
Management Services: A Magazine of Planning, Systems, and Management Services: A Magazine of Planning, Systems, and

Controls Controls

Volume 7 Number 4 Article 8

7-1970

Software and the General Manager Software and the General Manager

William E. Lindsay

Follow this and additional works at: https://egrove.olemiss.edu/mgmtservices

 Part of the Accounting Commons

Recommended Citation Recommended Citation
Lindsay, William E. (1970) "Software and the General Manager," Management Services: A Magazine of
Planning, Systems, and Controls: Vol. 7: No. 4, Article 8.
Available at: https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8

This Article is brought to you for free and open access by the Archival Digital Accounting Collection at eGrove. It
has been accepted for inclusion in Management Services: A Magazine of Planning, Systems, and Controls by an
authorized editor of eGrove. For more information, please contact egrove@olemiss.edu.

https://egrove.olemiss.edu/mgmtservices
https://egrove.olemiss.edu/mgmtservices
https://egrove.olemiss.edu/mgmtservices/vol7
https://egrove.olemiss.edu/mgmtservices/vol7/iss4
https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8
https://egrove.olemiss.edu/mgmtservices?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol7%2Fiss4%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/625?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol7%2Fiss4%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol7%2Fiss4%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

SOFTWARE

The recent rash of ‘unbundling' decisions by EDP

manufacturers and constantly rising costs have pro
pelled ‘software' into the consciousness of both man
agers and consultants. Here are some aspects to be

 considered—

AND THE GENERAL MANAGER

by William E. Lindsay
Supply Corps, U.S. Navy

Today’s general manager is

bombarded with literature on
 how to and how not to select an

 EDP system—buy an EDP system-
 install an EDP system—manage an

 EDP system—and modify an EDP
 system. (The term general manager

as

 used here does not mean the
direct manager of an EDP installa

tion but rather the supervisor or
 supervisors above him with respon

sibility areas including but not lim
ited to EDP. Examples would be

 the executive vice president of a
 company where the EDP manager

 is in a staff position reporting di
rectly to top management; a comp

troller who not only manages the
 EDP installation through an EDP

manager but also is responsible for

the organization’s budgeting and
 financial resources; or the produc
tion manager who manages

the EDP

installation

as well as the major out
put process of an organization.1)

1 It is granted that most management

specialists and consultants would not cut
 the actual EDP manager off from top
 management contact by having him re
port to a line or staff executive; how

ever, it is sometimes done. See Marvin
 M. Wofsey, Management of Automatic

 Data Processing Systems, Thompson Book
 Company, Washington, D.C., 1968, pp.

 21-38, and Dick H. Brandon, Manage
ment Standards for Data Processing, D.

 Van Nostrand
Company,

 Inc., Princeton,
New Jersey, 1963, pp. 30-31, for recom

mended organizational patterns.

One example of the information

avalanche concerning EDP prob
lems, an article by J. Richard Sher
man in Data Processing Magazine,

 begins by asking the following
 questions:

Would computers be a profitable

investment for our company? What

 applications would bring the great
est profit? What is a management

 information system, and should we
 be moving toward implementing

 such a system? What should we do,
 buy or lease? What will our future

The views expressed in this article

are
those

 of the author, not those of
the Department of

Defense.

48 Management Services
1

Lindsay: Software and the General Manager

Published by eGrove, 1970

Software is analogous to the support forces needed to keep a fighting unit in the field

information needs be, and how do

we propose to meet them?2
This article, however, focuses on

some aspects of what the general

 manager should know about a part
 of the EDP system not mentioned

 by Mr. Sherman, the software, the
 non-hardware. Software is analo

gous to the support forces that
 must exist to keep an armored unit

 in the field or a ship at sea. In its
 relationship to hardware it is simi

lar to an iceberg. In the military
 example, that part of the iceberg

 above the ocean is the combat
 force, and the submerged portion

 depicts the support force. In EDP
 the above-water area is the hard

ware, the computer, and the sub
merged part would be the com

puter software.

