
Management Services: A Magazine of Planning, Systems, and Management Services: A Magazine of Planning, Systems, and

Controls Controls

Volume 7 Number 4 Article 8

7-1970

Software and the General Manager Software and the General Manager

William E. Lindsay

Follow this and additional works at: https://egrove.olemiss.edu/mgmtservices

 Part of the Accounting Commons

Recommended Citation Recommended Citation
Lindsay, William E. (1970) "Software and the General Manager," Management Services: A Magazine of
Planning, Systems, and Controls: Vol. 7: No. 4, Article 8.
Available at: https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8

This Article is brought to you for free and open access by the Archival Digital Accounting Collection at eGrove. It
has been accepted for inclusion in Management Services: A Magazine of Planning, Systems, and Controls by an
authorized editor of eGrove. For more information, please contact egrove@olemiss.edu.

https://egrove.olemiss.edu/mgmtservices
https://egrove.olemiss.edu/mgmtservices
https://egrove.olemiss.edu/mgmtservices/vol7
https://egrove.olemiss.edu/mgmtservices/vol7/iss4
https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8
https://egrove.olemiss.edu/mgmtservices?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol7%2Fiss4%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/625?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol7%2Fiss4%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol7%2Fiss4%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

SOFTWARE

The recent rash of ‘unbundling' decisions by EDP
manufacturers and constantly rising costs have pro­
pelled ‘software' into the consciousness of both man­
agers and consultants. Here are some aspects to be
considered—

AND THE GENERAL MANAGER

by William E. Lindsay
Supply Corps, U.S. Navy

Today’s general manager is
bombarded with literature on
how to and how not to select an

EDP system—buy an EDP system-
install an EDP system—manage an
EDP system—and modify an EDP
system. (The term general manager
as used here does not mean the
direct manager of an EDP installa­
tion but rather the supervisor or
supervisors above him with respon­
sibility areas including but not lim­
ited to EDP. Examples would be
the executive vice president of a
company where the EDP manager
is in a staff position reporting di­
rectly to top management; a comp­
troller who not only manages the
EDP installation through an EDP

manager but also is responsible for
the organization’s budgeting and
financial resources; or the produc­
tion manager who manages the EDP
installation as well as the major out­
put process of an organization.1)

1 It is granted that most management
specialists and consultants would not cut
the actual EDP manager off from top
management contact by having him re­
port to a line or staff executive; how­
ever, it is sometimes done. See Marvin
M. Wofsey, Management of Automatic
Data Processing Systems, Thompson Book
Company, Washington, D.C., 1968, pp.
21-38, and Dick H. Brandon, Manage­
ment Standards for Data Processing, D.
Van Nostrand Company, Inc., Princeton,
New Jersey, 1963, pp. 30-31, for recom­
mended organizational patterns.

One example of the information
avalanche concerning EDP prob­
lems, an article by J. Richard Sher­
man in Data Processing Magazine,
begins by asking the following
questions:

Would computers be a profitable
investment for our company? What
applications would bring the great­
est profit? What is a management
information system, and should we
be moving toward implementing
such a system? What should we do,
buy or lease? What will our future

The views expressed in this article
are those of the author, not those of
the Department of Defense.

48 Management Services
1

Lindsay: Software and the General Manager

Published by eGrove, 1970

Software is analogous to the support forces needed to keep a fighting unit in the field

information needs be, and how do
we propose to meet them?2

This article, however, focuses on
some aspects of what the general
manager should know about a part
of the EDP system not mentioned
by Mr. Sherman, the software, the
non-hardware. Software is analo­
gous to the support forces that
must exist to keep an armored unit
in the field or a ship at sea. In its
relationship to hardware it is simi­
lar to an iceberg. In the military
example, that part of the iceberg
above the ocean is the combat
force, and the submerged portion
depicts the support force. In EDP
the above-water area is the hard­
ware, the computer, and the sub­
merged part would be the com­
puter software.

Hardware knowledge widespread
In the past five or ten years most

general managers have acquired
some familiarity with computer
hardware. Like anything with phys­
ical shape and substance, hardware
can be visualized. In most minds
this creates an image, which, by
the way, may or may not cor­
respond to reality. Many general
managers also have a knowledge of
leasing arrangements, equipment
costs, and operator requirements.

Nevertheless, when software is
mentioned, some general managers
realize that they have serious gaps
in their knowledge. For, like the
word itself, software is concep­
tually soft and difficult to grasp.
Yet the technical capabilities of
the general manager’s hardware
and the application of computers
to his problems can be greatly
hampered if he lacks understand-

2 J. Richard Sherman, “Toward the Com­
plete Executive—Brainware and the Com­
puter,” Data Processing Magazine, Au­
gust, 1969, p. 22.

ing of software. Many general man­
agers are harassed with the gnaw­
ing, and in many cases soon con­
firmed, realization that equipment
cost, space cost, and management
cost are only a fraction of the total
cost of their EDP installation. They
soon become aware that the om­
nivorous beast of software has an
insatiable appetite for both money
and personnel time.3 Hence the
general manager asks himself:
What is software?

3 Daniel W. McElvee and James E.
Femader, A Software Primer For Man­
agers, Industrial College of the Armed
Forces, Washington, D.C., 1965, pp. 1-2.
4 Ned Chapin, An Introduction to Auto­
matic Computers, D. Van Nostrand Co.,
1963, pp. 205-207.

5 Norman L. Enger, Putting MIS to
Work, American Management Associa­
tion, Inc., New York, 1969, p. 235.
6 Jean E. Sammet, Programming Lan­
guages: History and Fundamentals,
Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1969, p. vi.

