive. Today’s trends in agent technology include the development of applications

as multi-agent systems, where several agents interact within the same application. In

these systems, the interactions among agents must be carefully considered. Roles

constitute a powerful paradigm for modeling interactions, allowing algorithmic issues

and interaction-dependent issues to be handled independently. In this paper, we

present the RoleX interaction infrastructure, which enables Javae agents to

dynamically assume and use roles at runtime. Our approach is based on using

bytecode manipulation to add (or remove) Java members from agents, changing their

capabilities. We detail the main component of RoleX, the Role Loader, which performs

the bytecode manipulation that allows agents to dynamically assume and release

roles.

Agents are autonomous entities that can perform

their tasks without requiring continuous user

interaction.
1

The agent-oriented paradigm is

emerging as a sound approach for the development

of today’s complex software systems.
2

Because of

their autonomy, agents can be exploited to build

complex systems and applications where they

perform actions on behalf of their users. Because

they can run in a proactive way and react to

environmental changes,
1

agents can naturally pro-

vide adaptability and deal with heterogeneity and

unpredictability. Moreover, agents can be mobile;

that is, they can search and run in different

environments during their execution. This mobility

makes it very important to take into consideration

the interactions between an agent and its sur-

rounding environment.

Agents can interact with other agents or environ-

ments in a cooperative or a competitive way. Multi-

agent systems represent a powerful way to solve a

distributed task, but their use requires agents to

routinely use extensive social interactions in order

to coordinate among themselves. For this reason,
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research activity must take into account interactions

among agents, and appropriate tools and paradigms

must be developed in order to reduce development

effort and to control interactions.

In this paper, we focus on interactions based on the

concept of role, a stereotype of behaviors common

to different agents.
3,4

Roles can be exploited by

agents at runtime in order to enhance their

capabilities. A role can be thought of as a set of

behaviors and capabilities that agents can exploit to

perform their tasks in a given context.

There are many advantages to modeling interactions

by using roles and exploiting the resulting infra-

structures. Firstly, this approach enables a separa-

tion between algorithmic and interaction-related

issues in developing agent-based applications.
5

The

algorithmic issues are addressed within the agents,

and the interaction-related issues within the roles.

As a consequence, roles can be developed by one

developer and agents by another, which promotes

software reuse. Secondly, roles permit the reuse of

solutions and experiences, and, in fact, because

roles are related to application scenarios, designers

can exploit previously defined roles for similar

applications or situations. As an example, Reference

4 shows how roles can be exploited to easily build

agent-oriented interfaces for Internet sites. This

implies that roles can be seen as design patterns:
6

a

set of roles along with their interaction relationships

can be considered as a solution to a well-defined

problem and reused in similar situations. Finally,

the use of roles promotes locality in interactions:

each local interaction context can define its own

roles, thus controlling the interactions among them.

Roles have been used in many branches of computer

science. Role-Based Access Control
7

(RBAC) allows

uncoupling of users and permissions. In Computer

Supported Cooperative Work
8

(CSCW), roles sup-

port adaptability and the separation of duties. In the

area of software development, roles are used in

object-oriented programming
9,10

and in design

patterns
11

such as the Role Object Pattern.
12

Applied to the agent scenario, the exploitation of

roles has a few limitations. Firstly, many approaches

exploit roles only in the design phase, without

taking into account the implementation phase.

Supporting roles at the design phase only is

inadequate for today’s programming trends, and in

particular for the development of agent-based

applications. Powerful implementation support

must be provided. Today’s agent-based applications

need to be very dynamic, adapting themselves to

continuously changing environments. For example,

adaptability is required in applications for

e-commerce, general Internet applications, and

those related to pervasive computing. Applications

must be able to adapt easily to execution contexts

without increasing the complexity of their develop-

ment. In the context of agents and roles, this

necessitates a dynamic way to assume and play

roles at runtime, reducing the coupling between

agents and their roles. Dynamic support for role

assumption frees agents to exploit role capabilities

on demand; that is, only when they are really

required. As a consequence, agent code can be

simple and light because capabilities that can be

dynamically assumed through one or more roles

need not be embedded.

In order to provide a powerful and, as much as

possible, dynamic role system implementation, we

have developed the RoleX (Role eXtension) infra-

structure,
13

which is the subject of this paper. RoleX

has been developed as part of the BRAIN (Behav-

ioral Role Agent Interactions) project,
3,14

a project

with the aim of supporting role-based development

during different phases (analysis, design, and

implementation). To achieve its goal, BRAIN pro-

poses and provides a three-level framework: (1) a

model of interaction based on roles, (2) a notation,

XRole, based on XML (Extensible Markup Lan-

guage), to describe the roles, and (3) several

possible interaction infrastructures based on this

model and notation, which enable agents to assume

and play roles. BRAIN supports developers through

the entire development process, making the use of

roles a homogeneous and natural process. Further-

more, the fact that BRAIN provides different

interaction infrastructures (such as RoleX) allows

developers to easily migrate an application from one

implementation to another.

This paper focuses on the RoleX infrastructure,

which is a complex, innovative role-system imple-

mentation with highly dynamic and flexible serv-

ices. The Role Loader
15

is a special component at the

center of RoleX that is able to endow agents with

role capabilities. RoleX is innovative in its approach

because it not only provides for dynamic role

assumption, but also because of the way that roles
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are assumed, fusing the agent and the role in a

single entity. In other words, the role can be said to

be ‘‘injected’’ into the agent.

RoleX has been developed in Java**, and the Role

Loader is expressly designed to work with Java

agents. Java was chosen as the programming

language for the following reasons: (1) Java is the

most popular language for implementing agent

platforms (including mobile ones) because of its

portability, security, and network-oriented nature;

(2) Java relies on an intermediate bytecode, allow-

ing it to be modified at runtime to add new

functionalities (without recompilation and with

respect for the Java security constraints); and (3)

Java is a well-known and widely exploited language.

This should aid developers in using and under-

standing RoleX.

The RoleX implementation modifies the code of the

Java agents at runtime, adding the features related

to the roles they are going to assume and play. In

addition, a descriptor-based mechanism to manage

roles is exploited to further uncouple agents and

roles and to help agent developers. RoleX allows

agent developers to use a completely dynamic

approach, granting a high degree of adaptability

without requiring an extensive coding effort.

The rest of this paper is organized as follows. The

second section presents the RoleX infrastructure,

followed by a presentation of the RoleX behavior in

the third section. This section also introduces

Rolex’s main component—the Role Loader—and

details how role injection works. The fourth section

details how RoleX faces particular conditions that

can occur during role assumption and provides a

code example. The fifth section compares our

approach with others, followed by our conclusions.

THE ROLEX INFRASTRUCTURE

RoleX is a Java infrastructure that enables agents,

either mobile or not, to exploit roles at runtime.

RoleX enables agents playing roles to interact by

means of actions and events. Actions implement the

capabilities a role provides to agents, and events

determine the expected behaviors derived from the

action’s execution. Events are delivered by the

RoleX infrastructure to the addressee agent, which

exhibits an expected behavior for managing the

incoming event (see Figure 1). This model of

interaction is simple and very general and is well-

suited to the main features of the agents: the actions

can be seen as the concrete representation of the

agent’s proactive nature (i.e., the capability of

carrying out its goals), while the events are the

concrete representation of the agent’s reactivity (i.e.,

the capability of reacting to environment changes).

The approach of RoleX to roles is inspired by real

life, where a human playing a certain role in a given

context (e.g., an employee at work) does not own

but assumes the role and can release it to assume a

new role (e.g., a tennis player in his or her free

time). Because software agents can act on behalf of

real users,
1

in our opinion their role model must be

as similar to the human one as possible. From a

software point of view, this necessitates two

features: adaptability and external visibility. Instead

of conceiving roles as entities separated from agents,

as other approaches do,
16,17

our approach conceives

of roles as first-class entities, which fuse with the

agent that has assumed them by extending its code.