Hardware knowledge widespread
In the past five or ten years most

general managers have acquired
 some familiarity with computer

 hardware. Like anything with phys
ical shape and substance, hardware

 can be visualized. In most minds
 this creates an image, which, by

 the way, may or may not cor
respond to reality. Many general

 managers also have a knowledge of
 leasing arrangements, equipment

 costs, and operator requirements.
Nevertheless, when software is

mentioned, some general managers

 realize that they have serious gaps
 in their knowledge. For, like the

 word itself, software is concep
tually soft and difficult to grasp.

 Yet the technical capabilities of
 the general manager’s hardware

 and the application of computers
 to his problems can be greatly

 hampered if he lacks understand-

2

J.

 Richard Sherman, “Toward the Com
plete Executive—Brainware and the Com

puter,
”

 Data Processing Magazine, Au
gust, 1969, p. 22.

ing of software. Many general man

agers are harassed with the gnaw
ing, and in many cases soon con

firmed, realization that equipment
 cost, space cost, and management

 cost are only a fraction of the total
 cost

of their EDP installation. They

soon become aware that the om
nivorous beast of software has an

 insatiable appetite for both money
 and personnel time.3 Hence the

 general manager asks himself:
 What is software?

3 Daniel W. McElvee and James E.

Femader, A Software Primer For Man
agers, Industrial College of the Armed

Force

s, Washington, D.C., 1965, pp. 1-2.
4 Ned Chapin, An Introduction to Auto

matic Computers, D. Van Nostrand Co.,
 1963, pp. 205-207.

5 Norman L. Enger, Putting MIS to

Work, American Management Associa
tion, Inc., New York, 1969, p. 235.

6 Jean E.
Sammet,

 Programming Lan
guages: History and Fundamentals,

 Prentice-Hall, Inc., Englewood Cliffs,
 New Jersey, 1969, p. vi.

Software defined

There are many definitions of

software. Because it is a new term
 in a new industry it is given dif
ferent meanings in different opera

tional contexts. In 1963 software
 was considered by Ned Chapin to

 consist of a body of techniques to
 make the hardware function ef

fectively. Dr. Chapin described
 software as the operating knowl

edge and accumulated experience
 in the form of aids to the com

puter user. He defined ten major
 types of software: operating manu

als and guides, programing lan
guages, program-generating rou
tines, utility routines, library rou
tines, diagnostic routines, program

ing assistance, canned applications,
 equipment maintenance service,

 and training4—in other words,
 everything in a computer instal

lation except the computer equip
ment.

However, this definition of soft

ware is too broad for the purpose

 of this article. Hence definitions
 by International Business Machines

Corporation and Norman L. Enger

will be used
as

 benchmarks.
IBM, in Principles of Program

ming, states that software is “all the
 programming systems required for
 an effective

processing operation, in

addition to the hardware of the
 computer system itself. It includes

 assemblers, compilers, utility rou
tines, et cetera.” Norman L. Enger,

 in the glossary of Putting MIS to
 Work, defines software as “the

 totality of programs and routines
 used to extend the capabilities of

 computers, such as compilers, as
semblers, routines and sub-rou
tines.”5 These similar, yet different,

 definitions emphasize the communi
cations problem encountered by a

 general manager trying to grasp
 the fundamentals of computer soft
ware.

Software economics

A company treasurer signs a

check for $30,000 in payment for a
 five-year lease of a proprietary

 computer program. A computer
 manufacturer announces availabil
ity of his COBOL compiler at
 extra cost; customers who want it
 must pay for it. The best known

 language, FORTRAN, is merely
 one of approximately 120 higher
 programing languages. Of this to

tal, nearly 20 are never used or
 are on obsolete computers; nearly

 35 are used very little; about 50
 are for use only in specialized

 areas; and only 15 are widely
 used.6

These are signs of the economic

problems and the economic evolu-

July-August, 1970 49

2

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 7 [1970], No. 4, Art. 8

https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8

By any method of evaluation,

much of what you have

 paid the [computer]

 manufacturer is for the

 software, not for the

 brilliant, neat, colorful units

 of electronic parts.

tion taking place within the field

of computer software, states G. W.
 Armerding. It might be called eco

nomic evolution to differentiate it
 from the economic revolution that

 has been continually in effect over
 the past twenty years in computer

 hardware, that is, speeds have con
tinually increased and prices have
 continually gone down. But along

 with this continual hardware eco
nomic revolution slower economic

 evolutionary changes have been
 occurring within the software area.

