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ABSTRACT

The distribution of the prime numbers has intrigued number theorists for

centuries. As our understanding of this distribution has evolved, so too have our

methods of analyzing the related arithmetic functions. If we let ω(n) denote the

number of distinct prime divisors of a natural number n, then the celebrated Erdős–

Kac Theorem states that the values of ω(n) are normally distributed (satisfying

a central limit theorem as n varies). This result is considered the beginning of

Probabilistic Number Theory. We present a modern proof of the Erdős–Kac Theorem

using a moment based argument due to Granville and Soundararajan, which we

explain in full detail. We also use similar techniques to study the second moment of

ω(n), refining a classical result of Turán.
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1 INTRODUCTION

A classical problem in number theory is to understand the distribution of the

number of prime divisors of an integer. For n ∈ N, define

ω(n) =
∑
p|n

1

where the sum counts the distinct prime divisors p of n. For example, ω(6) = 2,

ω(9) = 1, and ω(1000) = ω(2353) = 2. Note that ω(p) = 1 for any prime p. It is also

well-known that

ω(n) = O

(
log n

log log n

)
for any n ∈ N; see [7, Thm. 2.10].

In this thesis, we study the distribution of ω(n) when picked uniformly at

random from the set {1, . . . , x} for large x. In Chapter 4, we show that the mean of

ω(n) satisfies

1

x

∑
n≤x

ω(n) = log log x+O(1)

for large x. Thus, we can expect the typical integer n ≤ x to have about log log x

distinct prime divisors with an error only up to some constant. It would be impossible

to proceed any further into this field without mention of a foundational theorem of

probabilistic number theory by Godfrey Hardy and Srinivasa Ramanujan, which they

proved in [6].
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Theorem 1.0.1 (Hardy-Ramanujan Theorem). For almost all integers n ≤ x, the function

ω(n) has normal order log log n. That is to say

|ω(n)− log log n| < ϵ log log n

for any ϵ > 0 and all but oϵ(x) integers up to x.

Roughly speaking, they showed that there tends to be little difference between ω(n)

and log log n, that difference typically only being about
√
log log n. This proves to be im-

portant as we can now begin consider what the distribution of ω(n) might be. Before we

move to this question we must mention Paul Turán’s contribution. Turán gave an incredibly

elementary proof of the Hardy-Ramanujan Theorem [8] by adding a probabilistic twist and

studying the second moment of ω(n). His proof relies on the estimate

∑
n≤x

ω(n)2 = x(log log x)2 +O(x log log x).

In Chapter 3, we refine this calculation by finding explicit constants A and B such that

1

x

∑
n≤x

ω(n)2 = (log log x)2 + A log log x+B +O

(
log log x

log x

)
.

See Theorem 3.3.1 for a precise statement of this result. Although this may be known to

experts, we were unable to find this result in the literature.

Because the curiosity of mathematicians knows no bounds these results, which give us

both a mean and second moment respectively, only spark more intrigue into the mysteries of

ω(n). Thus, we now find ourselves staring straight at the aforementioned question regarding

the distribution of ω(n) armed with intuition borrowed from the field of probability. Knowing

that ω(n) and log log n are only ever about
√
log log n apart, would this have an identifiable

distribution? Paul Erdős and Mark Kac were the first to answer this question in their

influential paper [3], where they proved the following result.
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Theorem 1.0.2 (Erdős-Kac Theorem). For each α ∈ R we have,

1

x

∑
n≤x

ω(n)−log log x≤α
√
log log x

1 −→ 1√
2π

α∫
−∞

e
−t2

2 dt

as x → ∞.

This incredible finding did many things. Namely it proved Kac’s suspicions that ω(n) was

distributed similarly to that of a normal distribution, implying that

ω(n)− log log x√
log log x

is approximately normally distributed with mean 0 and variance 1 when n is chosen uniformly

at random, and it birthed the field of probabilistic number theory as we know it.

In Chapter 4, we present a modern proof of the Erdős-Kac Theorem due to a paper

by Andrew Granville and Kannan Soundararajan [5], which illustrates a way to compute

all moments of ω(n). As well as giving an exposition of their work, we will provide the full

details, which were not given in [5]. We hope that this chapter will be a useful addition to

the literature for mathematicians interested in and attempting to understand this approach

to the famous Erdős-Kac Theorem.
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2 PRELIMINARY RESULTS

Though by no means intuitive, all of our findings can remarkably be derived

from just a few fundamental number theory-based estimates and some observations

based in analysis. Below we provide the needed results.

2.1 Number theory lemmas

Starting with the prerequisite number theory knowledge needed, we introduce

Chebyshev’s upper bound to the prime counting function π(x) defined as

π(x) :=
∑
p≤x

1

for a prime p.

Lemma 2.1.1 (Chebyshev’s upper bound for π(x)). For x ≥ 2, we have

π(x) :=
∑
p≤x

1 = O

(
x

log x

)
.

Proof. This is Corollary 2.6 [7].

Another lemma that will prove to be crucial to us is Mertens’ estimates.

Lemma 2.1.2 (Mertens’ estimates). For x ≥ 2, we have

∑
p≤x

1

p
= log log x+ b+O

(
1

log x

)

4



and ∑
p≤x

log p

p
= log x+O(1),

where b can be expressed using Euler’s constant γ0 as below

b = γ0 −
∑

p

∞∑
k=2

1

kpk
.

Proof. See [7].

Lastly, we will need an observation regarding the Möbius function, which is defined as

µ(n) :=


0 if n has one or more repeated prime factors

1 if n = 1

(−1)k if n is a product of k distinct primes.

Lemma 2.1.3. For the Möbius function µ(n),

∑
d|n

µ(d) =


1 if n = 1,

0 if n > 1.

.

Proof. For n = 1, ∑
d|1

µ(d) = µ(1) = 1.

5



Now assume n > 1. We may rewrite n =
∏r

i=1 p
αi
i . It follows d | n if and only if d =

∏r
i=1 p

βi

i

for βi ≤ αi and i ∈ {1, . . . , r}. However, µ(d) = 0 if βr > 1. Therefore,

∑
d|n

µ(d) =
∑

β1,...,βr
βi≤1

µ

(
r∏

i=1

pβi

i

)

= (−1)0
(
r

0

)
+ (−1)1

(
r

1

)
+ (−1)2

(
r

2

)
+ · · ·+ (−1)r

(
r

r

)
.

Here we use the binomial expansion theorem, and our right-hand side is simply,

(1− 1)r = 0.

So our lemma holds for either case.

2.2 Analysis lemmas

In this section we state and prove analytical results that will be utilized later in this

thesis.

Lemma 2.2.1. For u ∈ C with |u| ≤ 1
2
, we have

∣∣log( 1
1−u

)∣∣ ≤ 3

2
|u|.

Proof. We begin with the well-known Taylor series,

log
(

1
1−u

)
= u+

u2

2
+

u3

3
+ · · · ,

6



which is valid for |u| < 1. Therefore, for |u| ≤ 1
2
, we have

∣∣log( 1
1−u

)∣∣ ≤ |u|+ |u|2

2
+

|u|3

3
+ · · ·

≤ |u|+ 1

2
(|u|2 + |u|3 + · · · )

= |u|+ |u|2

2
(1 + |u|+ |u|2 + · · · )

= |u|+ |u|2

2

(
1

1− |u|

)
.

The last step comes from rewriting the geometric series. Thus, by strategically using substi-

tutions for u ≤ 1
2
we have

∣∣log( 1
1−u

)∣∣ ≤ |u|+ |u|
4

(
1

1− 1
2

)
=

3|u|
2

as claimed.

Now we move to an intricate integral that will prove invaluable to our refined estimate

of the second moment of ω(n).

Lemma 2.2.2. For x ≥ 4, we have

√
x∫
2

log log u

u log x
u

du = (log 2) log log x− 1

2
(log 2)2 − π2

12
+O

(
1

log x

)
.

Proof. Since

∣∣∣∣∣∣∣∣∣
e∫
2

log log u du

u log x
u

∣∣∣∣∣∣∣∣∣≪
1

log x

e∫
2

| log log u| du
u

≪ 1

log x
,

7



we first rewrite the integral as

√
x∫
2

log log u du

u log x
u

=

√
x∫
e

log log u du

u log x
u

+

e∫
2

log log u du

u log x
u

=

√
x∫
e

log log u du

u log x
u

+O

(
1

log x

)
.