Software defined

There are many definitions of
software. Because it is a new term
in a new industry it is given dif­
ferent meanings in different opera­
tional contexts. In 1963 software
was considered by Ned Chapin to
consist of a body of techniques to
make the hardware function ef­
fectively. Dr. Chapin described
software as the operating knowl­
edge and accumulated experience
in the form of aids to the com­
puter user. He defined ten major
types of software: operating manu­
als and guides, programing lan­
guages, program-generating rou­
tines, utility routines, library rou­
tines, diagnostic routines, program­
ing assistance, canned applications,
equipment maintenance service,
and training4—in other words,
everything in a computer instal­
lation except the computer equip­
ment.

However, this definition of soft­
ware is too broad for the purpose
of this article. Hence definitions
by International Business Machines

Corporation and Norman L. Enger
will be used as benchmarks.

IBM, in Principles of Program­
ming, states that software is “all the
programming systems required for
an effective processing operation, in
addition to the hardware of the
computer system itself. It includes
assemblers, compilers, utility rou­
tines, et cetera.” Norman L. Enger,
in the glossary of Putting MIS to
Work, defines software as “the
totality of programs and routines
used to extend the capabilities of
computers, such as compilers, as­
semblers, routines and sub-rou­
tines.”5 These similar, yet different,
definitions emphasize the communi­
cations problem encountered by a
general manager trying to grasp
the fundamentals of computer soft­
ware.

Software economics

A company treasurer signs a
check for $30,000 in payment for a
five-year lease of a proprietary
computer program. A computer
manufacturer announces availabil­
ity of his COBOL compiler at
extra cost; customers who want it
must pay for it. The best known
language, FORTRAN, is merely
one of approximately 120 higher
programing languages. Of this to­
tal, nearly 20 are never used or
are on obsolete computers; nearly
35 are used very little; about 50
are for use only in specialized
areas; and only 15 are widely
used.6

These are signs of the economic
problems and the economic evolu-

July-August, 1970 49

2

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 7 [1970], No. 4, Art. 8

https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8

By any method of evaluation,

much of what you have

paid the [computer]

manufacturer is for the

software, not for the

brilliant, neat, colorful units

of electronic parts.

tion taking place within the field
of computer software, states G. W.
Armerding. It might be called eco­
nomic evolution to differentiate it
from the economic revolution that
has been continually in effect over
the past twenty years in computer
hardware, that is, speeds have con­
tinually increased and prices have
continually gone down. But along
with this continual hardware eco­
nomic revolution slower economic
evolutionary changes have been
occurring within the software area.
These changes, while not as con­
spicuous and sensational as those
in hardware, are still important and
may be even more important over
the next several years.

One of the changes is that the
hidden costs of software have been
brought into the spotlight. As Mr.
Armerding points out, we have all
been indoctrinated with the idea
that the manufacturers give away
their computer software. They say
it is “free,” and indeed the cost of
obtaining the software from the
manufacturer, after you have pur­
chased his hardware, is or was
zero. But, by any method of evalu­
ation, much of what you paid the
manufacturer is for the software,
not for the brilliant, neat, colorful
units of electronic parts. Managers
have become cognizant of these
supposedly “hidden” costs and are
beginning to make firm motions
toward their control or realloca­
tion. Within the ranks of computer
managers, we have heard specific
recommendations that manufac­
turers should price all of their soft­
ware separately, and some manu­
facturers have taken action. Hence,
the customer may now begin to

WILLIAM E. LINDSAY,
commander, Supply
Corps, U.S. Navy, re­
ceived his B.S. from
Pennsylvania State Uni­
versity. He was awarded
his M.A. by George
Washington University
and is now working to­
ward his doctorate at

American University. Commander Lindsay has
published several articles in the Navy Sup­
ply Corps Newsletter. He was awarded a
Navy commendation medal for service aboard
ship in Vietnam waters in 1968.

shop and buy only the items of
software he needs.7

7 George W. Armerding, Computer Soft­
ware: The Evolution Within The Revo­
lution, Rand Corporation, Santa Monica,
California, 1968, pp. 1-14.
8 Richard C. Jones, “Systems Program­
ming—The Expensive Giveaway,” Data
Processing Magazine, September, 1967,
p. 26.

Awareness of the software pric­
ing problem seems to have mani­
fested itself in the middle and late
1960’s. In 1967, Richard C. Jones,
President, Applied Data Research,
Inc., stated that with few excep­
tions, the dollar cost of preparing
application programs in 1967 was
the same as in 1957, primarily, he
said, because a lack of progress in
systems programing has retarded
the growth and application of
computers since they were in­
vented. Hardware improvements
have caused the cost-performance
ratio of equipment to improve
steadily, but no similar software
innovations have been developed
to minimize programing time or
make the hardware easier to ma­
nipulate. Mr. Jones then went on
to say that computer manufac­
turers seem to have had one prime
reason for producing software—
profit.8

In early 1968 Martin A. Goetz,
Mr. Jones’ vice president at Ap­
plied Data Research, Inc., stated
that many persons believed that the
then current software gap could be
traced to an apparent software
monopoly that began about four­
teen years ago in an innocent man­
ner. In 1955, with the advent of
the UNIVAC II and the IBM 705,
it was becoming more and more
evident that a great number of
computer programs were of a very
general nature and applicable to
many users. Since such programs
would aid in computerizing appli­
cations, the hardware manufacturer
was quick to develop and distrib­
ute such programs. These programs
not only helped machine sales but
also contributed to the belief that
the manufacturer assisted the user
by providing no-cost aids for pro­
graming. While this practice at one