 These changes, while not as con
spicuous and sensational as those
 in hardware, are still important and
 may be even more important over
 the next several years.

One of the changes is that the

hidden costs of software have been

 brought into the spotlight. As Mr.
 Armerding points out, we have all

 been indoctrinated with the idea
 that the manufacturers give away

 their computer software. They say
 it is “free,” and indeed the cost of

 obtaining the software from the
 manufacturer, after you have pur

chased his hardware, is or was
 zero. But, by any method of evalu

ation, much of what you paid the
 manufacturer is for the software,

 not for the brilliant, neat, colorful
 units of electronic parts. Managers

 have become cognizant of these
 supposedly “hidden” costs and are

 beginning to make firm motions
 toward their control or realloca

tion. Within the ranks of computer
 managers, we have heard specific

 recommendations that manufac
turers should price all of their soft

ware separately, and some manu
facturers have taken action. Hence,

 the customer may now begin to

WILLIAM E. LINDSAY,

commander, Supply
 Corps, U.S. Navy, re

ceived his B.S. from
 Pennsylvania State Uni

versity. He was awarded
 his M.A. by George
 Washington University
 and is now working to

ward his doctorate at
American University. Commander Lindsay has

published several articles in the Navy Sup

ply Corps Newsletter. He was awarded a
 Navy commendation medal for service aboard

 ship in Vietnam waters in 1968.

shop and buy only the items of

software he needs.7

7 George W. Armerding, Computer Soft

ware: The Evolution Within The Revo
lution, Rand Corporation, Santa Monica,

Cal
ifornia, 1968, pp. 1-14.

8 Richard C. Jones, “Systems Program
ming—The Expensive Giveaway,” Data

 Processing Magazine, September, 1967,
p. 26.

Awareness of the software pric

ing problem seems to have mani
fested itself in the middle and late

 1960’s. In 1967, Richard C. Jones,
 President, Applied Data Research,

 Inc., stated that with few excep
tions, the dollar cost of preparing
 application programs in 1967 was

 the same as
in

 1957, primarily, he
said, because a lack of progress in

 systems programing has retarded
 the growth and application of

 computers since they were in
vented. Hardware improvements

 have caused the cost-performance
 ratio

of
 equipment to improve

steadily, but no similar software
 innovations have been developed

 to minimize programing time or
 make the hardware easier to ma

nipulate. Mr. Jones then went on
 to say that computer manufac

turers seem to have had one prime
 reason for producing software—

 pro
fit.

8
In early 1968 Martin A. Goetz,

 Mr. Jones’ vice president at Ap
plied Data Research, Inc., stated

 that many persons believed that the
 then current software gap could be
 traced to an apparent software
 monopoly that began about four

teen years ago in an innocent man
ner. In 1955, with the advent
of the UNIVAC II and the IBM 705,

 it was becoming more and more
 evident that a great number

of computer programs were of a very
 general nature and applicable to
 many users. Since such programs

 would aid in computerizing appli
cations, the hardware manufacturer

 was quick to develop and distrib
ute such programs. These programs

 not only helped machine sales but
 also contributed to the belief that

 the manufacturer assisted the user
 by providing no-cost aids for pro

graming. While this practice at one

50 Management

Services

3

Lindsay: Software and the General Manager

Published by eGrove, 1970

time contributed to the growth of

computing, Mr. Goetz believes that
 it has stifled the most effective use
 of computers.9

11 Armerding, op.

cit.,

 p. 6.

12 Arthur C. Nesse, “A User Looks at

Software,” Datamation, October, 1968,
 p. 49.