Figure 1
RoleX interaction model

Agent A

Role A

Agent B

Role B

Capabilities

Behavior
EventAction

Capabilities

Behavior

Interaction
System
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This is a new way to conceive of roles, and one more

similar to real life.

Recalling the example of the person playing the role

of employee, we note that the role is incorporated.

In fact, the person does not use an external entity to

perform any employee action, but simply performs it

because all employee capabilities are part of the

person’s behavior. This leads to another aspect: in

real life persons can be recognized by their role. For

example, persons can be recognized as employees

because they display employee capabilities. Thus, in

the real world, a role grants an intrinsic set of

capabilities and behaviors as well as giving the

behavior an external visibility.

Adaptability is required, as when, at the end of the

work day, the person releases the employee role and

assumes a new role, for example that of a tennis

player. The person assumes and releases roles

depending on what he or she wants to do. The same

must happen in the agents’ world: the agents must be

free to assume and release roles in a dynamic way.

To give roles external visibility, RoleX uses Java

interfaces: if an agent class is forced to implement a

particular interface, all the casting operators (such

as instanceof) will recognize the interface, thus

making the role externally visible. Nevertheless,

Java interfaces cannot define a behavior, which

means they cannot include method definitions or

mutable variables. To this end, RoleX uses Java

classes to implement role behavior.

Defining a role as a few classes and interfaces is not

sufficient for an infrastructure that requires adapt-

ability and external visibility. The agent must be

forced to implement the role interface when it

assumes the role and to discard the interface when it

releases the role. To achieve this, RoleX performs a

manipulation of the agent class, with the aim of

obtaining a new agent class extended by the

addition of the role and the appropriate interface. In

other words, the agent’s basic structure (i.e. the

bytecode) is changed at runtime without any source-

code alteration or decompiling/recompiling se-

quences, and a new extended agent is created. The

changes made to the agent bytecode add all the role

class members and force the agent class to imple-

ment the role interface; this manipulation is called

the extension process because the role’s features

extend those of the agent.

To better explain why the use of roles and their

characteristics can be useful for agent applications,

consider the following example. We use an appli-

cation inspired by the TabiCan
18

application, in

Figure 2
Possible security checks based on role visibility

Agent’s Role

Agent’s Role

Agent’s Role

Agent’s Role

A reservation request
that is not managed by
the flight_administrator
role is denied by the
security manager.

A room booking is denied 
if the request does not come 
from a hotel_booker

reservation request

reservation request

reservation request

Database

A

B

Database Security Manager

flight_booker flight_administrator

flight_booker hotel_administrator
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which agents are in charge of reserving flights and

hotel rooms for their users. In such an application,

we can provide different roles to model interactions.

In particular, the flight_booker role is in charge of

managing flight reservations, the flight_administrator

role represents the software administrator of a flight

booking system, the hotel_booker role is in charge of

reserving rooms and, finally, the hotel_administrator

role is in charge of accepting room reservations. In

this scenario, an agent sent by a user (called the

‘‘user agent’’ in the following) is in charge of

exploiting the flight_booker and hotel_booker roles to

reserve flights and rooms, and interacting with

agents playing the flight_administrator and

hotel_administrator roles. Using roles, the user agent

can quickly adapt to different scenarios, without

embedding all interaction details (i.e., interaction

protocols, message schemas, etc.) in itself. Further-

more, because roles are tied to the local interaction

contexts and are developed with regard to each

other,
19

each ‘‘booker’’ role knows how to interact

with the corresponding administrator role in order

to make a reservation, so that the user agent is

simply in charge of exploiting the capabilities of the

role and providing required data (e.g., the user

credit card number).

Adaptability allows user agents to change their role,

enabling a flexible situation. For example, they can

assume the hotel_booker role right after having

reserved a flight, or they can reassume the

hotel_booker role to cancel a reservation if a flight

has been canceled. External visibility allows entities

running in the system (either agents or environ-

ments) to quickly and definitively recognize an

agent by its role, denying or allowing certain

operations depending on it. For example, as shown

in Figure 2A, a flight database security manager (not

strictly related to the Java Security Manager) can

prevent an agent from interacting directly with the

flight database if it is not playing the

flight_administrator role. Similarly, a hotel_administrator

role can deny the request for a reservation that

comes from an agent that does not play the

hotel_booker role because such an agent might be

malicious (see Figure 2B).

ROLEX AT WORK

This section describes RoleX internal details, show-

ing how RoleX works and how agents can exploit it

to assume, play, and release roles. In short, RoleX

works as follows (these steps correspond to the

numbers in Figure 3):

Original  
Agent

Succesfully 
Manipulated
Agent

Role Loader

RoleX Role System

1) Search for and
    choose a role

2) Request 
 to inject
  the role

3A) Agent  
      execution
      is stopped

3B) Pass information
      about the agent  
      and the chosen role

4) Agent reloaded with
    the injected role

5) Reload 
 event

1)

2) 3)

3) 4A) Exception 
      during role  
      injection

4B) Restart the agent execution
      and re-throw the exception

RoleX-to-agent
interface

Role
Repository

Original  
Agent

Role Loader

RoleX Role System

Role
Repository

Figure 3
Role system behavior

A B

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CABRI, FERRARI, AND LEONARDI 189



1. The agent searches for one (or more) roles in a

role repository, a container of available roles.

2. When the agent has chosen a role, it contacts the

role system and asks to inject the role into itself.

3. The role system transparently stops the execution

of the agent (see Figure 3, step 3A), then passes

the information about the chosen role and the

agent requesting it to the Role Loader (see Figure

3, step 3B).

4. The Role Loader starts a sequence of internal

operations to inject the role into the agent,

performing the extension process. If, for some

reason, the role cannot be injected (see Figure 3,

step 4A), the Role Loader notifies the agent about

the error by throwing an exception, and then the

agent execution restarts transparently (see Figure

3, step 4B). If restarting is not possible, it reloads

the agent after having manipulated it.

5. When role injection is successful, the role system

sends a reload event to the reloaded agent to

indicate that it can restart its execution and that it

can now exploit the added role functionalities.

Before describing how the Role Loader performs the

bytecode manipulation required to inject the role

into the agent, it is worth discussing how the agent

can use the assumed role. In fact, after a successful

role injection, the agent has new Java members

(both variables and methods). The question is,

‘‘How can it exploit them?’’ Of course, it is not

possible to use them by direct reference (using the

standard Java dot notation) because at compilation

the agent does not know the role members and the

compiler cannot resolve unknown symbols. This

problem can be solved by using reflection, which is

the capability to analyze, at runtime, the structure of

a class by accessing its methods and variables,
20

but

reflection complicates the agent’s logic by requiring

a way to search for and access new members.

Instead, we provide support for quick and simple

introspection, based on the compound use of

operation descriptors and an invocation translator.

Operation descriptors represent single role opera-

tions through a ‘‘meta’’ level of information. In other

words, an operation descriptor describes how an

operation can be used and what results it will

produce. An example of a simple operation de-

scriptor is, ‘‘set the value of variable X,’’ which

means that the execution of this operation will set

the role variable X to a given value. Operation

descriptors have a powerful structure that includes

information related to permissions, parameters,

return values, and so forth, and will be treated more

in detail in the next section. For now, it is sufficient

to know that operation descriptors give an agent the

information about the operations provided by the

injected role to an agent, and what they do and

mean. When an agent searches for a role and asks to

inject the role into itself, it gets the set of operation

descriptors of the role itself and can keep them to

use the second support component that we provide,

the invocation translator.

The invocation translator, a component embedded

in the agent, is in charge of executing (through

reflection) a role operation by using its descriptor.