We note that the integrand in this new integral is nonnegative over the range of integration

from e to
√
x. This proves helpful since log log e = 0. Next, we estimate this new integral by

expanding the term 1
log x

u
as a geometric series, interchanging the resulting sum and integral,

and then integrating term-by-term. Since 0 < log u
log x

≤ 1
2
, we have

√
x∫
e

log log u

u log x
u

du =

√
x∫
e

log log u

u (log x− log u)
du

=
1

log x

√
x∫
e

log log u

u
(
1− log u

log x

)du

=
1

log x

√
x∫
e

log log u

u

∞∑
k=0

(
log u

log x

)k

du

=

∞∑
k=0

1

(log x)k+1

√
x∫
e

log log u

u
(log u)kdu.

8



The integrands and summands are nonnegative so we can use Tonelli’s Theorem to justify

the interchange of summation and integration. A standard calculus exercise shows that

d

du

{
(log u)k+1

k + 1
log log u− (log u)k+1

(k + 1)2

}
=

log log u

u
(log u)k,

so the Fundamental Theorem of Calculus gives

√
x∫
e

log log u

u
(log u)kdu

=

(
log(

√
x)
)k+1

log log(
√
x)

k + 1
−
(
log(

√
x)
)k+1

(k + 1)2
+

1

(k + 1)2

=

(
log log x− log 2

)
(log x)k+1

2k+1(k + 1)
− (log x)k+1

2k+1(k + 1)2
+

1

(k + 1)2
.

Hence, we have

√
x∫
e

log log u du

u log x
u

=

∞∑
k=0

1

(log x)k+1

√
x∫
e

log log u

u
(log u)kdu

=
(
log log x− log 2

) ∞∑
k=0

1

2k+1(k + 1)
−

∞∑
k=0

1

2k+1(k + 1)2

+

∞∑
k=0

1

(k + 1)2(log x)k+1

= (log log x− log 2)

∞∑
n=1

1

n 2n
−

∞∑
n=1

1

n22n
+O

(
1

log x

)
.

From Equations 1 and 2 of §0.241 of Gradshteyn and Ryzhik [4], we know that

∞∑
n=1

1

n 2n
= log 2 and

∞∑
n=1

1

n22n
=

π2

12
− 1

2
(log 2)2.

9



Therefore,

√
x∫
e

log log u du

u log x
u

= (log 2) log log x− 1

2
(log 2)2 − π2

12
+O

( 1

log x

)
.

Combining our estimates, the lemma follows.
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3 THE VARIANCE OF ω(n)

In this chapter we will discuss and prove increasingly more refined approxi-

mations of the second moment of ω(n), concluding with our own new result, which

is the most precise. First it easily checked that

∑
n≤x

ω(n) =
∑
p≤x

⌊
x

p

⌋
.

With this in mind we begin with a simple lemma that will prove useful throughout.

Lemma 3.0.1. Let p, q denote primes. For x ≥ 2, we have

∑
n≤x

ω(n)2 =
∑
pq≤x
p ̸=q

⌊
x

pq

⌋
+
∑
p≤x

⌊
x

p

⌋
.

Proof. By expressing ω(n) as a sum and then interchanging the order of summation,

we have ∑
n≤x

ω(n)2 =
∑
n≤x

∑
p|n

1

∑
q|n

1

 =
∑
p,q≤x

∑
n≤x
p|n
q|n

1.

There are two cases: either p and q are distinct primes or p = q. Therefore,

∑
n≤x

ω(n)2 =
∑
pq≤x
p ̸=q

∑
n≤x
pq|n

1 +
∑
p≤x

∑
n≤x
p|n

1 =
∑
pq≤x
p ̸=q

⌊
x

pq

⌋
+
∑
p≤x

⌊
x

p

⌋
,

as claimed.

11



3.1 Turán’s proof

Though Turán’s estimate for the second moment of ω(n) only required elementary

knowledge, the importance of his result, which gave a simple proof of the Hardy and Ra-

manujan theorem, cannot be overstated.

Theorem 3.1.1 (Turán’s Theorem). For x ≥ 2, we have

1

x

∑
n≤x

ω(n)2 = (log log x)2 +O(log log x).

Proof. Let p, q denote primes and x ≥ 2. Starting with Lemma 3.0.1, we have that

∑
n≤x

ω(n)2 =
∑
pq≤x
p ̸=q

⌊
x

pq

⌋
+
∑
p≤x

⌊
x

p

⌋
.

The second sum on the right is simply the first moment of ω(n), which gives

∑
p≤x

⌊
x

p

⌋
=
∑
p≤x

(
x

p
+O(1)

)

= x
∑
p≤x

1

p
+O

(∑
p≤x

1

)
.

Here we apply Lemma 2.1.2 to get

∑
p≤x

⌊
x

p

⌋
= x log log x+O(x).

Now looking at the first sum on the right-hand side, we have the clever relation,

∑
p≤

√
x

1

p

2

<
∑
pq<x
p ̸=q

1

pq
<

∑
p≤x

1

p

2

.

12



Then by Lemma 2.1.2, we conclude that

(
log log x+O(1)

)2
<
∑
pq≤x
p ̸=q

1

pq
<
(
log log x+O(1)

)2
.

Hence,

∑
pq≤x
p ̸=q

⌊
x

pq

⌋
= x
∑
pq≤x
p ̸=q

1

pq
+O

∑
pq≤x
p̸=q

1


= x(log log x)2 +O(x log log x),

where ∑
pq≤x
p ̸=q

1 ≪
∑
p≤x

1 ≪ x.

Putting the sums together we have

∑
n≤x

ω(n)2 = x(log log x)2 +O(x log log x),

the desired result.

3.2 Montgomery and Vaughan’s proof

In pursuit of an even tighter bound of the second moment of the function ω(n), we

will now state a theorem inspired by Montgomery and Vaughan [7]. This approach was even

suggested by Turán at the end of his paper [8].

Theorem 3.2.1. For x ≥ 2, we have

1

x

∑
n≤x

ω(n)2 = (log log x)2 + (2b+ 1) log log x+O(1).

Before we prove this theorem, we will first state and prove a simple lemma.

13



Lemma 3.2.2. For x ≥ 2, we have

1

x

∑
p≤x

⌊
x

p

⌋
= log log x+ b+O

(
1

log x

)
,

where b is the constant in Lemma 2.1.2.

Proof. Since 0 ≤ y − ⌊y⌋ < 1, then by using Lemma 2.1.1 and Lemma 2.1.2, we see that

∑
p≤x

⌊
x

p

⌋
=
∑
p≤x

(
x

p
+O(1)

)

= x
∑
p≤x

1

p
+O

(
π(x)

)
= x log log x+ b x+O

(
x

log x

)

as claimed.

Proof of Theorem 3.2.1. Once again, we start from Lemma 3.0.1:

∑
n≤x

ω(n)2 =
∑
pq≤x
p ̸=q

⌊
x

pq

⌋
+
∑
p≤x

⌊
x

p

⌋
.

By adding and subtracting the terms where p = q to the first sum on the right-hand side,

we see that

∑
pq≤x
p ̸=q

⌊
x

pq

⌋
=
∑
pq≤x

⌊
x

pq

⌋
−
∑
p2≤x

⌊
x

p2

⌋
=
∑
pq≤x

⌊
x

pq

⌋
−
∑
p≤

√
x

⌊
x

p2

⌋
.

Therefore, ∑
n≤x

ω(n)2 =
∑
p≤x

⌊
x

p

⌋
+
∑
pq≤x

⌊
x

pq

⌋
−
∑
p≤

√
x

⌊
x

p2

⌋
. (3.1)

14



From this and Lemma 3.2.2, we see that

∑
n≤x

ω(n)2 = x log log x+ b x+
∑
pq≤x

⌊
x

pq

⌋
−
∑
p≤

√
x

⌊
x

p2

⌋
+O

(
x

log x

)
.

To estimate the second sum on right hand-side, we find that

∑
p≤

√
x

⌊
x

p2

⌋
=
∑
p≤

√
x

(
x

p2
+O(1)

)

= x
∑
p≤

√
x

1

p2
+O

(√
x
)
,

since π(
√
x) ≤

√
x. Moreover,

x
∑
p≤

√
x

1

p2
≤ x

∞∑
n=1

1

n2
=

π2

6
x = O(x).

Therefore, ∑
n≤x

ω(n)2 = x log log x+
∑
pq≤x

⌊
x

pq

⌋
+O(x).