13 Armerding, op. cit., pp. 5-6.

In 1968 Dr. Melvin E. Conway,

an independent consultant, ap
peared to be in the minority in

 expressing the idea that separate
 pricing of hardware and software
 was not a black and white argu

ment. He explored the economics
 of software by organizing his dis
cussion around the following four
 common confusions: the cost-price

 confusion, the confusion that soft
ware costs as much as hardware,

 the design-reproduction cost confu
sion, and the software-support con

fusion. He arrived at the following
 conclusions: It appears that soft

ware cost does not now contribute
 a large fraction of the price of a

 System/360 (as an example); it is
 probably less than 3.33 per cent, on

 the average. Software costs are sen
sitive to economics of scale, how
ever, and attempts to distribute
 software development among non
manufacturers will tend both to

 raise the price to the user and to
 discourage the manufacturer from

 undertaking certain products and
 services. It appears that separation
 of software pricing and the volume

 discounting which this implies will
 help software houses and large

 users but will discriminate against
 smaller users, smaller manufactur

ers, and those manufacturers who
 concentrate on serving the Federal

 Government.10
At this time, as the actual sepa

ration of hardware and software

 pricing is accelerating, the entire
 cost/price structure of software is

 in a state of flux. The intelligent
 and aggressive general manager

 must be aware of what is happen
ing daily in this area of concern,

 make his decisions on the latest in
formation, and resist making any

9Martin A. Goetz,

“

Proprietary Programs
—Can They Break the Software Monop

oly?,
”

 Data Processing Magazine, Janu
ary, 1968, pp. 48-49.
10

Melvin E. Conway, “On the Economics
of the Software Market,” Datamation,

 October, 1968, p. 31.

long-term contractual arrangements

for software.
Way back when in the history of

computers, say, ten years ago, the

 byword of the computer programer
 seemed to be efficiency, according

 to Mr. Armerding. Only incom
petents would use such a thing as

 a trace program. Interpretive pro
grams were used only with careful

 supervision because they did not
 employ the computer efficiently.

Now, however, we are in the

midst of the hardware revolution,

 and the software world is adopting
 a more enlightened attitude toward

 inefficient machine usage. Consider
 time sharing

as
 an example. Few

eyebrows are raised when it is re
ported that a general purpose time
 sharing system uses 50 per cent of

 the available computer time per
forming its various overhead opera

tions. Or consider interpretive pro
grams; it is found that even the

 installed compiler, one of the most
 frequently used programs, runs in

terpretively, making the computer
 act like something it is not. Ineffi

cient? No. The experts claim the
 compiler is more than worth the

 time it takes. Operating systems,
 loaders, editing programs, and

 many other overhead functions take
 a large share of

the central process

ing unit cycles away from the
 problem program. The new gener

ation of programers finds nothing
 wrong with this mode of operation

 even though it makes the old-tim
ers cringe. To the new man the

 benefits exceed the costs. It is true
 that everybody would like to ob
tain

as
 much useful work out of

the computer as possible, but,
 everything considered, we are pay

ing less, a great deal less, for each
 useful answer than we paid in the
 past. Increased hardware perform
ance per hardware dollar more

 than compensates for the loss of
 the ever-increasing portion of the

 machine’s power absorbed by soft
ware.11

In fact, Arthur Nesse, of the

Ford Motor Company, projected

 figures for hardware versus soft

ware shipments that indicate that

this trend can be expected to con
tinue. According to Mr. Nesse, in

 the 1960’s hardware represented
 approximately 60 per cent of the

 value of computer shipments. By
 1975, Mr. Nesse quotes the Stand

ford Research Institute
as

 predict
ing, the value of the hardware com

ponent in computer shipments will
 decline from 60 per cent to about

 30 per cent or 40 per cent, and the
 value of software will grow to the
 complementary 70 per cent or 60
 per cent.12