50 Management Services
3

Lindsay: Software and the General Manager

Published by eGrove, 1970

time contributed to the growth of
computing, Mr. Goetz believes that
it has stifled the most effective use
of computers.9

11 Armerding, op. cit., p. 6.

12 Arthur C. Nesse, “A User Looks at
Software,” Datamation, October, 1968,
p. 49.
13 Armerding, op. cit., pp. 5-6.

In 1968 Dr. Melvin E. Conway,
an independent consultant, ap­
peared to be in the minority in
expressing the idea that separate
pricing of hardware and software
was not a black and white argu­
ment. He explored the economics
of software by organizing his dis­
cussion around the following four
common confusions: the cost-price
confusion, the confusion that soft­
ware costs as much as hardware,
the design-reproduction cost confu­
sion, and the software-support con­
fusion. He arrived at the following
conclusions: It appears that soft­
ware cost does not now contribute
a large fraction of the price of a
System/360 (as an example); it is
probably less than 3.33 per cent, on
the average. Software costs are sen­
sitive to economics of scale, how­
ever, and attempts to distribute
software development among non­
manufacturers will tend both to
raise the price to the user and to
discourage the manufacturer from
undertaking certain products and
services. It appears that separation
of software pricing and the volume
discounting which this implies will
help software houses and large
users but will discriminate against
smaller users, smaller manufactur­
ers, and those manufacturers who
concentrate on serving the Federal
Government.10

At this time, as the actual sepa­
ration of hardware and software
pricing is accelerating, the entire
cost/price structure of software is
in a state of flux. The intelligent
and aggressive general manager
must be aware of what is happen­
ing daily in this area of concern,
make his decisions on the latest in­
formation, and resist making any

9Martin A. Goetz, “Proprietary Programs
—Can They Break the Software Monop­
oly?,” Data Processing Magazine, Janu­
ary, 1968, pp. 48-49.
10 Melvin E. Conway, “On the Economics
of the Software Market,” Datamation,
October, 1968, p. 31.

long-term contractual arrangements
for software.

Way back when in the history of
computers, say, ten years ago, the
byword of the computer programer
seemed to be efficiency, according
to Mr. Armerding. Only incom­
petents would use such a thing as
a trace program. Interpretive pro­
grams were used only with careful
supervision because they did not
employ the computer efficiently.

Now, however, we are in the
midst of the hardware revolution,
and the software world is adopting
a more enlightened attitude toward
inefficient machine usage. Consider
time sharing as an example. Few
eyebrows are raised when it is re­
ported that a general purpose time
sharing system uses 50 per cent of
the available computer time per­
forming its various overhead opera­
tions. Or consider interpretive pro­
grams; it is found that even the
installed compiler, one of the most
frequently used programs, runs in­
terpretively, making the computer
act like something it is not. Ineffi­
cient? No. The experts claim the
compiler is more than worth the
time it takes. Operating systems,
loaders, editing programs, and
many other overhead functions take
a large share of the central process­
ing unit cycles away from the
problem program. The new gener­
ation of programers finds nothing
wrong with this mode of operation
even though it makes the old-tim­
ers cringe. To the new man the
benefits exceed the costs. It is true
that everybody would like to ob­
tain as much useful work out of
the computer as possible, but,
everything considered, we are pay­
ing less, a great deal less, for each
useful answer than we paid in the
past. Increased hardware perform­
ance per hardware dollar more
than compensates for the loss of
the ever-increasing portion of the
machine’s power absorbed by soft­
ware.11

In fact, Arthur Nesse, of the
Ford Motor Company, projected
figures for hardware versus soft­

ware shipments that indicate that
this trend can be expected to con­
tinue. According to Mr. Nesse, in
the 1960’s hardware represented
approximately 60 per cent of the
value of computer shipments. By
1975, Mr. Nesse quotes the Stand­
ford Research Institute as predict­
ing, the value of the hardware com­
ponent in computer shipments will
decline from 60 per cent to about
30 per cent or 40 per cent, and the
value of software will grow to the
complementary 70 per cent or 60
per cent.12

As long as the hardware design­
ers keep reducing the cost of com­
puters and keep raising their per­
formance, users will perhaps de­
mand, and for certain tolerate,
more and more “overhead” soft­
ware to make things easier for the
programer and his program. Only
when the designers of computers
have wrung the last drop of power
out of the circuits and the manu­
facturers have reduced their pro­
duction costs to their reasonable
limits may we expect the software
builders to begin to be seriously
upset about software overhead
rates. That day appears far in the
future.13

Programs for sale
In the very early days of the

computer industry, the machines
were installed with virtually no
software. Users programed in ma­
chine language and had to develop
their own software to supplement
what little the manufacturer did
supply. Rapidly it became evident
that there were programs that al­
most all users needed, since many
users were individually writing al­
most identical programs. Informal
and later formal user groups were
established to share and exchange
programs of mutual interest. The
concept of developing programs of
general use and hence saving peo­
ple and money that would other-

July-August, 1970 51
4

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 7 [1970], No. 4, Art. 8

https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8

Every programer in the

country is a potential

software seller. All he

requires is very little capital,

coding paper, pencils, and a

few hours of weekend or

evening time.

wise be wasted in “reinventing the
wheel” had its beginnings in these
early cooperative efforts. These
shared programs were among the
first software.14