This leaves us with only one more sum to analyze. We have

∑
pq≤x

⌊
x

pq

⌋
=
∑
pq≤x

(
x

pq
+O(1)

)

= x
∑
pq≤x

1

pq
+O(x),

because the set of products of two primes that are less than or equal to x is a subset of all

positive integers that are less than or equal to x. Noticing that if pq ≤ x then it follows that

at least one of p or q must be less than or equal to
√
x. Hence, by the so-called hyperbola

15



method (summing above the hyperbola), we see further that

∑
pq≤x

1

pq
=

∑
p≤x

1

p

2

−
∑
p≤x

∑
q≤x
pq>x

1

pq

=

∑
p≤x

1

p

2

−
∑
p≤

√
x

1

p

∑
x
p
<q≤x

1

q
+

 ∑
√
x<p<x

1

p

2

−
∑
q≤

√
x

1

q

∑
x
q
<p≤x

1

p

=

∑
p≤x

1

p

2

− 2
∑
p≤

√
x

1

p

∑
x
p
<q≤x

1

q
+

 ∑
√
x<p<x

1

p

2

. (3.2)

By Lemma 2.1.2, for 2 ≤ y ≤
√
x, we have

∑
x
y
<p≤x

1

p
= log log x− log log x

y
+O

(
1

log x

)

= log

(
log x

log x− log y

)
+O

(
1

log x

)

= log

(
1

1− log y
log x

)
+O

(
1

log x

)

≪ log y

log x
.

Here we used Lemma 2.2.1 to deduce the bound in the final step. Going back to (3.2) and

using this estimate, the second sum is

∑
p≤

√
x

1

p

∑
x
p
<q≤x

1

q
≪
∑
p≤

√
x

1

p

(
log p

log x

)
=

1

log x

∑
p≤

√
x

log p

p
≪ 1

log x
(log x) ≪ 1,
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where we have used Lemma 2.1.2 to estimate the sum over primes. The third sum in (3.2)

is

 ∑
√
x<p<x

1

p

2

=

(
log log x− log log

√
x+O

(
1

log x

))2

=

(
log 2 +O

(
1

log x

))2

≪ 1.

Therefore,

∑
pq≤x

1

pq
=

∑
p≤x

1

p

2

+O(1)

=

(
log log x+ b+O

(
1

log x

))2

+O(1)

= (log log x)2 + 2b log log x+O(1).

Combining our estimates, we see that

∑
n≤x

ω(n)2 = x log log x+ x (log log x)2 + 2bx log log x+O(x)

= x (log log x)2 + (2b+ 1)x log log x+O(x).

This completes the proof.

3.3 A refined estimate for the second moment of ω(n)

Lastly, we look at our own original calculation of the second moment of ω(n) and the

tightest bound of the error yet. Though all that is needed to arrive at our error is trivial,

the result requires the careful manipulation of several moving pieces. We have written and

17



proved each of these manipulations as their own lemmas to make all steps as clear to the

reader as possible. We will conclude by combining all of our results together to achieve our

goal of finding as minimal of an error as possible.

Theorem 3.3.1. For x ≥ 4, we have

∑
n≤x

ω(n)2 = x (log log x)2 + (2b+ 1)x log log x+ Cx+O

(
x log log x

log x

)
,

where b is the constant in Lemma 2.1.2, and

C = b2 + b− π2

6
−
∑

p

1

p2
.

As we did with Theorem 3.2.1, we will first state and prove simple lemmas. Our first

result is an adaptation of Lemma 3.0.1, incorporating both (3.1) and the hyperbola method

in a different manner than used in proving the previous theorem. The main idea of this new

method is to estimate the sum ∑
pq≤x

⌊
x

pq

⌋

in a more precise way. Similar to what we did in the proof of Lemma 3.2.1, we note that

since pq ≤ x, at least one of p or q has to be less than or equal to
√
x. So, without loss of

generality we can assume that one of the primes p or q is less than or equal to
√
x. This

simple observation allows us to refine our previous calculation in numerous places.

Lemma 3.3.2. Let p, q denote primes. For x ≥ 4, we have

∑
n≤x

ω(n)2 = 2
∑
p≤

√
x

∑
q≤x

p

⌊
x

pq

⌋
−
∑
p≤

√
x

∑
q≤

√
x

⌊
x

pq

⌋
+
∑
p≤x

⌊
x

p

⌋
−
∑
p≤

√
x

⌊
x

p2

⌋
. (3.3)

Proof. From (3.1), we have

∑
n≤x

ω(n)2 =
∑
pq≤x

⌊
x

pq

⌋
+
∑
p≤x

⌊
x

p

⌋
−
∑
p≤

√
x

⌊
x

p2

⌋
,

18



for x ≥ 4. Applying the hyperbola method (or the inclusion-exclusion principle) to the first

sum on the right-hand side, we see that

∑
pq≤x

⌊
x

pq

⌋
=
∑
p≤

√
x

∑
q≤x

p

⌊
x

pq

⌋
+
∑
q≤

√
x

∑
p≤x

q

⌊
x

pq

⌋
−
∑
p≤

√
x

∑
q≤

√
x

⌊
x

pq

⌋

= 2
∑
p≤

√
x

∑
q≤x

p

⌊
x

pq

⌋
−
∑
p≤

√
x

∑
q≤

√
x

⌊
x

pq

⌋
.

After combining these estimates, the lemma follows.

We now estimate each of the terms on the right-hand side of (3.3). In Lemma 3.2.2,

for x ≥ 2, we estimated the third sum on the right-hand side of (3.3) and proved that

∑
p≤x

⌊
x

p

⌋
= x log log x+ b x+O

(
x

log x

)
.

In the next lemma, we estimate the fourth sum on the right-hand side of (3.3).

Lemma 3.3.3. For x ≥ 4, we have

1

x

∑
p≤

√
x

⌊
x

p2

⌋
=
∑

p

1

p2
+O

(
1√
x

)
.

Proof. We see that

∑
p≤

√
x

⌊
x

p2

⌋
=
∑
p≤

√
x

(
x

p2
+O(1)

)

= x
∑
p≤

√
x

1

p2
+O

(
π(
√
x)
)

= x
∑

p

1

p2
− x
∑
p>

√
x

1

p2
+O

( √
x

log x

)
,
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where we have added and subtracted the terms with p ≥
√
x and applied Lemma 2.1.1 to

the error term. Note that

x
∑
p>

√
x

1

p2
≤ x
∑
n>

√
x

1

n2
≪ x

∞∫
√
x

du

u2
=

√
x,

so we have ∑
p≤

√
x

⌊
x

p2

⌋
= x
∑

p

1

p2
+O

(√
x
)
.

Thus, proving the lemma.

Next, we estimate the second sum on the right-hand side of (3.3).

Lemma 3.3.4. For x ≥ 4, we have

1

x

∑
p≤

√
x

∑
q≤

√
x

⌊
x

pq

⌋
= (log log x)2 + 2 (b− log 2) log log x

+ (b− log 2)2 +O

(
log log x

log x

)
.

Proof. Notice that by Lemma 2.1.2, we have

∑
p≤

√
x

∑
q≤

√
x

⌊
x

pq

⌋
=
∑
p≤

√
x

∑
q≤

√
x

(
x

pq
+O(1)

)

= x
∑
p≤

√
x

1

p

∑
q≤

√
x

1

q
+O

∑
p≤

√
x

∑
q≤

√
x

1


= x

∑
p≤

√
x

1

p

2

+O

∑
p≤

√
x

1

2.
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Here we are able to apply both Lemma 2.1.2 and 2.1.1 respectively to the above terms to

get

x

(
log log

√
x+ b+O

(
1

log
√
x

))2

+O

(( √
x

log
√
x

)2
)

= x

(
log log x− log 2 + b+O

(
1

log x

))2

+O

(
x

log2 x

)
= x (log log x)2 + 2 (b− log 2)x log log x

+ (b− log 2)2 x+O

(
x log log x

log x

)
,

as claimed.

Before we can estimate the first term on the right-hand side of (3.3), we first prove

a preliminary estimate. This result is where the proof of our theorem differs the most from

previous investigations as we will now estimate the first term on the right-hand side of (3.3)

using Lemma 2.2.2.

Lemma 3.3.5. For x ≥ 4, we have

1

x

∑
p≤

√
x

∑
q≤x

q

⌊
x

pq

⌋
= (log log x)2 + (2b− log 2) log log x

+ b (b− log 2) +
1

2
(log 2)2 − π2

12
+O

(
log log x

log x

)
.