As long as the hardware design

ers keep reducing the cost of com

puters and keep raising their per
formance, users will perhaps de
mand, and for certain tolerate,

 more and more “overhead” soft
ware to make things easier for the

 programer and his program. Only
 when the designers of computers

 have wrung the last drop of power
 out of the circuits and the manu

facturers have reduced their pro
duction costs to their reasonable

 limits may we expect the software
 builders to begin to be seriously
 upset about software overhead
 rates. That day appears far in the

 future.13

Programs for sale
In the very early days of the

computer industry, the machines
 were installed with virtually no

 software. Users programed in ma
chine language and had to develop

 their own software to supplement
 what little the manufacturer did

 supply. Rapidly it became evident
 that there were programs that al

most all users needed, since many
 users were individually writing al

most identical programs. Informal
 and later formal user groups were

 established to share and exchange
 programs of mutual interest. The

 concept of developing programs of
 general use and hence saving peo

ple and money that would other-

July-August, 1970 51
4

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 7 [1970], No. 4, Art. 8

https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8

Every programer in the

country is a potential

 software seller. All he

 requires is very little capital,

 coding paper, pencils, and a

 few hours of weekend or

 evening time.

wise be wasted in “reinventing the

wheel” had its beginnings in these
 early cooperative efforts. These

 shared programs were among the
 first software.14

The software economic evolution

is also at work

here. The early spirit

of “together we stand, divided we
 fall” has been all but lost. Now

 any program worth the cards it is
 punched on is being offered, not

 free, but for a price. The computer
 magazines are full of ads. In the

 want-ad section of a computing
 newspaper, an individual pro

gramer asks $150 for a copy of his
 improved, high-speed sort pro

gram.15 As a further example, in
 the March, 1970, issue of Data

mation there were seven pages of
 ads for software containing twenty-

 nine advertisements.16
The early software entrepreneurs

found the market quite rough; a

 few early programs offered for sale
 did not make enough sales to cover

 expenses. The market now appears
 to be mixed. Managers, who at first
 were revolted at the idea of having

 to pay for something they had tra
ditionally received “free,” recog
nized the inevitable. Now manag

ers are spending substantial sums
 for the privilege of using proprie

tary program packages. However,
 reckless competition is almost sure

 to come. Every programer in the
 country is a potential software

 seller. All he requires is very little
 capital, coding paper, pencils, and
 a few hours of weekend or evening

 time. Countless time sharing instal
lations will be pleased to sell him

 machine time to debug and test
 his programs.

Now that many shots are being

heard, this part of the software

 economic evolution may well be
come a full-scale revolution. No

 one should be amazed by the fur
ther avalanche of proprietary pro
grams on the market. It may not

 be too long before the day arrives

14

Robert V. Head and Evan F. Linick,
“Software Package Acquisition,” Data

mation, October, 1968, p. 22.
15

Armerding, op. cit., p. 8.
16

Datamation, March, 1970, p. 215.

when all software will be sold in

an environment of true competi
tion.17

17 Armerding, op. cit., pp. 8-9.
18 Ibid.

A forecast

With the advent of

separate pric
ing of software by some manufac

turers and of proprietary programs
 offered for sale in great numbers,

 the time is ripe for significant eco
nomic changes within the realm

 of computer software.
At the present time most of the

programs offered for sale are ori

ented toward applications. There
fore, they seldom compete directly

 with software offered by the com
puter manufacturer. But enterpris
ing programers have begun to

 compete with the manufacturers
 and will continue to do so. The

 market may see improved versions
 of “free” software, or software that
 will replace the “free” software, or

 programs that supplement the stan
dard software or make it easier for

 users to approach. This, of course,
 will lead to a highly competitive

 market. The manufacturers appear
 to have the upper hand. They have

 great freedom to adjust the price
 of their software, from gratis to

 profit-making. But as high-perform
ance substitutes appear on the mar
ket, the pressure will be on the

 manufacturers either to improve
 their performance or to adjust their

 pricing.18

Software standards
Standards for software are rather

like control for weather. A lot of
 talking has been done, but few re

sults have been attained—and for
 the same underlying reason: Good

 software and good weather are not
 the same to each person.