Imagine, for example, that an agent wants to invoke

a role-added method. As shown in Figure 4, in step

Figure 4
Use of the invocation translator

1)

2)

3B)

3A)
Invocation translator scope

1)

2) 3)
Invocation
Translator

Invoke role method 
using reflection

Search for a method
matching the descriptor Return results

Specify an operation
descriptor

role

Agent
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1 the agent specifies a role operation descriptor to its

invocation translator; in step 2 the latter executes

the operation by invoking the corresponding method

among those derived from the injected role. The role

method returns results to its caller, the invocation

translator (step 3A). The translator passes them to

the agent itself (step 3B). Similarly, if the execution

of a role operation raises an exception, the

invocation translator propagates it to the agent. In

this way the agent has access to all injected

members and can rapidly use them. Providing the

invocation translator has the advantage that agent

developers are not in charge of doing introspection

directly, and thus the resulting agent code is simpler

and clearer. It is worth noting that because the

invocation translator is embedded in the agent, step

1 of Figure 4 corresponds to the invocation of a

method in the agent itself.

From operation descriptors to role descriptors

In addition to providing reflection for injected roles,

operation descriptors introduce a high degree of

abstraction for operations because they are accessed

and executed by semantic information and not by

syntactic data. For this reason, we have embedded in

operation descriptors event descriptors as well, the

latter being descriptors containing information re-

lated to sending and receiving events (if any)

resulting from the execution of an operation. Event

descriptors let the agents understand the conse-

quences of the role assumption and, in particular, the

execution of an operation. In fact, while the

invocation translator can only return the return

value of an executed operation, event descriptors can

make an agent aware of the events that it is sending

to other agents and what their reactions may be (i.e.,

which events can come from other agents). This

characteristic is important for a social scenario

because it lets an agent know the reactions that

should happen after the execution of a role operation

and how it is influencing other agents.

To grant flexibility and modularity, we have

introduced a third component, the role descriptor,

which embeds the other two descriptors. Each kind

of descriptor has been implemented as a separate

Java class, as shown in Figure 5. Because RoleX

exploits the BRAIN XML-based notation called

Xrole,
3

all three kinds of descriptor are written using

the XRole notation. As an example of a role

descriptor, Figure 6 shows a fragment of the code

for the flight_booker role.

To make descriptors available to agents in a quick

and easy way, the RoleX infrastructure automati-

cally provides a Java version of all installed

descriptors generated from the XML document. XML

descriptors are, in fact, translated into a set of Java

objects, instances of the classes shown in Figure 5.

In this way, an agent can directly access the

descriptors without needing an XML parser, thus

keeping the agent code simpler and smaller.

Following the example introduced in the section

‘‘RoleX infrastructure,’’ Figure 6 shows a single

operation descriptor for the flight_booker role. This

descriptor provides information about a single

operation, called Book, which is performed through

the method book_flight, which allows the agent

playing the role to buy a ticket. A Java prototype of

such an operation, based on the XML descriptor, is

the following:

boolean book_flight(String creditCardNumber,

Calendar when);

where the parameter creditCardNumber is the

number of the user’s credit card for payment, and

when is the date of the sought flight. The above

operation descriptor also contains an incoming

event, called DeletedEvent, which represents the

notice of a flight cancelation. After the agent has

executed the book_flight method, the DeletedEvent

event may be received to indicate that the booked

flight has been canceled.

The Java classes used by RoleX to translate an XML

descriptor provide several methods in order to allow

agents to access the descriptor properties. As an

Figure 5
Relationships among the descriptor classes

contains

contains

RoleDescriptor

EventDescriptor

OperationDescriptor
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example, Figure 7 shows a partial list of methods of

the OperationDescriptor class, instances of which are

used to encapsulate operation descriptors. All of the

methods shown in the figure can be used to get

information about the operation described by the

descriptor, such as its keywords, goal, and so forth,

in order to evaluate the operation by use of its

semantic data. Furthermore, each object of type

OperationDescriptor contains information about Java

methods to invoke on the corresponding role in order

to execute the operation. Such information can be

used by the invocation translator in order to perform

the operation requested. The other two kinds of

descriptors provide similar methods to agents.

It should be noted that it is possible to directly write

Java descriptors, creating instances of the classes of

Figure 5, though this solution is deprecated because

it overtakes the middle layer of BRAIN, leading to a

possible poor reuse of roles in different scenarios.

Injecting roles into agents

In a role assumption the Role Loader adds each role

class member (both methods and variables) to the

agent class in order to add the role’s set of

capabilities. At the same time, it forces the agent

class to implement the role interface in order to

modify its appearance and to allow other agents to

recognize it as playing that role. This mechanism

Figure 6
Partial code for XML descriptor for flight_booker role

<?xml vers ion='1.0'?>

<role xmlns="ht tp://polar is . ing.unimo. i t/schema/RoleDescr ipt ionSchema"
  xmlns:xs i="ht tp://www.w3.org/2001/XMLSchema- instance"
   xs i :SchemaLocat ion="ht tp://polar is . ing.unimo. i t/schema/RoleDescr ipt ionSchema" >
  <Gener icRoleDescr ipt ion>
   <descr ipt ion>Fl ight  Booker Role</descr ipt ion>
   <roleName>f l ight_booker</roleName>
   <keyword>f l ight  reser vat ion</keyword>
   <keyword>travel  a i rp lane</keyword>
   .  .  .
   <vers ion>1</vers ion>
   <Operat ionDescr ipt ion>
    <name>Book</name>
    <aim>book a f l ight</aim>
    <keyword>f l ight</keyword>
    <vers ion>1.0</vers ion>
    <methodName>book_f l ight</methodName>
    <returnType>
     <className>java. lang.Boolean</className>
    </returnType>
    <parameter>
     <className>java. lang.St r ing</className>
    </parameter>
    <parameter>
     <className>java.ut i l .Ca lendar</className>
    </parameter>
   </Operat ionDescr ipt ion>
   <EventDescr iptor>
    <name>DeletedEvent</name>
    <aim>Inform that  the reser ved f l ight  has been deleted</aim>
    <className>examples . tabican.DeleteEvent</className>
    .  .  .
     <Receiv ingEvent>true</Receiv ingEvent>
   </EventDescr iptor>
  .  .  .
  </Gener icRoleDescr ipt ion>
</role>
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results in the definition of a new agent class. The

Role Loader (which is implemented through the

class RoleLoader) is simply a special class loader that

can change agent behavior and external appearance.

After the Role Loader has successfully carried out

the role assumption process, it reloads the agent, so

that the latter can restart its execution (see

Figure 3A).

Releasing a role is similar to the above process, but

in this case the Role Loader removes each role

member and the role interface, reloading the agent

without them.

To perform role assumption or release, the Role

Loader uses runtime bytecode manipulation; this

manipulation is done completely in memory without

needing the source code of the agent or role and

without requiring a recompilation. The bytecode

alteration needs to work with and to modify class

definitions. In fact, to obtain an agent extended with

a role, we need to create a new agent class,

manipulated with respect to the original one, from

which a new agent instance is obtained. Our

implementation of the class RoleLoader, which

extends SecureClassLoader, is based on the Javassist

bytecode manipulation engine,
21

though the simple

use of this engine alone is not enough to completely

achieve our goals. In fact, our approach takes into

consideration code reusability and separation of

concerns. For this reason, the assumption mecha-

nism is performed through several steps performed

by an instance of RoleLoader:

1. The inheritance stack for the role class and the

agent class is defined (i.e., all superclasses of

both classes are calculated);

2. For each level of the inheritance stack, all of the

members (both methods and variables) are

copied from the role class to the agent class; the

role interface is then added to the interface list of

the manipulated agent class;

3. A new agent instance is created from the obtained

manipulated class;

4. The original agent state values are copied to the

new agent.