Proof. We have

∑
p≤

√
x

∑
q≤x

q

⌊
x

pq

⌋
=
∑
p≤

√
x

∑
q≤x

q

(
x

pq
+O(1)

)

= x
∑
p≤

√
x

1

p

∑
q≤x

p

1

q
+O

∑
p≤

√
x

∑
q≤x

p

1

.
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Using Lemmas 2.1.1 and 2.1.2, we estimate the error term by

∑
p≤

√
x

∑
q≤x

p

1 ≪
∑
p≤

√
x

π
(

x
p

)
≪
∑
p≤

√
x

x

p log x
p

≪ x

log x

∑
p≤

√
x

1

p
≪ x log log x

log x
.

Using Lemma 2.1.2 again, we find that

∑
p≤

√
x

1

p

∑
q≤x

p

1

q
=
∑
p≤

√
x

1

p

(
log log x

p
+ b+O

(
1

log x
p

))

=
∑
p≤

√
x

1

p
log log x

p
+ b
∑
p≤

√
x

1

p
+O

x
∑
p≤

√
x

1

p log x
p

.

The error term above is handled easily as:

∑
p≤

√
x

1

p log x
p

≪ 1

log x

∑
p≤

√
x

1

p
≪ log log x

log x
.

Therefore,

∑
p≤

√
x

∑
q≤x

q

⌊
x

pq

⌋
= x
∑
p≤

√
x

1

p
log log x

p
+ x b

∑
p≤

√
x

1

p
+O

(
x log log x

log x

)
. (3.4)

To estimate the second term on the right-hand side, we see that

x b
∑
p≤

√
x

1

p
= x b

(
log log

√
x+ b+O

(
1

log
√
x

))

= x b

(
log log x− log 2 + b+O

(
1

log x

))

= b x log log x+ b (b− log 2)x+O

(
1

log x

)
.

(3.5)
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To estimate the first term on the right-hand side, we use the method of partial summation.

Since

d

du

{
log log

(
x
u

)}
=

−1

u log x
u

, (3.6)

we see that

∑
p≤

√
x

1

p
log log x

p
=

√
x∫

2−

log log
(
x
u

)
d

∑
p≤u

1

p



=

∑
p≤u

1

p

 log log x
u

∣∣∣∣∣
u=

√
x

u=2−

+

√
x∫
2

∑
p≤u

1

p

 du

u log x
u

.

Now, the first term above is

∑
p≤u

1

p

 log log x
u

∣∣∣∣∣
u=

√
x

u=2−

=

∑
p≤

√
x

1

p

 log log
√
x

=

(
log log

√
x+ b+O

(
1

log
√
x

))
(log log x− log 2)

=

(
log log x− log 2 + b+O

(
1

log x

))
(log log x− log 2)

= (log log x)2 + (b− 2 log 2) log log x

− log 2(b− log 2) +O

(
log log x

log x

)
,

(3.7)
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while the integral is

√
x∫
2

∑
p≤u

1

p

 du

u log x
u

=

√
x∫
2

(
log log u+ b+O

(
1

log u

))
du

u log x
u

=

√
x∫
2

log log u

u log x
u

du+ b

√
x∫
2

du

u log x
u

+O


√
x∫
2

du

u log u log x
u

.

The error term here is

≪ 1

log x

√
x∫
2

du

u log u
≪ log log x

log x
. (3.8)

In Lemma 2.2.2, we showed that

√
x∫
2

log log u

u log x
u

du = (log 2) log log x− 1

2
(log 2)2 − π2

12
+O

(
1

log x

)
, (3.9)

and by (3.6) we have

b

√
x∫
2

du

u log x
u

= b

√
x∫
1

du

u log x
u

+O

(
1

log x

)

= −b log log x
u

∣∣∣u=√
x

u=1
+O

(
1

log x

)

= b
(
log log x− log log

√
x
)
+O

(
1

log x

)

= b log 2 +O

(
1

log x

)
.

(3.10)

24



Therefore, combining (3.7), (3.8), (3.9), and (3.10), we deduce that

∑
p≤

√
x

1

p
log log x

p
= (log log x)2 + (b− log 2) log log x

+
1

2
(log 2)2 − π2

12
+O

(
log log x

log x

)
.

In light of the expression in (3.4), adding this result to the estimate in (3.5) and then

simplifying, the lemma now follows.

We are now in position to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. By Lemmas 3.2.2, 3.3.2, 3.3.3, 3.3.4, and 3.3.5, we have

∑
n≤x

ω(n)2 = 2
∑
p≤

√
x

∑
q≤x

q

⌊
x

pq

⌋
−
∑
p≤

√
x

∑
q≤

√
x

⌊
x

pq

⌋
+
∑
p≤x

⌊
x

p

⌋
−
∑
p≤

√
x

⌊
x

p2

⌋

= 2

{
x (log log x)2 + (2b− log 2)x log log x

+ x

(
b (b− log 2) +

1

2
(log 2)2 − π2

12

)
+O

(
x log log x

log x

)}
−
{
x (log log x)2 + 2 (b− log 2)x log log x

+ (b− log 2)2 x+O

(
x log log x

log x

)}
+

{
x log log x+ b x+O

(
x

log x

)}
−
{
x
∑

p

1

p2
+O

(√
x
)}

= x (log log x)2 + (2b+ 1)x log log x+ Cx+O

(
x log log x

log x

)
,

where the constant

C = b2 + b− π2

6
−
∑

p

1

p2
.

This completes the proof of the theorem.
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3.4 A refined estimate for the variance of ω(n)

With this in mind, we have now calculated estimates of everything needed to find the

variance of ω(n). Recalling the formula for the variance of a random variable is simply

Var (X) = E [(X − µ)2],

we now have all of the needed estimates.

Theorem 3.4.1. For x ≥ 4,

Var
(
ω(n)

)
= log log x+ b−

∑
n

1

n2
−
∑

p

1

p2
+O

(
log log x

log x

)
.

Proof. First let us find a stronger estimate for the average of ω(n) then we have previously

stated.

∑
n≤x

ω(n) =
∑
p≤x

⌊
x

p

⌋

=
∑
p≤x

(
x

p
+O(1)

)

= x
∑
p≤x

1

p
+O

(∑
p≤x

1

)
.

Now using Lemmas 2.1.2 and 2.1.1 respectively on the terms above we have

∑
n≤x

ω(n) = x log log x+ xb+O

(
x

log x

)
.
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The importance of this step is to ensure that we have an error term for our average of ω(n)

that will not interfere with the error we found for the second moment. Thus,

Var (ω(n)) =
1

x

∑
n≤x

(
ω(n)− 1

x

∑
n≤x

ω(n)

)2

=
1

x

∑
n≤x

(
ω(n)− log log x− b+O

(
1

log x

))2

=
1

x

∑
n≤x

ω(n)2 − 1

x

(
2 log log x+ 2b+O

(
1

log x

))∑
n≤x

ω(n)

+

(
log log x+ b+O

(
1

log x

))2

=
1

x

∑
n≤x

ω(n)2 −

(
log log x+ b+O

(
1

log x

))2

=
1

x

∑
n≤x

ω(n)2 − (log log x)2 − 2b log log x− b2 +O

(
log log x

log x

)
.

Replacing
1

x

∑
n≤x

ω(n)2 with our result from Theorem 3.3.1 and combining terms we see that

Var (ω(n)) = log log x+ b− π2

6
−
∑
p

1

p2
+O

(
log log x

log x

)

where
π2

6
=
∑
n

1

n2
, proving the theorem.

This final approximation of the variance of ω(n) aligns with what we would have expected

from the variance based on Turán’s Theorem. Ours is just a more precise statement of his

result.
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4 GRANVILLE AND SOUNDARARAJAN’S PROOF OF THE ERDŐS-KAC

THEOREM

In this section we give a proof of the classical Erdős-Kac Theorem based on a

modern treatment by Granville and Soundararajan [5]. The proof of Granville and

Soundararajan proceeds by computing the moments of

ω(n)− log log x√
log log x

for n ≤ x. They showed that these moments match the moments of a random variable

with standard normal distribution. From this, the Erdős-Kac theorem follows since it

is known that the normal distribution is completely characterized by its moments [1,

Thm. 30.1]. The moments approach to proving the Erdős-Kac theorem was actually

first accomplished by Delange [2], but the proof of Granville and Soundararajan is

much simpler. It is also more powerful as it yields the k-th moment uniformly for

k ≤ (log log x)
1
3 . However in this thesis, we are content to establish the k-th moment

for any fixed natural number k, which is strong enough to conlcude the Erdős-Kac

Theorem still. Although the paper by Granville and Soundararajan is beautiful, it

is rather terse. Our exposition provides more details to the arguments given in that

paper. We hope that this will be useful for those trying to learn the field. Below is

the main theorem of [5].
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Theorem 4.0.1 (Granville and Soundararajan). Let x ≥ 3. For any fixed natural number

k, let Ck =
Γ(k + 1)

2
k
2Γ
(
k
2
+ 1
) . For even k we have

(a)
∑
n≤x

(ω(n)− log log x)k = Ckx(log log x)
k
2

(
1 +O

(
1√

log log x

))
,

and for odd k we have

(b)
∑
n≤x

(ω(n)− log log x)k ≪ x(log log x)
k
2

1√
log log x

.