The software economic evolution
is also at work here. The early spirit
of “together we stand, divided we
fall” has been all but lost. Now
any program worth the cards it is
punched on is being offered, not
free, but for a price. The computer
magazines are full of ads. In the
want-ad section of a computing
newspaper, an individual pro­
gramer asks $150 for a copy of his
improved, high-speed sort pro­
gram.15 As a further example, in
the March, 1970, issue of Data­
mation there were seven pages of
ads for software containing twenty-
nine advertisements.16

The early software entrepreneurs
found the market quite rough; a
few early programs offered for sale
did not make enough sales to cover
expenses. The market now appears
to be mixed. Managers, who at first
were revolted at the idea of having
to pay for something they had tra­
ditionally received “free,” recog­
nized the inevitable. Now manag­
ers are spending substantial sums
for the privilege of using proprie­
tary program packages. However,
reckless competition is almost sure
to come. Every programer in the
country is a potential software
seller. All he requires is very little
capital, coding paper, pencils, and
a few hours of weekend or evening
time. Countless time sharing instal­
lations will be pleased to sell him
machine time to debug and test
his programs.

Now that many shots are being
heard, this part of the software
economic evolution may well be­
come a full-scale revolution. No
one should be amazed by the fur­
ther avalanche of proprietary pro­
grams on the market. It may not
be too long before the day arrives

14 Robert V. Head and Evan F. Linick,
“Software Package Acquisition,” Data­
mation, October, 1968, p. 22.
15 Armerding, op. cit., p. 8.
16 Datamation, March, 1970, p. 215.

when all software will be sold in
an environment of true competi­
tion.17

17 Armerding, op. cit., pp. 8-9.
18 Ibid.

A forecast

With the advent of separate pric­
ing of software by some manufac­
turers and of proprietary programs
offered for sale in great numbers,
the time is ripe for significant eco­
nomic changes within the realm
of computer software.

At the present time most of the
programs offered for sale are ori­
ented toward applications. There­
fore, they seldom compete directly
with software offered by the com­
puter manufacturer. But enterpris­
ing programers have begun to
compete with the manufacturers
and will continue to do so. The
market may see improved versions
of “free” software, or software that
will replace the “free” software, or
programs that supplement the stan­
dard software or make it easier for
users to approach. This, of course,
will lead to a highly competitive
market. The manufacturers appear
to have the upper hand. They have
great freedom to adjust the price
of their software, from gratis to
profit-making. But as high-perform­
ance substitutes appear on the mar­
ket, the pressure will be on the
manufacturers either to improve
their performance or to adjust their
pricing.18

Software standards
Standards for software are rather

like control for weather. A lot of
talking has been done, but few re­
sults have been attained—and for
the same underlying reason: Good
software and good weather are not
the same to each person.

It is true that one of the key fac­
tors in the definition and use of
software is the role played by stan­
dardization. Another basic purpose
of standardizing is to achieve com­
patibility, which in turn reduces
personnel and documentation cost.

52 Management Services
5

Lindsay: Software and the General Manager

Published by eGrove, 1970

Standardization also assists in con­
verting to new computers. Despite
all of these advantages, there has
been only limited success in stan­
dardizing software under the
American National Standards Insti­
tute (ANSI). Two items that have
been standardized are the higher-
level languages FORTRAN and
COBOL.19 Certainly, any software
could be standardized if the need
were acute; consider, for example,
the work being done in machine
tool control.

19 Sammet, op. cit., pp. 43-47.
20 Paul B. Goodstat, “Standards in Data
Processing,’’ Data Processing Magazine,
March, 1967, pp. 22-25.
21 Don Crayford, “A Future for ECMA?,”
Datamation, September, 1969, pp. 43-44.

22 Enger, op. cit., pp. 195-196.
23 Sammet, op. cit., p. 44.

There are currently three major
forces in standardization: ANSI,
the European Computer Manufac­
turers Association (ECMA), and
the National Bureau of Standards
(NBS), within the United States
Department of Commerce. ANSI
is a federation of nearly 150 trade
associations and professional so­
cieties and more than 2,000 mem­
ber companies. It is a privately
supported organization acting as
the national clearing house and
coordinating agency for voluntary
standards in the United States. The
word voluntary is important. There
is no force of law behind ANSI’s
standards, nor is there even an im­
plied commitment on the part of
those responsible for developing a
standard that they will later sup­
port or use it.20

The European Computer Manu­
facturers Association was formed
in 1960 and is largely, as the name
implies, a manufacturers’ associa­
tion. This group’s significance in
American standards work is two­
fold. First, it acts as a challenge to
United States standards work. Sec­
ond, the ECMA acts as a second
court of appeals for American stan­
dards.21

On March 11, 1968, the Federal
Government approved the first Fed­
eral automatic data processing
standards. This was the first step
in an intensified effort by the Fed­

eral Government to strengthen the
control of Federal computer activi­
ties. Three Federal agencies are
responsible for the development of
data processing standards: the Gen­
eral Services Administration, the
Bureau of the Budget, and the De­
partment of Commerce (National
Bureau of Standards). The NBS
has been authorized to make rec­
ommendations to the President re­
lating to uniformity of Federal
automatic data processing, and it
also has responsibility for the pro­
motion of voluntary commercial
EDP standards.22

Problems of standardization

There are five major problems in
approaching standardization: con­
ceptual problems, technical prob­
lems, procedural problems, time,
and expense.

The first conceptual problem is
one of timing: When should the
standardization of software take
place? Without careful considera­
tion, standardization is likely to
come too soon or too late. If it is
too soon, there is a risk of stan­
dardizing things that are not really
very good. On the other hand, if
standardization is delayed too long,
then innumerable variations have
developed, many of them repre­
senting only minor differences,
which means a number of vested
interests that are reluctant to ac­
cept a standard that diverges from
their particular version.