Figure 8 shows the main operations performed by

the Role Loader during each step. After the above

steps, as mentioned, the RoleX infrastructure starts

the execution of the new agent, similar to the

restarting of the agent’s execution. This operation

can be considered an agent execution restart

because the new agent has the entire state (i.e.,

variable values) of the original agent. Due to the

work done by the Role Loader, even if an agent and

its assumed role have been developed separately,

they dynamically become a single entity with the

correct external visibility. Each step is detailed next.

Step 1: Calculating the inheritance stack

The first step performed by the Role Loader is

needed to grant role-inherited properties to the

Figure 7
A partial list of services provided by the Java class OperationDescriptor

publ ic c lass Operat ionDescr iptor implements java . io .Ser ia l izable{
 publ ic St r ing getName( );
 publ ic Class getReturnType( );
 publ ic St r ing getReturnTypeAsStr ing( ) ;
 publ ic Class[ ]  getParamsType( );
 publ ic St r ing[ ]  getParamsTypeAsStr ing( ) ;
 publ ic double getVers ion( );
 publ ic St r ing getAim( );
 publ ic St r ing[ ]  getKeywords( ) ;
 publ ic boolean matchKeyword(Str ing keyword);
 publ ic int  matchKeywords(St r ing[ ]  keywords);
 publ ic Enumerat ion getPermiss ionEnumerat ion( ) ;
 publ ic St r ing[ ]  getPermiss ionsAsStr ing( ) ;
 publ ic Calendar getCreat ionDate( ) ;
 publ ic boolean equals(Objec t  descr iptor) ;
 .  .  .
}
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agent, promoting role code reusability. In fact, the

role implementation may be the bottom of an

inheritance chain rather than a single class. For

example, the flight_booker role could inherit proper-

ties from a generic booker role. To ensure that the

role will work in the right way, every role superclass

(i.e., every class at any level in the role inheritance

chain) must be added to the agent superclasses at

the corresponding level. In fact, because a role

implementation class or subclass expects to find

some capabilities in its superclasses, it must be

ensured this condition will remain true.

Figure 9 clarifies, by means of a class diagram, the

inheritance chains of both an agent and a role that

the agent is going to assume. Both the role and the

agent classes are represented by the bottom of their

respective chains, and this means that the bottom

classes must be joined. The superclasses must be

joined as well. This must be done for each chain

level. In this way, our infrastructure ensures that

both the role and the agent, after the extension

process, will continue using inherited properties; in

other words, Java’s ‘‘super’’ operator will work

correctly. This step does not do anything but

calculate the inheritance stack, which specifies how

a role class and an agent class must be joined and at

what level. The computed inheritance stack for the

example of Figure 9 is shown in Table 1. Every row

in the stack indicates which classes will be joined,

and will be used in the second step to determine

from which class the members will be copied in the

agent chain and in the fourth step to determine

which member values must be copied. Please note

that in Table 1, the root object java.lang.Object has

Figure 8
Operations performed by the Role Loader 

[ there is another level in the
inheritance stack ]

Step 1

Step 2

Step 4

[ there is no
superclass ]

Step 3

copy variable and method declarations
from the role classes of the current
inheritance stack level to the agent class
of this level

[ there is no level left
in the inheritance stack ]

[ there is a superclass]

get the superclass copy state values from the not manipulated 
instance to the manipulated one

add the role interface 
to the agent class

get next level of the 
inheritance stack

get the top of agent and role chains 
(first level of the inheritance stack)

calculate and store 
the inheritance stack

create the agent instance from 
the manipulated class
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been introduced only to make the inheritance stack

more readable.

Nevertheless, as shown in Figure 10, the

java.lang.Object class is never inserted because each

Java class inherits, if no other class is specified, from

the class Object. The inheritance stack is calculated

through the method computeInheritanceStack( ) of the

class RoleLoader, as shown in Figure 10. As shown in

that figure, the method accepts two parameters,

both of type Class: the agent class and an array of

role classes to which the agent is to be joined. The

use of an array allows the Role Loader to inject

multiple roles into the same agent at the same time,

improving performance. In the simplest case, that is,

a single role assumption, the array of role classes is

a one-element array.

The method computeInheritanceStack( ) exploits an-

other internal service of the Role Loader: the method

addToStack( ). The latter simply adds the class names

specified as parameters to the variable roleStack that

is an internal stack object, which represents the

inheritance stack the RoleLoader class will use in

further steps. Another service exploited by the code

in Figure 10 is getRoleNamesFromClass( ), a method

that returns a string array with the names of the

class or array of classes passed as a parameter.

The method computeInheritanceStack( ) first pushes

the first level of the chain, the agent and the role

bottom classes, onto the inheritance stack. After

that, computeInheritanceStack( ) iterates among all

superclass levels. To do this, agentName and role[i]

are assigned to the corresponding superclasses, or to

null if there are no superclasses or the java.lang.Object

is reached. The boolean variable stop, which drives

Figure 9
Member copy at all inheritance levels

. . .

Member copy
starts at this
level of the
agent chain

Member copy
ends at this
level of the
agent chain

TOP 
of the
inheritance
chains

BOTTOM
of the
inheritance
chains

java.lang.Object

agent_level2

agent_level1

java.lang.Object

Original_agent

role_level1

Role_implementation

Interface copy

Member copy

Member copy
«interface»
Role_interface

Table 1 The inheritance stack calculated by the Role

Loader.

Agent’s Chain Role’s Chain

java.lang.Object None

. . . None

agent_level2 None

agent_level1 role_level1

Original_agent Role_implementation
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the do..while loop is set to false only if no role class

has been added to the stack. Finally, the method

checks if the agent and the role classes are both

null (for example because they were equal to

java.lang.Object), pushing them into the stack if

they are not.

The inheritance stack is kept as an internal

RoleLoader object, of type java.util.Stack. In this stack

the Role Loader stores (as a string array) the names

of the classes that must be joined at the same level.

The use of a stack allows the Role Loader to start

introspection from the bottom of the inheritance

Figure 10
Code for computeInheritanceStack() method

protec ted f ina l  vo id computeInher i tanceStack(Class agent ,C lass[ ]  ro les){

 /* bot tom level  */
 th is .addToStack(agent .getName() , th is .getRoleNamesFromClass(ro les)) ;

 St r ing agentName=nul l ;
 boolean stop;

 /* i terate other levels */
 do{
  s top=true;
  /* get  the agent name for th is  level  */
  i f (agent !=nul l  && (agent=(agent .getSuperc lass( ))) !=nul l){
   agentName=agent .getName( );
  
  /* sk ip java . lang.Objec t  */
  i f (agentName.equals(" java . lang.Objec t")){  agentName=nul l ;  }
  }e lse{ agentName=nul l ;  }

  for( int  i=0; i<roles . length; i++){
     i f ( ro les[ i ] !=nul l  &&       
   ( ro les[ i ]=(ro les[ i ] .getSuperc lass( ))) !=nul l){
   /* sk ip java . lang.Objec t  */
   i f ( ro les[ i ] .getName( ) .equals(" java . lang.Objec t")){   
   ro les[ i ]=nul l ;  }

   /* do not s top i f a t  least  one ro le is  not nul l  */
   i f ( ro les[ i ] !=nul l){  s top=fa lse;  }
        }
  }

  /* s top i f the agent and ro les are both nul l  */
  boolean end=true;

      i f (agentName==nul l){
        i f ( ro les!=nul l){
       for( int  i=0; i<roles . length; i++){
           i f ( ro les[ i ] !=nul l){  end=fa lse;  break;}
          }
       }
  }e lse {  end=fa lse;  }

      i f (end==false){
  /* add to the stack th is  level  */
  th is .addToStack(agentName,th is .getRoleNamesFromClass(ro les)) ;
      }
   }
   whi le(stop==false | |  agentName!=nul l) ;
      }
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chain of the agent and the role (or roles) and to go

up, pushing each level onto the stack and retrieving

them in the required reversed order in further steps.