Recall that for k even, the k-th moment of a standard normal variable is precisely Ck.

For k odd, the k-th moment of a standard normal variable is 0. Asymptotically speaking, our

results agree with this since (b) implies that the k-th moment of ω(n)−log log x√
log log x

decays similar

to (log log x)−
1
2 , as x → ∞, when k is odd.

Define

fp(n) =


1− 1

p
if p |n

−1
p

if p ∤n,

where the reasoning for this definition will be explained in Section 4.1. Now we extend

this definition totally multiplicatively in the subscript. If r ≥ 1 has prime factorization

r =
∏

i(qi)
αi for distinct primes qi and αi ≥ 1, then define

fr(n) = fqα1
1 q

α2
2 q

α3
3 ···(n)

=
∏
i

(
fqi(n)

)αi .
(4.1)

Theorem 4.0.1 will arise from the following result. It will become apparent in the next section

why the moments given in Proposition 4.0.2 can serve as a substitute for the moments of

Theorem 4.0.1.
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Proposition 4.0.2. Let x, z ≥ 3. For fixed even natural numbers k,

(a)
∑
n≤x

(∑
p≤z

fp(n)

)k

= Ckx(log log z)
k
2

(
1 +O

(
1

log log z

))
+O(π(z)k)

while, for fixed odd numbers k, we have

(b)
∑
n≤x

(∑
p≤z

fp(n)

)k

≪ x(log log z)
k
2

1√
log log z

+ π(z)k.

Here π(z) denotes the number of primes less than or equal to z.

4.1 Main idea of Granville and Soundararajan’s result

A natural question to ask is, why do we want to work with the moments of Proposition

4.0.2 in the first place? Let us address this first before moving on. If we think of a prime

p dividing n with probability 1
p
independently of other primes, then we have E(fp) = 0.

Thus
∑

p≤z fp(n) is a sum of independent random variables of mean 0. By the central limit

theorem we would then expect this sum to tend towards a normal distribution, which is

what we want. Of course, this is only a model, for fp(n) is not really a random variable.

But the independence idea described above can actually be realized on average over n, up

to an “error term”. If one has faith in this model and goes ahead with all the number

theoretic calculations, then one would hope that everything will work out “in the wash” and

the normal distribution will arise asymptotically. This is exactly what happens.

4.2 Deducing Theorem 4.0.1 from Proposition 4.0.2

In this section, we assume Proposition 4.0.2, and deduce Theorem 4.0.1 from it. We

now begin building up to this. The following lemma motivates why the moments given in

Proposition 4.0.2 can serve as a substitute for the moments of Theorem 4.0.1.

Lemma 4.2.1. For z = x
1
k and n ≤ x, we have
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ω(n)− log log x =
∑
p≤z

fp(n) +O(1).

Proof. We have

ω(n)− log log x =
∑
p|n

1− log log x

=
∑
p|n
p>z

1 +
∑
p|n
p≤z

1− log log x

by separating the primes, p, p > z where and p ≤ z. Furthermore, we can rewrite this as

∑
p|n
p>z

1 +
∑
p|n
p≤z

1− log log x =
∑
p|n
p>z

1 +
∑
p|n
p≤z

1 +

∑
p|n
p≤z

1

p
−
∑
p|n
p≤z

1

p

− log log x

=
∑
p|n
p>z

1 +
∑
p|n
p≤z

(
1− 1

p

)
+
∑
p|n
p≤z

1

p
− log log x.

Now the sum
∑
p|n
p≤z

1

p
can be extended to all p ≤ z as long as we subtract away the sum

∑
p∤n
p≤z

1

p
.

Thus, the above expression is as follows

∑
p|n
p>z

1 +
∑
p|n
p≤z

(
1− 1

p

)
+
∑
p∤n
p≤z

(
− 1

p

)
+
∑
p≤z

(
1

p

)
− log log x.

Looking at our second and third summation above, we see this is exactly
∑

p≤z fp(n). This

gives us

ω(n)− log log x =
∑
p≤z

fp(n) +
∑
p|n
p>z

1 +

∑
p≤z

(
1

p

)
− log log x

.
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Hence, by Lemma 2.1.2 we have on the right-hand side

∑
p≤z

fp(n) +
∑
p|n
p>z

1 +O(1).

The second sum is bounded (in terms of k, which is fixed) since an integer n ≤ x cannot

have more than k prime divisors larger than z = x
1
k . Thus

∑
p|n
p>z

1 ≪ 1.

So we have

ω(n)− log log x =
∑
p≤z

fp(n) +O(1),

proving the lemma.

We now state and prove an extension of the prior lemma.

Lemma 4.2.2. We have

(ω(n)− log log x)k =

(∑
p≤z

fp(n)

)k

+O

∣∣∣∣∣ max
0≤ℓ≤k−1

∑
p≤z

fp(n)

∣∣∣∣∣
ℓ
.

Proof. From Lemma 4.2.1 we have

(ω(n)− log log x)k =

(∑
p≤z

fp(n) +O(1)

)k

.

Here we can apply the Binomial Expansion Theorem to get

k∑
ℓ=0

[(
k

ℓ

)(∑
p≤z

fp(n)

)ℓ

O(1)k−ℓ

]

=

(
k

k

)(∑
p≤z

fp(n)

)k

+
k−1∑
ℓ=0

[(
k

ℓ

)(∑
p≤z

fp(n)

)ℓ

O(1)k−ℓ

]
,
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where the last line simply comes from writing out the ℓ = k term of the summation. Thus,

we have

(ω(n)− log log x)k =

(∑
p≤z

fp(n)

)k

+O

∣∣∣∣∣ max
0≤ℓ≤k−1

∑
p≤z

fp(n)

∣∣∣∣∣
ℓ


as stated.

The previous lemma suggests where the main term and error term of our moments

of
∑

n≤x(ω(n) − log log x) will arise from. So let us first treat the error term we found in

Lemma 4.2.2.

Lemma 4.2.3. We have

O

∣∣∣∣∣ max
0≤ℓ≤k−1

∑
p≤z

fp(n)

∣∣∣∣∣
ℓ
 = O

(
x(log log z)

k−1
2

)
.

Proof. Let ℓ ≤ k − 1.

Case 1 (Assume ℓ is even):

Clearly ∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
ℓ

=

(∑
p≤z

fp(n)

)ℓ

.

Therefore, it follows directly that

O

∑
n≤x

∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
ℓ
 = O

(∑
n≤x

(∑
p≤z

fp(n)

)ℓ)

= O

(
x(log log z)

ℓ
2 + π(z)ℓ

)

by applying part (a) of Proposition 4.0.2. We now make a quick note that

π(z)ℓ =

(∑
p≤z

1

)ℓ

≤

(∑
n≤z

1

)k

=

∑
n≤x

1
k

1


k

≤
(
x

1
k

)k
= x.
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Hence,

O

∑
n≤x

∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
ℓ
 = O

(
x(log log z)

ℓ
2

)
= O

(
x(log log z)

k−1
2

)
since ℓ ≤ k − 1.

Case 2 (Assume ℓ is odd):

Now when ℓ is odd,

∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
ℓ

=

∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
ℓ−1
 1

2
∣∣∣∣∣∑

p≤z

fp(n)

∣∣∣∣∣
ℓ+1
 1

2

=

(∑
p≤z

fp(n)

)ℓ−1
 1

2
(∑

p≤z

fp(n)

)ℓ+1
 1

2

since ℓ− 1, ℓ+ 1 are even. For the sake of being concise, let’s define

α :=

(∑
p≤z

fp(n)

)ℓ−1
 1

2

and

β :=

(∑
p≤z

fp(n)

)ℓ+1
 1

2

.

Therefore, for an odd natural number ℓ, we’ve shown

∑
n≤x

∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
ℓ

=
∑
n≤x

αβ.

