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The structure of insect DNA methyltransferase 2
(DNMT2) DNA binding domain is responsible for the
non-CpG methylation in insect genomes
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Abstract — Alignment of vertebrate and invertebrate DNA methyltransferases 2 (Dnmt2) evidenced an overall evo-
lutionary conservation of these proteins. However, alighment revealed a vertebrate-specific stretch of about forty
amino acids located between the catalytic motif VIII and the target recognition domain that is constantly absent from
insect homologues. The analysis of the three-dimensional structure of DNA methyltransferase indicated that this ver-
tebrate specific Dnmt2 portion is located at the DNA binding domain whose structure is essential for the discrimi-
nation of the proper target sequence. Insect Dnmt2 enzymes are, therefore, devoid of a portion of the DNA binding
domain suggesting that this structural change may alter the methylation target of insect Dnmt2 making cytosine
methylation not limited to the vertebrate canonical CpG but extended to cytosine residues belonging to other dinu-
cleotides.

Key words: DNA methyltransferase 2, DNA methyltransferase 2 DNA binding domain, insect genome methylation,

non-CpG methylation.

INTRODUCTION

It is well known that a variable portion of cyto-
sine residues is methylated in the form of 5-methyl-
cytosine in eukaryotic genomes (Birp 2002). DNA
methylation has been associated with numerous
functions depending on the model organism and the
experimental context. In general, the presence of
DNA methylation, in and around the promoter of
genes, is associated with gene silencing (Birp 2002).
On a cellular level, loss of DNA methylation was
shown to affect apoptosis in mice (JACKSON-GRUSBY
et al. 2001) and Xenopus (STANCHEVA et al. 2001), X-
chromosome inactivation and chromosomal stability
in mice (PANNING AND JAENISCH 1996; GAUDET et al.
2003) and the overall chromosome organization in
Arabidopsis (SoppE et al. 2002).

In eukaryotes, DNA methylation is carried out
by DNA methyltransferases that are grouped into
different families (Bestor 2000; LI 2002). Dnmtl
enzymes preferentially bind to hemi-methylated
DNA and are responsible for the maintenance of
DNA methylation after each round of replication
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(BESTOR et al. 1988; YODER et al. 1997; MARGOT et al.
2000). Dnmt2 proteins are similar to the prokaryotic
methyltransferases but their function is still partially
enigmatic since they seem unable to methylate DNA
in vitro. Moreover, loss of function mutations of
Dnmt2 gene did not showed any effect on mice ge-
nomic methylation patterns (OKANO ez al. 1998) on
the contrary of what happen with mutations in
Dnmt1 that resulted in developmental defects (L1 ez
al. 1992; L1 et al. 1996). The last methyltransferase
family consists of Dnmt3a and Dnmt3b that are the
main players involved in de novo methylation
(OkANO et al. 1998). The third member of this family
is Dnmt3L that shares some homologies with
Dnmt3a and Dnmt3b and plays a central role in the
establishment of maternal genomic imprinting even
though it does not have 7z vitro catalytic activity
(AaroLA et al. 2001; DepLus 2002; HATA et al.
2002).

Up to date, the presence of 5-methylcytosine has
been reported in several insect species belonging to
various orders (FIELD ef a/. 2004). However, its role
is still poorly understood and the available data dem-
onstrates varying levels of methylation and different
roles suggesting that DNA methylation could not
play an evolutionary conserved function.

The presence of a discontinuity in the functional
role of methylation from invertebrates to vertebrates
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Fig. 1 — Alignment of eukaryote Dnmt2s evidenced that these proteins are evolutionary conserved even if some differences are
present between insects and vertebrates. In particular, alignment revealed a vertebrate-specific stretch of about forty amino acids
located between the catalytic motif VIII and the target recognition domain that is constantly absent from insect homologues.
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is straightened by the fact that the Dnmt2 proteins
represent the only candidate DNA methyltrans-
ferases in Drosophila melanogaster, Drosophila pseu-
doobscura and A. gambiae as deduced by the absence
of other methyltransferase genes in their genome
(Lyko 2001; MARHOLD et al. 2004).

Finally, a further difference is due to the fact that
insect methylation is not limited to the CpG target:
CpA, CpT and methylated doublets were, in fact,
also reported in insects (Lyko ez al. 2000; KUNERT ef
al. 2003; ManprioL and Vorpr 2003; MARHOLD et al.
2004) with the peculiarity that, at least in D. mela-
nogaster, DNA methylation is concentrated at the
non-symmetrical CpA and CpT dinucleotides (Lyko
et al. 2000).