Why does the Role Loader need to retrieve classes in

a reversed order? This requirement stems from the

presence of a class loader cache: because the Role

Loader is a particular kind of Java class loader, it

has, like all other class loaders, a private class cache

that stores classes which it has already loaded, in

order to speed up the redefinition of those classes,

thus reducing the response time. Though this cache

is an important component of each class loader, in

our approach it can lead to problems if not treated

appropriately. In fact, this cache is a private member

of the class java.lang.ClassLoader, and this means that

a subclass (such as RoleLoader) cannot access it

directly. In other words, a user-defined class loader

cannot directly remove or add any entry in the cache

because this is done transparently by the base class

ClassLoader. Because each Java class loader has a

unique namespace, each class is uniquely identified

by the class loader into its namespace, and it is not

possible to define two classes with the same name.

This implies that the Role Loader must load the new

agent class starting from the top of the chain. The

member copy is done starting from the base classes,

going down the inheritance chain until the last agent

class is reached, as shown in Figure 9. In fact, when

the Original_agent class is loaded, all its base classes

should be found in the loader cache, because a

class-loading definition process is done from the first

base class to the last one.

To better understand this problem, let us suppose,

for instance, that the copy is made from the bottom

of the inheritance chain to the top: the first class

manipulated is Original_agent, which is joined with

Role_implementation. In this case, when the class

Original_agent is loaded by the Role Loader (before

the manipulation process is started), it should

be linked with its superclass, agent_level1; this

class should then be linked with its superclass,

agent_level2, and so on until the java.lang.Object class

is reached. As described in the Java Language and

Virtual Machine specifications,
22

every loaded class

must be put into the class loader cache, so after the

manipulation of the Original_agent class, at the

loading time, the new class will be linked, by the

Role Loader, to the class agent_level1 already present

in the cache. Because the loader already has the

class in its cache, it does not reload it, and the

manipulated agent class is linked with a superclass

which has not been manipulated. Because the loader

cache is untouchable from a subclass and each Java

class loader has a single namespace, a class

modification that starts from the bottom, going up to

the top, produces a LinkageError exception. This is

because the class namespace of the Role Loader has

two (or more) classes with the same name but

different bytecode definitions. By starting from the

top of the chain instead, the class loader cache is

filled with manipulated classes that act as base

classes for the next level; we call this mechanism

reverse class loading.

To explain these concepts, consider what happens,

step by step, during a role assumption like the one

shown in Figure 9. In such a situation, when the

Original_agent class is loaded, our Role Loader tries to

link that class with its base class, agent_level1,

searching its cache for it. If the latter class has been

loaded and manipulated before the one in the

current level, which means it is already in the cache,

the link is correctly resolved. Otherwise, if the base

class is not in the cache, the class loader must load it

(for example from a URL), and then manipulate it.

But the manipulation, if made after a linkage

operation, causes an error because two classes with

the same name (agent_level1) but with different

definitions would be present in the cache. Therefore,

to allow the manipulation process, the classes must

be loaded and manipulated in a separate way,

without the dynamic linking provided by the Java

language. Only when a class has been manipulated

can it be used as a valid linkable base class.

Step 2: Copying members’ declarations and adding

the role interface

This step performs the member declaration copy by

consulting the inheritance stack and then copying

every member declaration from the role chain to the

agent chain in the classes of the same level. This step

uses bytecode manipulation that allows the system to

modify the class definition. Note that no members are

removed from the Original_agent class. In our imple-

mentation, to ensure a correct execution of the agent,

in every situation only member adding occurs.

In this step, bytecode manipulation is also used to

force the agent class to implement the role interface.

Because every class contains a list of implemented

interfaces,
22

this is done simply by adding the role

interface to that list in the manipulated agent class.

The member declaration copy is performed through
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Figure 11
Code for the copyMembers() method

protec ted f ina l  CtClass copyMembers(CtClass src ,CtClass dest)
  throws CannotCompi leExcept ion,NotFoundExcept ion
 
 /* check params */
  i f (src==nul l  | |  dest==nul l){
    return dest ;
  }
 
 /* check i f the c lass has a l ready been copied at  another level  */
  i f ( th is . i sA l readyCopied(src .getName( ))){ return dest ;  }

 /* add a l l  the methods f rom src to dest  */
   CtMethod toAdd[ ]=src .getDeclaredMethods( ) ;
   CtMethod copy=nul l ;

 /* add a l l  the methods */
    for( int  i=0; toAdd!=nul l  && i<toAdd. length; i++){
   // does the dest  c lass a l ready have the method?
   i f ( ! th is .hasThisMethod(dest , toAdd[ i ])  &&
       !Modi f ier. i sF ina l( toAdd[ i ] .getModi f iers( ))) &&
       ( !Modi f ier. i sStat ic( toAdd[ i ] .getModi f iers( ))) ){
       /* add i t  */
       copy=CtNewMethod.copy(toAdd[ i ] ,dest ,nul l) ;
       dest .addMethod(copy);
   }e lse
   i f (( !Modi f ier. i sF ina l( toAdd[ i ] .getModi f iers( ))) &&
       ( !Modi f ier. i sStat ic( toAdd[ i ] .getModi f iers( ))) &&
       ( ! th is . i sObjec tMethod(toAdd[ i ]))){
       /* generate a warning */
    addWarning(LoaderWarnings .dupl icatedMethod,dest , toAdd[ i ] , toAdd[ i ] .getName( ) ,s rc) ;
   }
      }

 /* now add a l l  the var iables */
  CtF ie ld f ie lds[ ]=src .getDeclaredFie lds( ) ;
  CtF ie ld addingFie ld=nul l ;

 for( int  i=0; f ie lds!=nul l  && i<f ie lds . length; i++){
  /* is  the var iable a l ready present in the dest  c lass? */
  i f ( ! th is .hasThisMember(dest , f ie lds[ i ])  ){
   addingFie ld=new CtF ie ld(f ie lds[ i ] .getType( ) , f ie lds[ i ] .getName( ) ,dest) ;
   addingFie ld .setModi f iers( f ie lds[ i ] .getModi f iers( )) ;
   dest .addFie ld(addingFie ld) ;
  }
  e lse{
  /* generate a warning */
  addWarning(LoaderWarnings .dupl icatedVar iableName,dest , f ie lds[ i ] , f ie lds[ i ] .getName( ) ,s rc) ;
  }
 }

    /* s tore the c lass name, thus the ro le loader wi l l  not  re -copy ex is t ing c lasses */
     th is .a l readyCopied(src .getName( ));

 return dest ;
}
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the method copyMembers( ) of the class RoleLoader

(see Figure 11), a method that exploits the

Javassist
23

capabilities to add variables and methods

to a class (in this case, the agent class). Because the

copy of the declared members is the most important

operation done by the Role Loader, the method

exploits several ad hoc services to check if a member

is already present. These services are not detailed

here, but it is important to stress that several checks

are required during the member declaration copy.

The copyMembers( ) method returns a CtClass object,

which is a Javassist object that represents a compile-

time class. Similarly, the method accepts two CtClass

parameters corresponding to the original agent class

and to the role class. Compile-time classes allow

developers to interact with the bytecode of the

corresponding class by adding methods and varia-

bles, changing the access attributes, and so forth.

Moreover, the method exploits other Javassist

objects, namely CtField, CtMethod and CtNewMethod,

to interact with the class structure.

The code of Figure 11 first copies each method

declaration. This is done to add role capabilities, but

only if there is not already a method with the same

signature in the destination class. If the method is

already present, a warning is generated to notify the

developer of methods that were not copied. After the

method declarations are copied, copyMembers( )

copies the variable declarations. It is important to

note that variables are always copied, even if the

same variable exists in the destination class, which

results in the generation of a warning.