A second conceptual problem is
the risk of smothering progress. In
some manner the standardization
process must avoid preventing or
eliminating technical progress. This
is difficult because there is no easy
way of coping with bright new
ideas if they come up after the
standard is established, or even
while it is in the process of being
established.

The technical problem of soft­
ware standardization is one of defi­
nition. We do not yet understand
how to define software with rigor.23

Standards for software are

rather like control for

weather. A lot of talking has

been done, but few results

have been attained and for

the same basic reason: Good

software and good weather

are not the same to each

person.

July-August, 1970 53
6

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 7 [1970], No. 4, Art. 8

https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8

Potential legal problems

involving software are as

infinite in number as the

possible advances and

applications of software.

Unfortunately, many of

these problems have gone

unrecognized because of

communication barriers.

Lawyers are not aware of

software developments and

their practical applications

and hence do not foresee

trouble areas.

No completely formal method ex­
ists for the definition either among
or within the software classifica­
tions of operating systems, pro­
graming languages, time sharing
software, data management, and
applications software.

The procedural problems in es­
tablishing standards are enormous,
but they are unavoidable. Stan­
dardization must be undertaken
cautiously to prevent the issuance
of undesirable standards. (Unde­
sirable merely means not accepta­
ble to virtually all the user groups
to whom the standard will apply.)
The delays in the establishment of
a standard, often three and one-
half to five and one-half years (the
time problem), are caused by the
complexity of the procedures,
which have been designed to pro­
tect the rights of those involved.24
This often causes difficulty for
those groups that are at a stage in
their technological or manufactur­
ing development where they are
eager to implement a standard,
which does not yet exist officially
and still may be altered.25

24 Gilbert E. Jones, “The Impact of Stan­
dards,” Computers and Automation, May,
1969, pp. 38-39.
25 Sammet, op. cit., p. 46.
26 E. Stuart Fergusson, “USASI and For­
mal Standards Activities,” Data Process­
ing Magazine, April, 1967, pp. 43-44.

27 “The Month That Was,” Data Process­
ing Magazine, September, 1969, p. 8.

The final problem in approach­
ing standardization is its tremen­
dous expense. With the amount of
work involved in carrying a stan­
dard from working group meetings
to a proposed standard, through a
series of committees, and finally to
ANSI approval and the printing
as an ANSI Standard, it should be
clear that a lot of expense is in­
volved. The heavy cost must be
borne by trade associations, manu­
facturers, consumer groups, general
interest groups, and even interested
individuals in some cases. In addi­
tion, there is the enormous expense
of converting software in use to
meet an agreed-upon standard.26
Those dedicated individuals who
are responsible for what progress
has been made must be admired for

their good sense and their tenacity
against what must appear as enor­
mous odds.

General David Sarnoff, in his
keynote address to the 1964 Fall
Joint Computer Conference, said,
“Standards can be established
which, if planned with thought
and foresight, can guide us in the
future, linking our separate efforts
and facilitating the common evolu­
tion of our industry. Such stan­
dards are indispensable to con­
tinued progress.” Unfortunately, it
appears that General Sarnoff’s
hopes will be a long time coming
true in computer software.

Software legalities

“The Software Case Is Settled,”
reads a headline from Data Proc­
essing Magazine, September, 1969.
The article continues, “Now pat­
entable after many months of con­
troversy and dispute, it becomes
even more significant in the light
of recent separation from the hard­
ware market. The U.S. Court of
Customs and Patent Appeals ruled
favorably on the appeal of Charles
D. Prater and James E. Wei on the
grounds that once a digital com­
puter is properly programed, it
becomes a special purpose com­
puter (a specific electrical circuit).
The Court rejected the Patent Of­
fice contention that programing
a general purpose digital computer
is ‘obvious.’ ”27

What does this news mean to the
general manager? How will this
legal decision on software affect
him, and are there other legal areas
such as software contracts, taxes,
and employee contracts that he
should be aware of? (The answer
to the last question is a firm yes.)

Potential legal problems involv­
ing software are as infinite in num­
ber as the possible advances and
applications of software. Unfortu­
nately, many of these problems
have gone unrecognized because of
communication barriers. Lawyers
are not aware of software develop-

54 Management Services
7

Lindsay: Software and the General Manager

Published by eGrove, 1970

ments and their practical applica­
tions and hence do not foresee trou­
ble areas. Management and com­
puter technical personnel, left on
their own, may forge ahead with
new ideas without an understand­
ing of the complex legal conse­
quences. Even those who are sen­
sitive to these problems may be
reluctant to seek legal advice at
every juncture, and lawyers may
be correspondingly uneasy about
offering opinions in such a com­
plicated and uncharted area.28

28 John F. Banzhauf, “When Your Com­
puter Needs a Lawyer,” Communications
of the ACM, August, 1968, pp. 543-544.
29 Robert B. Bigelow, “Legal Aspects of
Proprietary Software,” Datamation, Oc­
tober, 1968, pp. 32-34.

30 The reader is referred to both Allen
W. Puckett, “Protecting Computer Pro­
grams,” Datamation, November, 1967,
pp. 55-60, and Robert P. Bigelow, “Le­
gal Aspects of Proprietary Software,”
Datamation, October, 1968, pp. 32-39,
for a detailed discussion of the total
relationship of software to statutory and
common law.
31 Bigelow, op. cit.