The present paper analyse eukaryote Dnmt2 se-
quence and structure in order to verify if insect
Dnmt2 possesses peculiarities useful to explain such
a different pattern of methylation in insects in re-
spect to vertebrates.

MATERIALS AND METHODS

Sequence retrieval form databases - Dnmt2 sequences
were retrieved at NCBI using the ENTREZ software
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) that
perform a search across all Entrez databases, whereas
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D. pseudoobscura Dnmt2 homologue was identified us-
ing the BLAST tool available at the D. pseudoobscura
genome  website  (http://www.hgsc.bcm.tmc.edu/
projects/drosophila/).

BLAST - The BLAST 2 software (Basic Local Align-
ment Search Tool) was used to search the NCBI data-
bases (http://www.ncbi.nlm.nih.gov/BLAST/). In par-
ticular BLAST provided a method for rapid searching
of Dnmt2 sequence in both nucleotide and protein da-
tabases. BLAST algorithm detects in fact local, as well
as global, regions of similarity embedded in otherwise
unrelated proteins (ALTSCHUL ef al. 1997)

Sequence alignments by CLUSTALW and DNAstar -
The CLUSTALW software at the European Bioinfor-
matics Institute (EBI) (ww.ebi.ac.uk/clustalw) was used
to look for biologically meaningful sequence alignments
of evolutionary conserved DNA and protein sequences.
The default alignment parameters were used.

CLUSTALW alignments were edited using BOX-
SHADE in order to better evidence the presence of
conserved domains (http://www.ch.embnet.org/soft-
ware/BOX_form.html).

Phylogenetic tree was reconstructed on the basis of
the CLUSTALW alignments using the tree construc-
tion function of the DNAstar software package (DNAs-
tar Inc, Madison, USA).

CD-Search at Conserved Domain Database (CDD) -

The search for conserved domain in Dnmt2 was per-



308

BORSATTI and MANDRIOLI

formed using the CD-Search service at the Conserved
Domain Database (http://www.ncbi.nlm.nih.gov/ent-
rez/query.fcgi?db=cdd) that employs the reverse posi-
tion-specific BLAST algorithm. The CDD currently
contains domains derived from two popular collec-
tions, Smart and Pfam, plus contributions from NCBI.
The source databases also provide descriptions and
links to citations. Since conserved domains corre-
spond to compact structural units, CDs contain links
to 3D-structure via Cn3D whenever possible. CD-
Search has been run in parallel with protein BLAST
searches (MARCHLER-BAUER e a/. 2003).

RESULTS AND DISCUSSION

The typical eukaryotic DNA methyltransferase is
about three times larger than its prokaryotic coun-
terpart (MARGOT et al. 2003). By analogy with the
prokaryotic enzymes, the C-terminal region has been
referred to as the catalytic domain and the N-termi-
nal region as the regulatory domain (BEsTor 2000;
Marcor et al. 2003). The N-terminal domain can in-
teract with numerous proteins such as DMAPI,
PCNA and Rb and it contains a DNA binding re-
gion, a cysteine-rich region, several Zn-binding do-
mains and two regions responsible for the localiza-
tion to replication foci (LEONHARDT ez al. 1992;
CHUANG et al. 1997; ROUNTREE et al. 2000; ROBERT-
SoN et al. 2000). The lack of extensive homology be-
tween the N-terminal domains of maintenance
(Dnmt3) and de novo methyltransferases (Dnmt1)

points towards a possible functional difference of
this domain (MARGOT et al. 2003).

D.melanogaster, D. pseudoobscura and A.gambiae
genome project revealed that Dnmt2 proteins repre-
sent the only candidates DNA methyltransferases
suggesting that this enzyme could be the unique re-
sponsible for DNA methylation in insect genomes
(KUNERT et al. 2003; MARHOLD ef al. 2004). The
analysis of the methylation patterns revealed that
several insect genomes contain methylated cytosine
residues even if they are not concentrated into the
CpG doublets, as usually found in vertebrates (F1ELD
et al. 2004). In particular, in Drosophila genome
methylation resulted concentrated at CpA and CpT
targets (Lyko 2001; MARHOLD et al. 2004), whereas
in the lepidopteran Mamestra brassicae methylated
cytosines were inserted predominantly into CpC
doublets even if methylation was reported also in the
CpG, CpA and CpT dinucleotides (MANDRIOLI and
Vorrr 2003). This differential target of methylation
can reflect the presence of different DNA methyl-
transferases in insect genomes or the existence of a
differential target specificity of the same methylases
in insects in respect to vertebrates. In order to an-
swer to this question a comparison of vertebrate and
insect Dnmt2 sequences has been performed.