While the warnings generated in the case of

duplicated methods report a possible error condition

during the injection of the role, warnings generated

in the case of duplicated variables are used only as

information about name conflicts between the

original agent and the role classes. More details

about duplicated members and warnings can be

found in the section ‘‘Duplicated members.’’

The RoleLoader class provides methods to convert

CtClass objects into Class objects and vice versa, in

order to change from the Javassist model to the Java

reflection and back. At the end of this step, the

RoleLoader instance loads the current manipulated

class, in order to put it into the cache and to make it

available for use by subclasses. This operation is

performed by exploiting the class loader capabilities

that the Role Loader has inherited from the

SecureClassLoader. After all classes have been ma-

nipulated and loaded, the RoleLoader instance can

proceed with the next step, which is the creation of

the manipulated agent object.

Step 3: Creating a new agent object

After the previous two steps, RoleX makes available

a new agent class, to which the role has been joined.

To obtain a new agent, RoleX must create a new

instance of the manipulated agent class. This is

performed in step 3, which creates an agent instance

from the manipulated class, which is linked (directly

or indirectly) to all the manipulated superclasses.

The code fragment of Figure 12 shows how the Role

Loader exploits the method defineClass( ), inherited

from the base class ClassLoader, to define a new

manipulated agent class. The agentPool variable is a

Javassist ClassPool, used to create the bytecode from

CtClass objects. After the call to the method shown in

Figure 12, the Role Loader uses the Class capabilities

to create a new object (through the method

newInstance( )), thus creating the new agent in-

stance.

Figure 12
Creating the manipulated agent class

protec ted f ina l  C lass generateAgentClass( )
throws NotFoundExcept ion,CannotCompi leExcept ion, IOExcept ion {
 .  .  .
  by te code[ ]=agentPool .wr i te(agentName);
  return th is .def ineClass(agentName,code,0,code. length);
}
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It is important to note that, as shown in Figure 12,

the Role Loader does not exploit the delegation

model. Introduced from the Java API (application

programming interface) Version 1.2, the delegation

model requires a class loader to ask its parent class

loader to define a class before it can do so on its

own. This leads to efficiency and code portability

because a class is defined by only one class loader.

For example, system classes, like those in the

java.lang package, are defined only by the first class

loader. However, as specified earlier, the Role

Loader cannot use the delegation model because if it

did, different class definitions would be present at

runtime, producing namespace clashes. If the Role

Loader were to ask its parent to load and define an

agent class, this would lead to the definition of an

unmodified agent class because the parent class

loader has not performed bytecode manipulation

on it.

As mentioned earlier, after a successful agent class

manipulation, a new instance of the latter is created.

This could lead to a situation where old references to

the original agent, no longer existing, are not

updated to become references to the new agent. To

avoid this, RoleX adopts a protection mechanism

based on the concept of proxy,
24

which masks the

agent itself, thus avoiding dangling references. Of

course, only the role infrastructure itself can own a

direct agent reference, which is used to substitute

original agents with manipulated ones. It is impor-

tant to note that, as shown in Figure 3, during the

manipulation, the agent execution is halted, and

thus unable to process incoming events from other

agents. For this reason, our proxies store incoming

events in a queue, flushing them when the execution

of the manipulated agent restarts. Due to the use of

these proxies, all other running entities will never

own a dangling reference to an agent and will not

perceive any difference between agent references

before and after a role assumption or release.

Step 4: Copying members’ values

In the last step, every variable value is copied from

the original agent to the newly created agent. This

step ensures that the agent’s original state will not

be lost during the extension process. The copy is

done by iterating for each agent inheritance level

and executing the copyMemberValues( ) method of

the RoleLoader class (see Figure 13), which accepts

the source object (the not manipulated agent), its

class type, the destination object (the manipulated

agent) and its class type. The method iterates over

all variables in the source class, accessing them even

if they are private, and copying their values to the

destination object. To access private members, the

Role Loader requires the permission object

java.reflect.ReflectPermission. Granting this permission

does not represent a real risk because Role Loaders

cannot be created directly by agents, being pre-

vented from doing so by the role infrastructure. This

prevents cases where agents maliciously use Role

Loaders to access or manipulate other agents. This

also means that the administrator is in charge of

granting the use of trusted RoleLoader instances.

PARTICULAR CASES AND CODE EXAMPLE

This section extends the discussion of RoleX by

taking into account particular conditions that can

happen during the injection of the role into the

agent. A code example is presented to help readers

understand the practical use of the RoleX infra-

structure and its components.

Particular cases
As shown in Figure 3, there are conditions where

role injection cannot be successfully performed, and

an exception is thrown. This could happen when an

agent tries to violate rules imposed by the system

administrator. For example, two roles can be

marked by the administrator as incompatible,

meaning that the agent cannot assume both at the

same time. Moreover, an agent may not own the

required rights to assume a specific role. In these

cases, bytecode manipulation does not start, and an

exception is thrown to the agent.

Another exceptional case is when the Role Loader

cannot run due to various conditions (e.g., JVM**

cannot instantiate it, the Role Loader cannot find the

role repository, etc.). Because role loading is a very

important operation for the agent, the Role Loader

performs an autotest before starting the manipula-

tion in order to understand if it can run or not.

During the autotest, the Role Loader also tries to

load itself before starting the manipulation, as

shown in Figure 14.

Aside from the preceding particular cases, which are

related to the role-infrastructure runtime environ-

ment, there are other particular cases related instead

to the role and agent implementations. In these

cases, the manipulation can be successfully done,

but in a different manner from that detailed above.
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Figure 14
A simple autotest performed by the Role Loader

publ ic void autoTest( ) throws UnusableRoleLoaderExcept ion {
 /* t r y  to load the loader i tse l f */
 t r y  {
  th is . loadClass(th is .getClass( ) .getName( ) , t rue);
 }
 catch(Except ion e) {
  e .pr intStackTrace( ) ;
  throw new UnusableRoleLoaderExcept ion("Did not pass the base auto - test") ;
 }
}

Figure 13
Code for the copyMemberValues( ) method

protec ted f ina l  boolean copyMemberValues(Objec t  s rc ,C lass srcClass ,
  Objec t  dest ,C lass destClass)
  throws I l lega lArgumentExcept ion, I l lega lAccessExcept ion {
 // parameters check
 .  .  .
 
 /* get  the var iables */
 F ie ld[ ]  s rcF ie lds ,destF ie lds;
 s rcF ie lds=srcClass .getDeclaredFie lds( ) ;
 destF ie lds=destClass .getDeclaredFie lds( ) ;

 i f (destF ie lds==nul l  | |  s rcF ie lds==nul l){  return fa lse;  }

 /* used to s tore the or ig ina l  access t ype of the f ie lds */
 boolean or ig ina lAccessType=true;

 for( int  i=0; i<srcF ie lds . length; i++) {
  for( int  j=0; j<destF ie lds . length; j++){
    i f (s rcF ie lds[ i ] .getName( ) .equals(destF ie lds[ j ] .getName( ))){
   /* s tore the access t ype */
   or ig ina lAccessType=destF ie lds[ j ] . i sAccess ib le( ) ;
   /* make the dest  f ie ld acces ib le */
   destF ie lds[ j ] . setAccess ib le(t rue);
   /* make access ib le the src var iable */
   s rcF ie lds[ i ] . setAccess ib le(t rue);
   /* copy the var iable */
   i f ( !Modi f ier. i sF ina l(destF ie lds[ j ] .getModi f iers( )) &&
      !Modi f ier. i sTrans ient(destF ie lds[ j ] .getModi f iers( )) &&
      !Modi f ier. i sVolat i le(destF ie lds[ j ] .getModi f iers( )) &&
      !Modi f ier. i sStat ic(destF ie lds[ j ] .getModi f iers( ))){
              destF ie lds[ j ] . set(dest ,s rcF ie lds[ i ] .get(src)) ;
   }
   /* now re -set  the access ib i l i t y  */
   destF ie lds[ j ] . setAccess ib le(or ig ina lAccessType);
   s rcF ie lds[ i ] . setAccess ib le(or ig ina lAccessType);
       }
     }
   }
   return t rue;
}
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The following subsections describe some of these

cases.