It is true that one of the key fac

tors in the definition and use of

 software is the role played by stan
dardization. Another basic purpose

 of standardizing is to achieve com
patibility, which in turn reduces

 personnel and documentation cost.

52 Management Services
5

Lindsay: Software and the General Manager

Published by eGrove, 1970

Standardization also assists in con

verting to new computers. Despite
 all of these advantages, there has

 been only limited success in stan
dardizing software under the

 American National Standards Insti
tute (ANSI). Two items that have

 been standardized are the higher-
 level languages FORTRAN and

 COBOL.19 Certainly, any software
 could be standardized if the need
 were acute; consider, for example,
 the work being done in machine
 tool control.

19

Sammet,

 op. cit., pp. 43-47.
20 Paul B. Goodstat,

“
Standards in Data

Processing,’’ Data Processing
Magazine, March, 1967, pp. 22-25.

21 Don Crayford, “A Future for ECMA?,”

Datamation, September, 1969, pp. 43-44.

22 Enger, op. cit., pp. 195-196.
23 Sammet, op. cit., p. 44.

There are currently three major

forces in standardization: ANSI,
 the European Computer Manufac

turers Association (ECMA), and
 the National Bureau of Standards

 (NBS), within the United States
 Department of Commerce. ANSI
 is a federation of nearly 150 trade

 associations and professional so
cieties and more than 2,000 mem

ber companies. It is a privately
 supported organization acting as

 the national clearing house and
 coordinating agency for voluntary

 standards in the United States. The
 word voluntary is important. There

 is no force of law behind ANSI’s
 standards, nor is there even an im

plied commitment on the part of
 those responsible for developing a
 standard that they will later sup

port or use it.20
The European Computer Manu

facturers Association was formed

 in 1960 and is largely, as the name
 implies, a manufacturers’ associa
tion. This group’s significance in

 American standards work is two
fold. First, it acts as a challenge to

 United States standards work. Sec
ond, the ECMA acts

as
 a second

court of appeals for American stan
dards.21

On March 11, 1968, the Federal

Government

approved the first Fed

eral automatic data processing
 standards. This was the first step
 in an intensified effort by the Fed

eral Government to strengthen the

control of Federal computer activi
ties. Three Federal agencies are

 responsible for the development of
 data processing standards: the Gen

eral Services Administration, the
 Bureau of the Budget, and the De

partment of Commerce (National
 Bureau of Standards). The NBS

 has been authorized to make rec
ommendations to the President re

lating to uniformity of Federal
 automatic data processing, and it

 also has responsibility for the pro
motion of voluntary commercial

 EDP standards.22

Problems of standardization

There are five major problems in

approaching standardization: con
ceptual problems, technical prob

lems, procedural problems, time,
 and expense.

The first conceptual problem is

one of timing: When should the

 standardization of software take
 place? Without careful considera

tion, standardization is likely to
 come too soon or too late. If it is
 too soon, there is a risk of stan

dardizing things that are not really
 very good. On the other hand, if

 standardization is delayed too long,
 then innumerable variations have
 developed, many of them repre

senting only minor differences,
 which means a number of vested

 interests that are reluctant to ac
cept a standard that diverges from
 their particular version.

A
 second conceptual problem is

the risk of smothering progress. In
 some manner the standardization
 process must avoid preventing or
 eliminating technical progress. This

 is difficult because there is no easy
 way of coping with bright new

 ideas if they come up after the
 standard is established, or even

 while it is in the process of being
 established.

The technical problem of soft

ware standardization is one of defi

nition. We do not yet understand
 how to define software with rigor.23

Standards for software are

rather like control for
 weather. A lot of talking has

 been done, but few results

 have been attained and for

 the same basic reason: Good

 software and good weather

 are not the same to each

 person.

July-August, 1970 53
6

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 7 [1970], No. 4, Art. 8

https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8

Potential legal problems

involving software are as

 infinite in number as the

 possible advances and

 applications of software.

 Unfortunately, many of
 these problems have gone

 unrecognized because of

 communication barriers.