To make matters more complex,
we have not so much an undefined
product as a product whose defi­
nition keeps changing. Software
may be viewed from several levels.
It can be simply the program, or
it can be the program plus the re­
search effort that has been ex­
pended on the total study of the
problem. Think, for example, of all
the programing for a time sharing
system. It is all software. But the
individualized customer programs,
each a subset, are marketable com­
modities in and of themselves, as
are the executive routine and,
maybe, the documentation. Then
there are the constantly changing
relationships among hardware and
software. Again using time sharing
as an example, as the problems of
the security of data have become
more important, what used to be
software is now being built into
hardware, and the term firmware
has been used to define the de­
veloping concept of a hybrid per­
sonality.29

Even with the recent patent de­
cision, there remain two distinct
arenas for the discussion of the
protection of the program devel­
oper’s proprietary interests in the
software against unauthorized use.
The first arena is that of the law
of intellectual property, primarily
expressed by statute in patent,
copyright, and trademark laws; the
other arena is that of the common

law, including the law of trade
secrets, unfair competition, and
contracts.30

Now that the patent decision has
been made, however, where does
this problem stand? Allen W. Puck­
ett, an attorney with McKinsey &
Co., Inc., predicted in 1967 that
even if patents were granted their
use would be severely restricted.
His prediction has been somewhat
substantiated by the infrequent use
of the copyright in registration of
computer programs. In May, 1964,
the Copyright Office decided that
it would allow the registration of
computer programs. By mid-1967,
within a period of more than three
years, only about a hundred com­
puter programs had been regis­
tered.31

Mr. Puckett offers four reasons
why patents will not be used to
any great extent: First, patents are
very expensive. To get a patent re­
quires not only significant legal
fees but also lost programer time,
and programer time is a critical
commodity that industry is seeking
to conserve.

Second, obtaining patents is
very time-consuming. On the av­
erage, the lapse from the time an
application is originally submitted
to the time a patent is approved
is about three years, and then the
patentee has merely a “license to
litigate.” If the patent then is liti­
gated, protection is even further
away. In view of the past rate of
development of the industry it is
likely that the program will be
obsolete by then.

Third, a program patent is risky.
An obvious risk is that large ex­
penditures may have to be made
defending the patent. If the patent
is struck down by the courts, the
opportunity for other types of pro-

To make matters more

complex, we have not so

much an undefined product

as a product whose definition

keeps changing. Software .. .

can be simply the program,

or it can be the program plus

the research effort that has

been expended on the total

study of the problem.

July-August, 1970 55
8

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 7 [1970], No. 4, Art. 8

https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8

tection, such as copyright, trade­
mark, trade secret, unfair compe­
tition, and contract, may well have
vanished. For instance, the pro­
gram would no longer be a “se­
cret,” protectable against unfair
competition.

Finally, in practice, program pat­
ents would probably be unenforce­
able for all but major corporations
because of the prohibitive litiga­
tion expenses and the extreme dif­
ficulty in detecting patent infringe­
ments. To obtain a patent, an in­
ventor must file a description of
the invention with the patent office.
A complete copy of that descrip­
tion may be obtained from the Pat­
ent Office in return for a small sum.
Since creating the program from
a detailed description would be
inexpensive and since programs
would be duplicated for use rather
than for resale, it would be almost
impossible for a patent holder to
track down the clandestine users of
a patented program.32

32 Puckett, op. cit.

33 Phyllis Higgins, “Users Resisting IBM
SE Contract Selling,” Computerworld,
February 11, 1970, pp. 1-2.
34 Bigelow, op. cit., pp. 37-38.

What is the long-range solution
to this problem? It appears that
the best solution would be program
protection provided explicitly by a
new act of Congress.

Short-range protection

According to Robert P. Bigelow,
the best current protection of pur­
chased software seems to be a con­
tract between the manager and the
supplier. There are several impor­
tant items that must be covered in
any contract for software. Where a
program is to be developed by an
application company for the user,
the contract should specify, in ad­
dition to such important items as
the time schedule and the price,
the purpose of the program, the
documentation required, the on­
site assistance to be rendered by
the software house, and, above all,
the ownership rights in the pro­
gram.

The standards of performance
the software is to meet must be
spelled out in detail for both the
user and the developer, and the

developer should be required to
correct all errors found. To date,
the literature shows, there have
been no cases litigated on failure
to meet contract specifications on
software, but there have been two
cases dealing with the problem of
a hardware supplier’s failure to ful­
fill the terms of its contract. In one,
decided in the state of New York,
the Federal Reserve Board spelled
out in great detail what it was to
receive. The hardware supplier was
unable to produce; the damages
were over a quarter of a million
dollars (U.S. v. Wegematic Corpo­
ration, 360F2d674).

Liability problems

The manager may be liable to
someone who is hurt, without that
person’s having to prove negli­
gence, particularly if the program
is of the process control type where
a failure to meet specifications
could have dangerous results. This
would be similar to the cases in­
volving exploding soda pop bottles
or cars that lose wheels. There is
a distinct trend in the courts to dis­
pense with the requirement that a
person injured under such circum­
stances prove that the defendant
was negligent. Probably we can
expect to see this thinking applied
when computer programs are op­
erating and something blows up.
The contract should cover this lia­
bility, and both parties should at­
tempt to obtain insurance coverage
against such an event.

The contract should also cover
the developer’s liability for the in­
fringement of the rights of others.
While the developer’s own rights
in software against unauthorized
use are becoming clearer, it is pos­
sible that in developing the pro­
gram he might infringe a copyright
or a trade secret, particularly if,
in developing the program, he used
someone who had been under a
restrictive agreement with another
computer-oriented firm.