Inheritance chain length

This case occurs when the role inherits from a

number of classes greater than the number of classes

inherited by the agent. In this case, unlike the

situation in Figure 9, there are extra classes in the

role inheritance chain that cannot be copied to a

corresponding level of the agent chain (Figure 15A).

In this situation, the computed inheritance stack is

calculated in a different way: the Role Loader,

during the inheritance stack computation, removes

the java.lang.Object class from the agent chain and

substitutes it with the first extra class of the role

chain. In this way the extra classes of the role chain

are not lost. This solution implies that the agent

inheritance chain changes, because its top is

‘‘attached’’ to the bottom of the extra part of the role

chain, as shown in Figure 15B. This leads to a

Figure 15
Role inheritance chain longer than agent chain; (A) initial situation; (B) solution 
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situation where the final agent chain is composed of

classes of different chains, which are the darker

chains in Figure 15B. Of course, while doing this,

the Role Loader removes the java.lang.Object class

at the top of the agent chain, because it will be

substituted by the sub-chain at the top of the role

inheritance chain (which is correctly terminated by

a java.lang.Object class).

From a code point of view, the preceding solution is

implemented by the addToStack( ) method, invoked

by the computeInheritanceStack( ) method (see the

section ‘‘Step 1: Calculating the inheritance stack’’).

The code for the method is shown in Figure 16. The

first parameter, className, is the name of the agent

class; the second parameter, roleNames, is an array

of role class names that must be fused with the agent

at the current level. If the agent class name is null

and roleNames is not (which means that the role

chain is longer than the agent one), the agent

class name to be pushed onto the internal stack

(roleStack) is extracted from the role class at the

current level, and so on, until the top of higher chain

(java.lang.Object) is reached.

Duplicated members

During the copy of members from role classes to

agent classes, there can be duplicated members: that

Figure 16
Code for the addToStack( ) method

protec ted void addToStack(St r ing c lassName,St r ing[ ]  ro leNames){
  int  index=0;
  boolean changedChain=fa lse;

  i f (c lassName==nul l  && ro leNames==nul l){
    return;
  }

  // i f agent c lass (c lassName) is  nul l  ( ro le chain longer than the agent one)
  // p lace the f i rs t  ro le c lass as exuberant agent c lass
  i f (c lassName==nul l  ){
   for( int  i=0; i<roleNames. length; i++){
      i f ( ro leNames[ i ] !=nul l){
         c lassName=roleNames[ i ] ;  index=i ;  changedChain=true;  break;
      }
    }
 }

  // i f there are no more ro les (agent chain longer than the ro le one)
  // inser t  nul l  ro le names
 i f( ro leNames==nul l){
        St r ing v[ ]=new Str ing[2] ;  v [0]=className; v[1]=nul l ;
          th is . ro leStack .push((St r ing[ ])v) ;  return;
  }

  /* now const ruc t  a s ing le vec tor */
  St r ing tmp[ ]=new Str ing[(1+roleNames. length)] ;
  for( int  i=0; i<tmp. length; i++){ tmp[ i ]=nul l ;  }

  /* copy the names into the ar ray */
  tmp[0]=className;

  for( int  i=1; i<tmp. length && i<roleNames. length- index ; i++){
       tmp[ i ]=roleNames[ i -1+index] ;
  }
  th is . ro leStack .push((St r ing[ ]) tmp);
}
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is, both agent and role can have variables of the

same type and with the same name, or methods

with the same signature. While multiple-inheritance

languages provide a way to make member reference

unambiguous (e.g., the scope operator of Cþþ), Java

does not take this case into consideration because it

does not allow multiple inheritance. This implies that

the Role Loader must avoid duplicated members. This

problem can only occur in the second step when

member declarations are copied: in fact, it may

happen that one member of the role class clashes with

a member of the agent class. When the Role Loader

joins the classes, it must make a decision regarding

how to proceed in order to avoid duplicated members.

Duplicated methods pose a difficult problem be-

cause currently the Role Loader is unable to copy a

duplicated method, thus avoiding the generation of

a ClassFormatError warning at agent instantiation.

Warnings are issued because maintaining only the

agent’s methods could cause the role to be unusable.

A warning is an information event that reports a role

injection error; it can be thought of as a ‘‘light

exception’’ because, unlike exceptions, a warning

does not change the program execution flow.

Warnings inform the agent, so that it can determine

whether the chosen role is compatible with itself.

If the duplicated member is a variable, the Role

Loader can successfully copy the duplicated role

variable, keeping it separate from the agent variable,

so that the agent and the role parts of the

manipulated agent can each access their own

variables. This is made possible because variables

are not accessed in the bytecode by names but by

offsets. Nevertheless, though the case of duplicated

variables does not represent a real problem for the

role injection process, the Role Loader notifies the

manipulated agent of the duplication, again through

warnings. If the Role Loader provides partial

support to avoid duplicated members, why does a

duplicated member situation happen? As shown in

the next section, the agent chooses a role by means

of a role descriptor (as described previously). This

grants flexibility because different role implementa-

tions can be bound to the same descriptor, enforcing

the locality of the role implementation. This also

implies that an agent assumes a role only via

semantic information, without knowledge about the

syntactic structure of the role itself. In this situation,

it may happen that a role’s structure clashes with

that of the agent, so that it must be notified about the

problem. Analyzing warnings, the agent can under-

stand what went wrong during the extension process

and then decide to continue or to release the role.

Code example

To show how agents can exploit the capabilities of

RoleX, this section provides a simple code example

of an agent that assumes and uses the role whose

role descriptor is shown in Figure 6.

The code is shown in Figure 17, where BookerAgent

is defined as a subclass of RoleSupport. The latter

class defines a particular base-agent class, which

embeds the invocation translator described in the

section ‘‘RoleX at work,’’ allowing the agent to use

role operations in a simple way. Note that the use of

RoleSupport, and therefore the use of the invocation

translator, is not mandatory, but, as already de-

tailed, it represents a good choice to keep the agent

code simple and clean.

The code shown in Figure 17 is driven by the value of

the boolean flag hasRole, which is used to quickly

check if the agent has already been manipulated.

Initially the flag has the value false, and thus the first

code branch is executed, where the agent contacts the

role descriptor repository, searching for a role that

matches the requested one. After the agent finds the

role, the role infrastructure is contacted through the

special class RoleX, and the agent asks to inject the

role into itself. In this way, the agent proxy stops the

agent thread, contacting the role infrastructure and

asking for a new instance of the Role Loader, which is

in charge of injecting the selected role into the agent

owned by the proxy. Note that some useful variables,

such as the hasRole flag and the op array, are set

before the request of role injection so that the original

state of the agent copied after bytecode manipulation

is the one the agent has when it asks to assume the

role. If everything goes right, a new agent is created,

and its execution restarts; that is, the run( ) method is

executed again. This time the hasRole flag has a true

value, so the second branch of code is executed.