This allows us to use the Cauchy-Schwarz lemma. We have

∣∣∣∣∣∑
n≤x

αβ

∣∣∣∣∣ ≤
√∑

n≤x

α2

√∑
n≤x

β2

=

(∑
n≤x

(∑
p≤z

fp(n)

)ℓ−1) 1
2
(∑

n≤x

(∑
p≤z

fp(n)

)ℓ+1) 1
2
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where the last line simply comes from using our definitions of α and β. This rewrite of our

original sum
∑

n≤x

∣∣∣∑p≤z fp(n)
∣∣∣ℓ proves crucial as both ℓ−1, ℓ+1 are clearly even, allowing

us to apply part (a) of Proposition 4.0.2 to both of these sums. Hence, it is now easy to see

that

O

(∑
n≤x

∣∣∣∣∣∑
p≤z

fp(n)

∣∣∣∣∣
ℓ)

= O

((∑
n≤x

(∑
p≤z

fp(n)

)ℓ−1) 1
2
(∑

n≤x

(∑
p≤z

fp(n)

)ℓ+1) 1
2
)

= O

((√
x(log log z)

ℓ−1
2 + π(z)ℓ−1

)(√
x(log log z)

ℓ+1
2 + π(z)ℓ+1

))
,

using part (a) of Proposition 4.0.2. Simplifying the last expression, we are left with

O

(
x(log log z)

ℓ
2

)
= O

(
x(log log z)

k−1
2

)
,

since ℓ ≤ k − 1.

We now have all the tools necessary to prove Theorem 4.0.1 using Proposition 4.0.2.

Proof of Theorem 4.0.1, assuming Proposition 4.0.2. Similar to the prior lemma, we will

prove this theorem in two cases.

Case 1 (Assume k is even): By lemmas 4.2.2 and 4.2.3

(ω(n)− log log x)k =
∑
n≤x

(∑
p≤z

fp(n)

)k

+O
(
x(log log z)

k−1
2

)
.
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Since we are assuming that k is even, then we can apply part (a) of Proposition 4.0.2 to the

right-hand side giving us

Ckx(log log z)
k
2

(
1 +O

(
1

log log z

))
+O(π(z)k) +O

(
x(log log z)

k−1
2

)
= Ckx(log log z)

k
2

(
1 +O

(
1√

log log z

))
.

Recall that z = x
1
k . After making this substitution for z we quickly see that

(ω(n)− log log x)k = Ck

(
log log x

1
k

) k
2

1 +O

 1√
log log x

1
k


= Ck(log log x− log k)

k
2

[
1 +O

(
1√

log log x− log k

)]
.

Keeping in mind that k is fixed, we have

Ck(log log x)
k
2

[
1 +O

(
1

log log x

)] k
2
[
1 +O

(
1√

log log x

)]
= Ck(log log x)

k
2

[
1 +O

(
1

log log x

)][
1 +O

(
1√

log log x

)]
= Ck(log log x)

k
2

(
1 +O

(
1√

log log x

))
.

Hence, the theorem holds in Case 1.

Case 2 (Assume k is odd): Once again from lemmas 4.2.2 and 4.2.3 we start with

(ω(n)− log log x)k =
∑
n≤x

(∑
p≤z

fp(n)

)k

+O
(
x(log log z)

k−1
2

)
.
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Because we are assuming that k is odd, this time we apply part (b) of Proposition 4.0.2 to

the right-hand side to get

∑
n≤x

(∑
p≤z

fp(n)

)k

+O
(
x(log log z)

k−1
2

)
≪ x(log log z)

k
2

1√
log log z

+ π(z)k + x(log log z)
k−1
2 .

We again make the same substitution for z as we did in the previous case. Therefore, the

expression above is

≪ x(log log x− log k)
k
2

1√
log log x− log k

≪ x(log log x)
k
2

(
1 +

1

log log x

) k
2
(

1√
log log x

)
≪ x(log log x)

k
2

(
1 +

1

log log x

)(
1√

log log x

)
≪ x(log log x)

k
2

(
1√

log log x

)
.

Hence, we have proved that Proposition 4.0.2 implies Theorem 4.0.1.

4.3 Proof of Proposition 4.0.2

By definition after expanding out the left-hand side,

∑
n≤x

(∑
p≤z

fp(n)

)k

=
∑

p1,...,pk≤z

(∑
n≤x

fp1···pk(n)

)
. (4.2)

For r ≥ 1 with a prime factorization of r :=
∏s

i=1 q
αi
i for distinct primes qi and αi ≥ 1, let us

denote the square-free part of r by R. Thus R :=
∏s

i=1 qi. This leads us to our next lemma.
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Lemma 4.3.1. We have ∑
n≤x

fr(n) =
∑
d|R

fr(d)
∑
n≤x

d=(n,R)

1.

Proof. Since R is a square-free product of unique primes then if d = (n,R), then d is also

product of square-free, unique primes. These primes are shared by R and n; hence, they are

shared by r and n as well. Furthermore, for n =
∏

j p
βj

j and r =
∏s

i=1 q
αi
i , we have

fr(n) =
∏
i

fqi(n)
αi

=
∏
i

fqi

(∏
j

p
βj

j

)αi

.

Note qi | pβ if and only if qi | p. So our right-hand side can be rewritten as

∏
i

fqi

(∏
j

pj

)αi

.

Furthermore, qi |
∏

j pj if and only if qi = pj for some j, which leads us to

fr(n) =
∏
i

fqi

(∏
j

pj

)αi

=
∏
i

fqi

(
(R, n)

)αi

= fr(d).
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Thus,

∑
n≤x

fr(n) =
∑
n≤x

d=(n,R)

∑
d|R

fr(n)

=
∑
n≤x

d=(n,R)

∑
d|R

fr(d)

=
∑
d|R

fr(d)
∑
n≤x

d=(n,R)

1

as stated.

Here Lemma 2.1.3 proves to be important as it can be used to build a “delta” function

to pick out the integer n = 1. Let φ(n) denote the Euler totient function (which counts the

number of integers in the closed interval [1, n] which are coprime to n) and let τ(n) denote

the divisor function (which counts the number of positive divisors of n). We want to work

towards

Lemma 4.3.2. ∑
n≤x

fr(n) = xG(r) +O(1)

for

G(r) :=
1

R

∑
d|R

fr(d)φ
(
R
d

)
.

First let us start with a simpler version of Lemma 4.3.2.

Lemma 4.3.3. ∑
n≤x

fr(n) = xG(r) +O

∑
d|R

fr(d)τ
(
R
d

)
Proof. From Lemma 4.3.1 we have

∑
n≤x

fr(n) =
∑
d|R

fr(d)
∑
n≤x

d=(n,R)

1.
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We begin by analyzing the inner sum on the right-hand side. For d|R, we have

∑
n≤x

d=(n,R)

1 =
∑
n≤x
d|n

(n
d
,R
d )=1

1.

Now we use the Möbius function to express the condition
(
n
d
, R
d

)
= 1. We have that the sum

above equals

∑
n≤x
d|n

∑
e|(n

d
,R
d )

µ(e),

which after exchanging the order of summation is

∑
e|R

d

µ(e)
∑
n≤x
ed|n

1 =
∑
e|R

d

µ(e)
[ x
ed

+O(1)
]

=
∑
e|R

d

µ(e)R

ed

x

R
+O

∑
e|R

d

1

.

Now recall a basic identity for the Euler totient function (which follows immediately by

multiplicativity and the value of φ at the prime powers):

φ(n) = n
∏
p|n

(
1− 1

p

)
=
∑
d|n

µ(d)
n

d
.

Using this identity, we finally get

∑
n≤x

d=(n,R)

1 =
∑
e|R

d

µ(e)R

ed

x

R
+O

∑
e|R

d

1


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where our error term comes from using Lemma 2.1.3, and our right-hand side is

= φ
(
R
d

) x
R

+O
(
τ
(
R
d

))
.

Inserting back this expression for the inner sum, we get

∑
n≤x

fr(n) =
∑
d|R

fr(d)
∑
n≤x

d=(n,R)

1

=
x

R

∑
d|R

fr(d)φ
(
R
d

)
+O

∑
d|R

fr(d)τ
(
R
d

)
= xG(r) +O

∑
d|R

fr(d)τ
(
R
d

)
as claimed.

To get Lemma 4.3.2 we look at the error from Lemma 4.3.3.

Lemma 4.3.4. We have

O

∑
d|R

fr(d)τ
(
R
d

) = O(1).