Search in GenBank for Dnmt2 proteins unam-
biguously retrieved several DNA methyltransferase
2-like sequences in both vertebrates and inverte-
brates. In particular, homologues were found in the
vertebrates Homzo sapiens (AAC39764), Mus muscu-
lus (AAC53529), Rattus norvegicus (XP_214514),

Table 1 — Similarity and identity values resulting from the alignment of eukaryote Dnmt2s.
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Fig. 2 — Phylogenetic tree reconstructed on the basis of the alignment of eukaryote Dnmt2s that has been used to confirm that
Dnmt2 homologue have been really retrieved form sequence databases.

Fig. 3 — Three-dimensional structure of DNA methyltransferase with evidenced in yellow the DNA binding site (a, d) and the sub-
strate interaction site (b). Alignment of Dnmt2 sequences revealed that insect Dnmt2 enzymes lack of a portion of these domains (c,
e) suggesting that this differential structure could change the methylation target of insect Dnmt2 making cytosine methylation not
limited to the vertebrate canonical CpG.
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Xenopus — laevis  (AAH46854), Bos  taurus
(NP_861528) and Danio rerio (AAC69603) and in
the invertebrates D. melanogaster (AAF03835) and
Anopheles gambiae (XP_312975). Finally, a Dnmt2
homologue was retrieved in D. pseudoobscura in the
sequence named Contig1859_Contig703.

Successively, a BLAST analysis has been per-
formed in order to be sure that Dnmt2 homologues
were really recovered. Finally, Dnmt2 similarity has
been evaluated through the alignment of the re-
trieved sequences, which showed that Dnmt2 pro-
teins were overall conserved and that they contain
conserved catalytic motifs typical for (cytosine-5)
DNA methyltransferases (Kumar ez al. 1994) (Fig-
ure 1). In particular, the highest observed similarities
have been observed in Dnmt2 proteins from verte-
brates with the exception of the putative D. rerio
Dnmt2 that resulted poorly conserved suggesting
that this sequence could not represent a real DNA
methyltransferase 2 (Table 1). This hypothesis is
confirmed by the phylogenetic tree reconstructed on
the basis of the alignment since D. rerio Dnmt2 re-
sulted as an independent branch in respect to the
other vertebrate Dnmt2s (Figure 2).

A further analysis of Dnmt2 alignment revealed
that all vertebrate Dnmt2s contain a stretch of about
forty amino acids between the catalytic motif VIII
and the target recognition domain that is absent in
insect homologues. Analysis of literature data
showed that this stretch of Dnmt2 is also absent in
the DNA methyltransferase 2 of Drosophila virilis, D.
hydei and D. simulans (MARHOLD et al. 2004) indicat-
ing that this portion of the Dnmt2 is peculiar of ver-
tebrate and constantly absent in insect DNA methyl-
transferases 2. Considering that drosophilids and A.
gambiae diverged about 250 million years ago, the
results of alignment indicate that the structure of in-
sect Dnmt2 is highly conserved suggesting that the
reported difference in the structure of methyltrans-
ferase reflect a peculiar functionality of Dnmt2 in in-
sects in respect to vertebrates. At this regards, we
verified the location and the function of the verte-
brate specific Dnmt2 stretch in order to identify a
possible effect of its absence in insect homologues.

The search for conserved functional domain at
the Conserved Domain Database (CDD) indicated
the presence of a C-5 cytosine-specific DNA methy-
lase domain in the Dnmt2 sequences. In particular,
the amino acidic stretch identified using alignment
data resulted involved both in the DNA binding site
and in the substrate interaction site of the methyl-
transferase (Figure 3).

The absence of a portion of the DNA binding
domain in insect Dnmt2 is very intriguing since this
domain is essential for the discrimination of the

proper methylation target sequence. These data, as a
whole, suggest that this differential structure could
change the methylation target of insect Dnmt2 mak-
ing cytosine methylation not limited to the verte-
brate canonical CpG but extended to cytosine resi-
dues belonging to other dinucleotides. This hypoth-
esis is supported by the methylation mechanism
originally proposed by SanTI e# /. (1983) and modi-
fied by CHEN ez al. (1991) and ERLANSON et al. (1993)
indicating that the target recognition domain makes
specific contacts with base edges in the major groove
of DNA and is responsible for sequence discrimina-
tion (SANTI ef al. 1983; CHEN et al. 1991; ERLANSON
et al. 1993).

Finally, our proposal could explain the experi-
mental data reported in D. melanogaster where it has
been showed the presence of methylation at CpA
and CpT dinucleotides despite the presence of a
unique putative CpG methyltransferase (KUNERT e?
al. 2003).
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