Debugging and testing times
should also be included in the con­
tract. In a recent issue of Com­
puterworld, a user was quoted,

“My fight with the manufacturers
is over their software contracts.
You have to start paying while you
are still testing, and you can’t can­
cel for three months. I don’t see
why we should pay for the priv­
ilege of testing software and ad­
vising them what is wrong with
it.”33

Particularly important in con­
tracts for software is provision
for penalties. The history of soft­
ware has been one of dilatoriness.
The State of California, as of 1968,
is putting a penalty clause into all
of its contracts for software. It
has been reported that IBM has
signed a contract with the State
of California to provide software
which must “show substantial con­
formance to the manufacturer’s spe­
cifications,” with penalties for fail­
ure to meet such specifications on
time. This type of contract clause
may become quite common, not
only in government procurement
but also in acquisition by sophisti­
cated managers. And into the bar­
gaining equation will go the nor­
mally heavy economic weight of
the user as compared to the nor­
mally light weight of the software
house.

The contract may also include
clauses specifying whether the
software is or is not for one user
only; the user’s rights to improve­
ments made by the software devel­
oper; the user’s rights to make
modifications; and perhaps the de­
veloper’s rights to improvements
made by the user. On the other
hand, when software is leased or
rented, the manager may have to
sign a contract which carefully
spells out the reservation of rights.

These are some of the matters
which should be considered in
contracts for proprietary software.
The best protection for the man­
ager, however, is to deal with an
honest man and give him a square
deal.34

Even in the software area, taxes

56 Management Services
9

Lindsay: Software and the General Manager

Published by eGrove, 1970

must be considered, says Mr. Bige­
low. There is a good argument that
developmental costs for software
should be treated as an expense
item. Accountants who have looked
into the matter have defined soft­
ware to include the justification
study, the feasibility study, the sys­
tems work, and the training of per­
sonnel as well as the actual pro­
graming—in other words, every­
thing related to the installation of
a computer system except the hard­
ware costs. Obviously, these costs
can be considerably higher than
the actual hardware outlays, espe­
cially if the hardware is rented.
From the manager’s point of view,
the price or rental of software is
but the visible portion of his soft­
ware costs. There are some useful
precedents going back as far as
1925, including outlays for effi­
ciency systems, management sur­
veys, revisions of accounting sys­
tems, and so forth, to indicate that
the proper tax treatment, at least
from the manager’s point of view,
may be to take all software costs
as an expense of doing business in
the year in which they were in­
curred.

It has also been suggested that
software development costs should
be treated in the same manner as
research and experimental expendi­
tures. Certain expenditures of this
nature can be handled either as
capital or expense items to be amor­
tised over a period of not less than
five years. Once the choice is made,
you have to stick with it.

From another point of view hard­
ware is tangible personal property
which has a useful life of more
than one year. It is depreciable,
tangible personal property to which
all the depreciation rules for tax
purposes apply and for which an
investment tax credit may be taken.
The interdependence of hardware
and software and the growing prob­
lem of deciding where the line is
between the two give weight to
the argument that software devel­
opment costs should be treated the
same as hardware for tax purposes.
The investment credit is available
for depreciable tangible personal

property which is used as an integ­
ral part of a manufacturing opera­
tion. “Integral part” is defined to
include cases where the property
is “used directly in the activity and
is essential to the completeness of
the activity.” A computer program
which is used for process control
would seem to fit this require­
ment.35 In sum, tax regulations are
important, and the proper han­
dling of software cost may result
in significant savings.

35 Ibid., p. 38.

Contracts with programers

A final legal aspect of software
that should be considered is the re­
lationship between the company
and its programers. Mr. Bigelow
has set forth the following con­
cepts in this field:

When a product is developed
by a team the individual employee
has comparatively few rights. But
what about the situation where
the product is developed by a full-
time employee on his own time?
One company in Boston had a
problem of just this sort. The prod­
uct in question was an exceedingly
valuable program which the com­
pany, which is not in the program
development business, nevertheless
hoped to be able to peddle. But
the employee, who put in a great
deal of his own time, also wanted
to make some money. The only
clear answer to such a problem and
problems like it in the future is
a clearly written employee contract
covering such questions. Such a
contract should also cover relation­
ships between the employer and
the employee after the employee
leaves the company.

To cover relationships during em­
ployment, the contract might well
include the following: (1) an
agreement to disclose all intellec­
tual accomplishments of interest to
the company, whether made on
company time or on the employee’s
time, if the discovery is capable
of being used by the company, (2)
an agreement to execute such as­
signments and other papers as the

A contract for software might

include clauses specifying

whether the software is or is

not for one user only; the

user’s rights to improvements

made by the software

developer; the user’s rights

to make modifications; and

perhaps the developer’s

rights to improvements

made by the user.

July-August, 1970 57
10

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 7 [1970], No. 4, Art. 8

https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8

company may request to give it
appropriate rights in such discov­
ery, together with a representation
that there are no such discoveries
at the present time; this latter item
can be very useful in avoiding
arguments and litigation later.

To protect the company’s prop­
erty rights, the contract may pro­
vide that the employee will keep
confidential information secret for­
ever, whether related to the com­
pany, its programs, or its products.
He should also agree that if he
leaves he will not, without written
consent, take with him processes,
formulae, and so forth relating to
the company’s operations or its ex­
periments.