Proof. First we will show that ∑
d|R

fr(d)τ
(
R
d

)
is multiplicative in R. Precisely, we will show that

∑
d|R

fr(d)τ
(
R
d

)
=

s∏
i=1

∑
di|qi

fqiαi (di)τ
(

qi
di

)
by working in reverse and using that τ(n) is multiplicative in n and fr(n) is multiplicative

as well by definition. Multiplying together the values of τ using multiplicativity, we get that

41



the right-hand side above equals

s∏
i=1

∑
di|qi

fqiαi (di)τ
(

qi
di

) = τ
(
R
d

)∑
d1|q1

fq1α1 (d1)

 · · ·

∑
ds|qs

fqsαs (ds)


=
[
τ
(
R
d

)]∑
d1|q1
...

ds|qs

(
s∏

i=1

fqiαi (d)

)

=
∑
d|R

f∏ qiαi (d)τ
(
R
d

)
,

proving that we have multiplicativity. Furthermore, for q prime, we have d | q if and only if

d = 1 or d = q, and τ(q) = 2. Thus, we see that

∣∣∣∣∣∣
∑
d|qi

fqαi
i
(d)τ

(
qi
d

)∣∣∣∣∣∣ =
∣∣∣∣fqαi

i
(1)τ(qi) + fqαi

i
(qi)τ(1)

∣∣∣∣
=

∣∣∣∣(− 1

qi

)αi

τ(qi) +

(
1− 1

qi

)αi
∣∣∣∣

≤ 1.

Using this we have,

∣∣∣∣∣∣
∑
d|R

f∏s
i=1 q

αi
i
(d)τ

(
R
d

)∣∣∣∣∣∣ =
∣∣∣∣∣∣

s∏
i=1

∑
d|qi

fqαi
i
(d)τ

(
qi
d

)∣∣∣∣∣∣
≤

s∏
i=1

1 = 1,

which proves our lemma.

We are now able to prove Lemma 4.3.2.
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Proof of Lemma 4.3.2. By lemmas 4.3.1, 4.3.3, and 4.3.4, we have that

∑
n≤x

fr(n) =
∑
d|R

fr(d)
∑
n≤x

d=(n,R)

1

= xG(r) +O

∑
d|R

fr(d)τ
(
R
d

)
= xG(r) +O(1)

as stated.

Let’s now make an observation about G(r).

Lemma 4.3.5. We have

G(r) =
∏
qα∥r

[
1

q

(
1− 1

q

)α

+

(
1− 1

q

)(
−1

q

)α
]
.

Proof. We begin this proof similarly to Lemma 4.3.4 by first showing that G(r) is multi-

plicative. Define d := d1d2 · · · ds. Then

s∏
i=1

(
G(qαi

i )
)
= G(qα1

1 )G(qα2
2 ) · · ·G(qαs

s )

=

 1

q1

∑
d1|q1

fqα1
1
(d1)φ

(
q1
d1

) 1

q2

∑
d2|q2

fqα2
2
(d2)φ

(
q2
d2

) · · ·

· · ·

 1

qs

∑
ds|qs

fqαs
s
(ds)φ

(
qs
ds

).
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Noting that φ(n) is multiplicative then we have

1

R

∑
d1|q1

fqα1
1
(d1)

∑
d2|q2

fqα2
2
(d2)

 · · ·

∑
ds|qs

fqαs
s
(ds)

φ(R
d

)
=

1

R

∑
d1|q1
...

ds|qs

[
s∏

i=1

(
fqi(di)

)αi

]
φ
(
R
d

)
.

Using the multiplicativity of fr(n), we get that the above expression is

1

R

∑
d|R

f∏ q
αi
i
(d)φ

(
R
d

)
= G

(
s∏

i=1

qαi
i

)
.

Thus G(r) is multiplicative. Furthermore, at prime powers we have

G(qαi
i ) =

1

qi

∑
d|qi

fqαi
i
(d)φ

(
qi
d

)
=

1

qi

(
1− 1

qi

)αi

φ
(

qi
qi

)
+

1

qi

(
− 1

qi

)αi

φ
(
qi
1

)
.

Now evaluating φ(qi) = qi − 1, the above expression is

1

qi

(
1− 1

qi

)αi

+
1

qi

(
− 1

qi

)αi

(qi − 1)

=
1

qi

(
1− 1

qi

)αi

+

(
1− 1

qi

)(
− 1

qi

)αi

.
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With this we see that

G(r) = G

(
s∏

i=1

qαi
i

)
=

s∏
i=1

G(qαi
i )

=
s∏

i=1

[
1

qi

(
1− 1

qi

)αi

+

(
1− 1

qi

)(
− 1

qi

)αi

]

=
∏
qα∥r

[
1

q

(
1− 1

q

)α

+

(
1− 1

q

)(
−1

q

)α
]
,

giving us the wanted result.

Keeping this lemma in mind, we see a crucial property of G(r) given in the next

lemma. We say that r is square-full if every prime divisor of r occurs with exponent at least

two. That is, q|r =⇒ q2|r for all primes q.

Lemma 4.3.6. If r is not square-full, then G(r) = 0.

Proof. We have seen that

G(r) =
∏
qα∥r

[
1

q

(
1− 1

q

)α

+

(
1− 1

q

)(
−1

q

)α
]
.

If r is not square-full, then it has a prime factor q with corresponding exponent α = 1. Now

it remains to observe that

(
−1

q

)(
1− 1

q

)1

+

(
1− 1

q

)(
1

q

)1

= 0.

Now we are ready to use our tools. We return to (4.2), where we saw

∑
n≤x

(∑
p≤z

fp(n)

)k

=
∑

p1,...,pk≤z

(∑
n≤x

fp1···pk(n)

)
.
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To this we can apply Lemma 4.3.2 and Lemma 4.3.6 to get that the above k-th moment

equals

∑
p1,...,pk≤z

(
xG(p1 · · · pk) +O(1)

)
=

∑
p1,...,pk≤z

p1···pk square-full

xG(p1 · · · pk) +O

( ∑
p1,...,pk≤z

1

)

=
∑

p1,...,pk≤z
p1···pk square-full

xG(p1 · · · pk) +O
(
π(z)k

)
. (4.3)

From here forward, we will begin referencing the first term above as the “main term.” Let

q1 < · · · < qs be the distinct primes of the square-full number p1 · · · pk in the argument of the

main term. Note that the exponents of each prime qi must satisfy αi ≥ 2, by the square-full

assumption. This implies that s ≤ k
2
. So we may rewrite our main term as follows

∑
s≤ k

2

∑
q1<···<qs≤z

∑
α1···αs≥2∑

i αi=k

k!

α1! · · ·αs!
G(qα1

1 · · · qαs
s ) (4.4)

where k!
α1!···αs!

comes from the number of ways to divide k different objects into s groups of

sizes α1, . . . , αs.

We now want to find those values in our summation that make the largest contribution

to the overall value. Our strategy for this is to first calculate the value of the term when

s = k
2
(which occurs only when k is even) and then approximate the value for those terms

where s < k
2
. We denote the former by M k

2
and the total of the rest of the terms by M< k

2
.

Thus (4.4) equals M k
2
+M< k

2

Lemma 4.3.7. When k is even, we have

M k
2
=

k!

2
k
2

(
k
2

)
!

(
log log z +O(1)

) k
2 .
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Proof. Recall that M k
2
is the term of (4.4) with s = k

2
. In this term we have αi = 2 for all

i. Thus

M k
2
=

k!

2
k
2

(
k
2

)
!

∑
q1,...,qk/2≤z
qi distinct


k
2∏

i=1

1

qi

(
1− 1

qi

)
since there are k

2
many α′

is, which can be ordered k
2
! times. Let us first work towards finding

an upper bound. By ignoring the distinctness condition of the q′is we see that our sum is

bounded from above by

k!

2
k
2

(
k
2

)
!

∑
p≤z

1

p

(
1− 1

p

) k
2

=
k!

2
k
2

(
k
2

)
!

∑
p≤z

1

p
−
∑
p≤z

1

p2

 k
2

.

The first sum on the right-hand side is log log z +O(1) by Lemma 2.1.2. Also

∑
p≤z

(
1

p

)2

≪
∞∑
n=1

1

n2
≪ 1.

Hence, we have an upper bound for M k
2
of

k!

2
k
2

(
k
2

)
!

(
log log z +O(1)

) k
2 .