In this part, the agent searches among the stored

operation descriptors for the one that matches the

flight booking operation, and then invokes it by

using the special method act( ), inherited by

RoleSupport. The act method accepts the descriptor

related to the operation (as either a scalar or an

array value) to run and the parameters to use, and

then runs it. If an array of operation descriptors is
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Figure 17
Fragment of code of BookerAgent that assumes the flight_booker role

publ ic c lass BookerAgent ex tends RoleSuppor t
{

 // f lag to eas i ly  know i f the agent has a l ready a ro le
 boolean hasRole=fa lse;
 // s tore the operat ion descr iptors for quick operat ion execut ion
 Operat ionDescr iptor op[ ]=nul l ;
 .  .  .
 // execut ion method
 publ ic void run( ){
  int  r,  a ;
  i f ( th is .hasRole==false){
   // bui ld a set  of keyword
   St r ing [ ]  keys = .  .  . ;
   // get  a l l  the ro le descr iptors s tored into reposi tor y that  
   // match the keywords
   // (suppose that  keywords ident i f y  a s ing le ro le descr iptor,
   // otherwise other d iscr iminat ing data is  requi red)
      
   RoleDescr iptor ro leDesc[ ]=RoleReposi tor y.getRoleDescr iptor(keys) ;
     I f (  ro leDesc . length == 1 ){ chosenRole = ro leDesc;  }

   // the descr iptor at  index r is  the found descr iptor,
   // assume the corresponding ro le
   // and store the ro le ac t ion descr iptors in an ar ray
   t r y{
    th is .hasRole=true;
    th is .op=roleDesc[r ] .getOperat ionDescr iptors( ) ;
    RoleX.addRoleToMysel f(chosenRole);
   }
   catch(RoleLoaderExcept ion e)
   {
    System.err.pr int ln(“Except ion dur ing ro le loading!”) ;
    th is .hasRole=fa lse;  th is .op=nul l ;
   }
   . . .
  }
  e lse
  i f ( th is .hasRole==true)
  {
   // the agent has the ro le
   // check for warnings
   i f (RoleX.getWarningCount( )>0){
   // get  warnings and decide what to do (re lease the ro le ,       
   // cont inue,etc .)
   Warnings warns[ ]=RoleX.getWarnings() ;
   }

   // search for the descr iptor that  represents the ac t ion
   for( int  k=0;k<this .op. length;k++)
   {
    // check descr iptors va lues l ike keywords ,  vers ion,  date
    // ac t ions and so on
      . . .
      i f (op[k] .getAim( ) .equals(“book a f l ight”) && …){
     a = k;  break;
      }
     }
  // invoke the ac t  method of the RoleSuppor t  inter face
  Objec t  ret  = th is .ac t(op[a]) ;
  . . .
  }
      }
}

IBM SYSTEMS JOURNAL, VOL 44, NO 1, 2005 CABRI, FERRARI, AND LEONARDI 205



passed, the act( ) method executes all of them,

returning an array of objects to the agent, where

each element represents a single return value. After

that, the agent can either release the role or run

another operation.

It is important to note that the agent can check for

warnings, and this check must be done after the

agent is sure the role has been injected (in the

second branch in the code). Warnings can still be

retrieved using the RoleX class, which provides

access to the Role Loader instance that has injected

the role into the agent.

COMPARISON WITH OTHER APPROACHES

Interactions between agents have been studied

extensively. For a complete comparison of existing

role approaches, see References 15 and 19. General

information about roles can be found in Reference 25.

One approach which offers extensive adaptability is

Kendall’s AOP (aspect-oriented programming) ap-

proach,
17

though it does not offer external visibility

of roles. In fact, we know of no other role

infrastructure that grants both adaptability and

external visibility as RoleX does. Kendall’s approach

is an important work, which exploits AOP in order

to make roles available to agents, with runtime

adaptability and a new role concept. Though it was

not designed in connection with roles, AOP provides

interesting mechanisms to support the management

of roles for agents.
17,26

Since an aspect is a property

that cannot be an active stand-alone entity, but

rather affects the behavior of components, its

similarity to a role is evident.

AOP has a few drawbacks that our approach tries to

overcome. First of all, AOP requires developers to

learn a new paradigm and new tools, while our

approach requires developers simply to write Java

classes and a few XML documents. Furthermore,

AOP cannot add external visibility to agents, but

simply new capabilities (such as methods). More-

over, AOP is not intended to be applied to active

entities like agents but rather to wrap around

behaviors of classes (passive entities). Finally, AOP

focuses on software development rather than

addressing the issues of dynamic and open envi-

ronments, such as those considered in the BRAIN

project, and this makes AOP inadequate for the

development of agents and roles.

Two other popular mechanisms for managing agent

interactions are ACLs and KQML. ACL, the Agent

Communication Language, has been proposed by

the Foundation for Intelligent Physical Agents
27

(FIPA) as a way to deal with interactions based on

speech acts.
28

The main aim of Knowledge Query

and Manipulation Language (KQML) is to state, in a

way that does not depend on context or ontology,

what the intentions of an agent are (see, for

example, Reference 29). Both FIPA’s ACL and KQML

can be used as protocols for agent communications

and knowledge-sharing mechanisms, allowing

agents to interact and deal with common tasks. The

use of roles differs from these approaches because

the latter allow developers to deal with interactions

between agents, without helping them very much in

dealing with interaction contexts. Roles can be more

useful to design, develop, and even maintain

complex applications, where there are many inter-

actions and interacting agents.

Though ACLs and KQML are not role-specific

approaches, they can be used and embedded into

roles. For example, a RoleX event can be shipped

within an ACL speech act. This is another important

aspect of our approach: RoleX tries to grant

maximum flexibility to role developers so that they

are free to decide which interaction protocol to use.

Of course, because RoleX has been designed to

exploit events, developers will have facilities to deal

with event operations; however, a role can be

developed that partially or completely excludes

events and uses only KQML or ACLs. Moreover,

FIPA has a modeling working plan (see Reference

30) for the use of the Agent UML** (AUML)
31

that

recognizes the part played by roles in the design and

development of agent applications, and this means

that probably there will be some standardization for

role-based techniques that is not currently available.

CONCLUSIONS

In this paper, we have described a BRAIN imple-

mentation called RoleX. The main component of

RoleX is the Role Loader, which, by modifying the

bytecode of agents at runtime, allows them to merge

into a single entity with a role when it is assumed.

RoleX exhibits all the advantages derived from roles,

such as separation of concerns, reuse of solutions,

and locality in interactions. In addition, the RoleX

implementation provides other advantages. It en-

ables agents to dynamically assume and release roles

at runtime, granting flexibility and adaptability.
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Roles are not simply given to the agents, but rather

agents are modified at the bytecode level to embody

all the features of the assumed roles. Descriptors are

used to uncouple role assumption from agents, to

improve security, and to enable role composition

(the construction of roles from smaller elements).

RoleX is currently implemented on the top of the

IBM Aglets* platform,
32

though its design allows it

to be easily ported to other systems. We have

already exploited the RoleX infrastructure to imple-

ment some role-based agent applications, such as

conferencing support
15

and an automatic e-mail

account configurator.
33

Currently we are exploring

the area of e-democracy, with an application that

enables users’ mobile devices to dynamically play

appropriate roles to enable ‘‘attending’’ a convention

and voting for a candidate.

During the development of these applications, we

found RoleX to be robust, though its development is

not complete yet. Because role methods are injected

into the agent, developers must understand that the

execution of a role method is resolved at runtime by

a call to an added method of the agent itself. This

can cause some confusion initially, but thanks to the

RoleX model’s simple and powerful API, developers

can easily adapt to the RoleX model after a short

learning period.

RoleX performance measurements (see Reference

13) show that the assumption/release time depends

directly on the role’s total bytecode size. We are

currently working to improve RoleX’s performance

by exploiting the same Role Loader to inject different

roles in different agents. Though our approach

comes from a specific requirement (adding roles to

agents), it can be exploited in other situations as

well, where two or more Java classes need to be

joined in a dynamic way, such as in the addition of

dynamic services to components. Further examples

can be found in the techniques proposed to grant a

transparent Java thread migration to implement

strong mobility (see References 33 and 34) and in

reflective systems such as the 2K operating system.
36

Additional documentation on RoleX, including

examples and source code, is freely available at the

BRAIN Web site.
14

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Sun Microsystems,
Inc. or Object Management Group, Inc.
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