Of equal importance are con­
tractual arrangements after the em­
ployment is over. Most agreements
of this type which have come be­
fore the courts have been agree­
ments not to establish a business,
such as a restaurant, within a cer­
tain geographical area. In the soft­
ware field, geography is irrelevant.
If a manager wants a noncompeti­
tive agreement, it is suggested that
it be put on a time basis. As an
illustration, when you employ a
person, get him to agree that for
three months after he leaves he
will not engage in any activity that
competes with any business in
which the company is engaged at
the time he leaves and that during
a full year after he leaves he won’t
compete directly with the com­
pany in any such business. Reason­
able time limits will be upheld
but the courts will not deprive a
man of his livelihood forever. Even
without a contract, if it can be
clearly shown that the former
employee made unauthorized use
of information which he had re­
ceived from his employer, he can
be enjoined from using it and
made to pay damages.

One important item the man­
ager may wish to include in a
programer’s contract is an agree­
ment that he will, after termina­
tion, upon payment of an amount
specified in the contract, return to
work for the original company for
the finite purpose of updating pro­

grams on which he worked. With
the difficulty in updating programs,
such a clause might avoid the
risks of undocumented changes
made by short-term employees.30

Summary

This article has discussed soft­
ware, from a general manager’s
point of view, in three specific
areas, economics, standards, and
legalities. In all these areas the
overall impression is one of great
flux and change, monthly if not
weekly. Hence, the general mana­
ger must make it an explicit work
habit to keep himself totally and
daily informed of the changes and
the proposed changes in these im­
portant software areas.

36 Ibid., pp. 38-39.

Bibliography
Ambrose, John, “The Tale of Crazy Fred­

die,” Computers and Automation, Feb­
ruary, 1970, pp. 14-15.

Carlson, Charles E., and Philip C. Sem­
previvo, “Multi-Programing Computer
Evaluation and Management,” Man­
agement Services, September-October,
1968, pp. 39-43.

Dansiger, Sheldon J., “Proprietary Pro­
tection of Computer Programs,” Com­
puters and Automation, February,
1968, p. 32.

Dorn, Philip H., “Obsolescence: Systems
Software,” Datamation, January, 1969,
pp. 25-36.

Fergusson, E. Stuart, “USASI and For­
mal Standards Activities,” Data Proc­
essing Magazine, April, 1967, pp.
42-46.

Fisher, F. Peter, and George F. Swindle,
Computer Programming Systems, Holt,
Rinehart and Winston, Inc., New
York, 1964.

Galler, Bernard A., The Language of
Computers, McGraw-Hill Book Com­
pany, New York, 1962.

Glans, Thomas B.; Burton Grad; David
Holstein; William E. Myers; and Rich­
ard N. Schmidt, Management Systems,
Holt, Rinehart and Winston, Inc., New
York, 1968.

Goodstat, Paul B., “USASCIT, What’s It
All About?,” Data Processing Maga­
zine, June, 1967, pp. 20-24.

Kendall, M. G., “Software Costs—A Plea
for Separate Pricing,” Data Processing,
March-April, 1969, p. 117.

Ledley, Robert S., Programming and

Utilizing Computers, McGraw-Hill
Book Company, New York, 1962.

Martin, James, Design of Real-Time
Computer Systems, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1967.

Moore, Michael R., “Pitfalls in Planning
an EDP Installation,” Management
Services, September-October, 1968, pp.
25-32.

“New Software,” Datamation, September,
1969, pp. 221-227.

Optner, Stanford L., Systems Analysis
for Business Management, Prentice-
Hall, Inc., Englewood Cliffs, New Jer­
sey, 1960.

Reynolds, Carl H., “Notes on Estimating,
and Other Science Fiction,” Data
Processing Magazine, June, 1967, pp.
44-45.

Reynolds, Carl H., “Software Standards,”
Data Processing Magazine, March,
1967, pp. 26-28.

Reynolds, Carl H., “The Research Insti­
tution and Data Processing,” Data
Processing Magazine, April, 1967, pp.
60-61.

Rosen, Saul, Programming Systems and
Languages, McGraw-Hill Book Co.,
New York, 1967, p. 23.

Scharf, Tom, “Management and the New
Software,” Datamation, April, 1968,
pp. 52-59.

“Separate Hardware/Software Pricing?,”
Datamation, June, 1968, pp. 72-78.

Silber, Howard A., “A Hypothetical In­
terview Between the President of a
Computer Software Company and a
Patent Attorney Specializing in Protec­
tion of Computer Programs,” Compu­
ters and Automation, February, 1970,
pp. 14-15.

Silber, Howard A., and John Ambrose,
“IBM, the Patent Office, and the Small
Software Company: The Emergence of
an Industry,” Computers and Automa­
tion, February, 1970, pp. 14-15.

“The Problems of Packaged Programs:
The American Management Associa­
tion Conference Report,” Datamation,
April, 1968, pp. 75-79.

“The Software Explosion,” Business Au­
tomation, September, 1968, pp. 24-29.

“The Year 2000,” Computer Digest,
April, 1969, p. 14.

U.S. Congress, House Committee on Gov­
ernment Operations, Data Processing
Management In The Federal Govern­
ment, hearings before a subcommittee
of the Committee on Government Op­
erations, House of Representatives,
90th Congress, 1st Session, 1967.

Weinberg, Gerald M., PL/1 Program­
ming Primer, McGraw-Hill Book Com­
pany, New York, 1966.

“What To Do Until The Software Pack­
age Guru Comes,” Editorial, Datama­
tion, October, 1968, p. 21.

Wilker, M. V., and D. F. Hartley, “The
Management System—A New Species
of Software?,” Datamation, September,
1969, pp. 73-75.

58 Management Services 11

Lindsay: Software and the General Manager

Published by eGrove, 1970

	Software and the General Manager
	Recommended Citation

	Management Services, July-August 1970