Now onto finding a lower bound. Clearly,

∑
q1,...,qk/2≤z
qi distinct


k
2∏

i=1

1

qi

(
1− 1

qi

) =
∑
q1≤z

1

q1

(
1− 1

q1

)
· · ·
∑
q k
2
≤z

1

q k
2

(
1− 1

q k
2

)
(4.5)

for q k
2
distinct from q k

2
−1, . . . , q1. From here we want to find a lower bound for the last sum

of (4.5) and then recursively apply that bound for each sum in the product. The term

1

q k
2

(
1− 1

q k
2

)
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is the smallest it can possibly be when q k
2
is the largest prime possible. Now q k

2
can take on

any prime value except the ones already taken up by q1, . . . , q k
2
−1 since the sum over q k

2
is

innermost and there is a distinctness requirement. Thus the smallest values of 1
q k
2

(
1− 1

q k
2

)
will arise when q1, . . . , q k

2
−1 have taken up the smallest prime values available, leaving only

larger prime values for q k
2
to take on. Let πn be the nth smallest prime. By this logic, we

have

∑
q k
2
≤z

1

q k
2

(
1− 1

q k
2

)
≥
∑

π k
2
≤q k

2
≤z

1

q k
2

(
1− 1

q k
2

)

=
∑

π k
2
≤q k

2
≤z

1

q k
2

−
∑

π k
2
≤q k

2
≤z

(
1

q k
2

)2

.

Applying Lemma 2.1.2 to the first term gives

log log z +O(1)−
(
log log π k

2
+O(1)

)
= log log z +O(1),

since π k
2
≤ k and k is fixed. Furthermore,

∑
π k

2
≤q k

2
≤z

(
1

q k
2

)2

≪
∞∑
n=1

1

n2
≪ 1,

as already observed. Thus, when combined we see that

∑
π k

2
≤q k

2
≤z

1

q k
2

(
1− 1

q k
2

)
≥ log log z +O(1).

Repeating this process for all of the sums given in the product (4.5) gives the lower bound

k!

2
k
2

(
k
2

)
!

(
log log z +O(1)

) k
2 .
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Thus, our lower and upper bounds are equal (asymptotically) so, when k is even, M k
2
is

k!

2
k
2

(
k
2

)
!

∑
q1,...,qk/2
qi distinct

k
2∏

i=1

1

qi

(
1− 1

qi

)

=
k!

2
k
2

(
k
2

)
!

(
log log z +O(1)

) k
2

as stated.

Now we move to the last step needed to prove Granville and Soundararajan’s beautiful

theorem: that is to approximateM< k
2
. For this last part of the proof we will be utilizing

some elementary combinatorics.

Lemma 4.3.8. We have

M< k
2
≪ max

s< k
2

(
log log z

)s

.

Proof. Let us begin with the simple observation that

0 ≤ G(qα1
1 · · · qαs

s ) ≤ 1

q1 · · · qs
.

Therefore, from (4.4) we have that M< k
2
is bounded above by

∑
s< k

2

∑
q1<···<qs≤z

∑
α1···αs≥2∑

i αi=k

k!

α1! · · ·αs!
G(qα1

1 · · · qαs
s )

=
∑
s< k

2

k!
∑

q1<···<qs≤z

G(qα1
1 · · · qαs

s )
∑

α1···αs≥2∑
i αi=k

1

α1! · · ·αs!

=
∑
s< k

2

k!

s!

∑
q≤z

G

∏
qα∥r

qα

 ∑
α1···αs≥2∑

i αi=k

1

α1! · · ·αs!
.

A word of explanation for the last line: since we are no longer forcing the primes qi in

ascending order we have to divide by s!. Now by noting our prior observation and the fact
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that we have a product of s terms we see that

∑
s< k

2

k!

s!

∑
q≤z

G

∏
qα∥r

qα

 ∑
α1···αs≥2∑

i αi=k

1

α1! · · ·αs!

≤
∑
s< k

2

k!

s!

∑
q≤z

1

q

s ∑
α1,...,αs≥2∑

i αi=k

1

α1! . . . αs!
. (4.6)

The number of ways that k can be written as α1 + · · · + αs for αi ≥ 2 is the same as the

number of partitions of k − s into s positive natural numbers. This is because

k = α1 + · · ·+ αs ⇐⇒ k − s = (α1 − 1) + · · ·+ (αs − 1).

Now by the famous combinatorics “stars and bars” problem, which tells us that the number

of such partitions of k − s into s natural numbers is
(
k−s−1
s−1

)
. It is also simple to see that

1

α1 · · ·αs

≤ 1

2s
,

as αi ≥ 2 by the square-full condition. Hence, by using Lemma 2.1.2 we have that (4.6) is

bounded above by

≤
∑
s< k

2

k!

s!2s

(
k − s− 1

s− 1

)(
log log z +O(1)

)s

,

which gives the bound we wanted, since k is fixed.

We are now able to prove Proposition 4.0.2.
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Proof of Proposition 4.0.2. Recall that from (4.3) and (4.4) we have

∑
n≤x

(∑
p≤z

fp(n)

)k

=
∑

p1,...,pk≤z
p1···pksquare-full

xG(p1 · · · pk) +O
(
π(z)k

)

=
∑
s≤ k

2

∑
q1<···<qs≤z

∑
α1···αs≥2∑

i αi=k

k!

α1! · · ·αs!
G(qα1

1 · · · qαs
s ) +O

(
π(z)k

)

where we have been referring to the summation on the right-hand side as the main term.

From Lemma 4.3.7 we see that when k is even the largest part of the main term is when

s = k
2
, which contributes a value of

x
k!

2
k
2 (k

2
)!

(
log log z +O(1)

) k
2

= xCk(log log z)
k
2

(
1 +O

(
1

log log z

)) k
2

= xCk(log log z)
k
2

(
1 +O

(
1

log log z

))
.

Now let us define

ℓ :=


k−2
2

if k is even

k−1
2

if k is odd

where ℓ is the greatest integer strictly less than k
2
. Then by Lemma 4.3.8 the remaining

parts of the main term, that is M< k
2
, only contribute a value

O
(
x(log log z)ℓ

)
.
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It is crucial for us to note that

xCk(log log z)
k
2

(
1 +O

(
1

log log z

))
≫ x(log log z)ℓ.

Thus, all of the terms where s < k
2
are “inconsequential” with respect to magnitude when

compared to the largest term, M k
2
arising from s = k

2
, which once again only happens when

k is even.

Putting everything together, we get for k is even:

∑
n≤x

(∑
p≤z

fp(n)

)k

= xCk(log log z)
k
2

(
1 +O

(
1

log log z

))

+O
(
x(log log z)ℓ

)
+O

(
π(z)k

)
= xCk(log log z)

k
2

(
1 +O

(
1

log log z

))
+O

(
x(log log z)

k−2
2

)
+O

(
π(z)k

)
= xCk(log log z)

k
2

(
1 +O

(
1

log log z

))
+O

(
π(z)k

)
,

and when k is odd

∑
n≤x

(∑
p≤z

fp(n)

)k

≪ (log log z)
k−1
2 + π(z)k

≪ x(log log z)
k
2

1√
log log z

+ π(z)k,

proving Proposition 4.0.2.
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ber theory, an introduction, NATO Sci. Ser. II Math. Phys. Chem., vol. 237, Springer, Dordrecht, 2007,
pp. 15–27, DOI 10.1007/978-1-4020-5404-4-2. MR2290492

[6] G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n [Quart. J. Math.
48 (1917), 76–92], Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000,
pp. 262–275. MR2280878

[7] Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cam-
bridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007.
MR2378655

[8] Paul Turán, On a Theorem of Hardy and Ramanujan, J. London Math. Soc. 9 (1934), no. 4, 274–276,
DOI 10.1112/jlms/s1-9.4.274. MR1574877

54



VITA

The author graduated from West Union Attendance Center in 2016. He then

attended Blue Mountain College where he graduated with a B.S. in Mathematics in

2019. During this time he was awarded the Anne Sanford Mathematics Award in

2018 and 2019 from his department.

55


	ON THE DISTRIBUTION OF THE NUMBER OF PRIME FACTORS OF AN INTEGER
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGEMENTS
	INTRODUCTION
	PRELIMINARY RESULTS
	Number theory lemmas
	Analysis lemmas

	THE VARIANCE OF (n)
	Turán's proof
	Montgomery and Vaughan's proof
	A refined estimate for the second moment of (n)
	A refined estimate for the variance of (n)

	GRANVILLE AND SOUNDARARAJAN'S PROOF OF THE ERDŐS-KAC THEOREM
	Main idea of Granville and Soundararajan's result
	Deducing Theorem 4.0.1 from Proposition 4.0.2
	Proof of Proposition 4.0.2

	BIBLIOGRAPHY
	VITA