Lawyers are not aware of

software developments and

 their practical applications

 and hence do not foresee

 trouble areas.

No completely formal method ex

ists for the definition either among
 or within the software classifica
tions of operating systems, pro
graming languages, time sharing

 software, data management, and
 applications software.

The procedural problems in es

tablishing standards are enormous,

 but they are unavoidable. Stan
dardization must be undertaken

 cautiously to prevent the issuance
 of undesirable standards. (Unde

sirable merely means not accepta
ble to virtually all the user groups

 to whom the standard will apply.)
 The delays in the establishment of

 a standard, often three and one-
 half to five and one-half years (the
 time problem), are caused by the
 complexity of the procedures,

 which have been designed to pro
tect the rights of those involved.24

 This often causes difficulty for
 those groups that are at a stage in
 their technological or manufactur

ing development where they are
 eager to implement a standard,
 which does not yet exist officially
 and still may be altered.25

24 Gilbert E. Jones,

“

The Impact of Stan
dards,” Computers and Automation, May,

 1969, pp. 38-39.
25 Sammet, op.

cit.,

 p. 46.
26 E. Stuart Fergusson, “USASI and For

mal Standards Activities,” Data Process
ing Magazine, April, 1967, pp. 43-44.

27 “The Month That Was,” Data Process
ing

Magazine,
 September, 1969, p. 8.

The final problem in approach

ing standardization is its tremen
dous expense. With the amount of

 work involved in carrying a stan
dard from working group meetings

 to a proposed standard, through a
 series of committees, and finally to

 ANSI approval and the printing
 as an ANSI Standard, it should be
 clear that a lot of expense is in

volved. The heavy cost must be
 borne by trade associations, manu

facturers, consumer groups, general
 interest groups, and even interested
 individuals in some cases. In addi

tion, there is the enormous expense
 of converting software in use to
 meet an agreed-upon standard.26
 Those dedicated individuals who

 are responsible for what progress
 has been made must be admired for

their good sense and their tenacity

against what must appear as enor
mous odds.

General David Sarnoff, in his

keynote address to the 1964 Fall

 Joint Computer Conference, said,
 “Standards can be established

 which, if planned with thought
 and foresight, can guide us in the

 future, linking our separate efforts
 and facilitating the common evolu
tion of our industry. Such stan

dards are indispensable to con
tinued progress.” Unfortunately, it

 appears that General Sarnoff’s
 hopes will be a long time coming
 true in computer software.

Software legalities

“The Software Case Is Settled,”

reads a headline from Data Proc
essing Magazine, September, 1969.

 The article continues, “Now pat
entable after many months of con
troversy and dispute, it becomes

 even more significant in the light
 of recent separation from the hard

ware market. The U.S. Court of
 Customs and Patent Appeals ruled

 favorably on the appeal of Charles
 D. Prater and James E. Wei on the

 grounds that once a digital com
puter is properly programed, it

 becomes a special purpose com
puter (a specific electrical circuit).

 The Court rejected the Patent Of
fice contention that programing

 a general purpose digital computer
 is ‘obvious.’ ”27

What does this news mean to the

general manager? How will this

 legal decision on software affect
 him, and are there other legal areas
 such as software contracts, taxes,

 and employee contracts that he
 should be aware of? (The answer

 to the last question is a firm yes.)
Potential legal problems involv

ing software are as infinite in num

ber as the possible advances and
 applications of software. Unfortu

nately, many of these problems
 have gone unrecognized because

of communication barriers. Lawyers
 are not aware of software develop-

54 Management Services
7

Lindsay: Software and the General Manager

Published by eGrove, 1970

ments and their practical applica

tions and hence do not foresee trou
ble areas. Management and com
puter technical personnel, left on

 their own, may forge ahead with
 new ideas without an understand

ing of the complex legal conse
quences. Even those who are sen

sitive to these problems may be
 reluctant to seek legal advice at
 every juncture, and lawyers may

 be correspondingly uneasy about
 offering opinions in such a com
plicated and uncharted area.28

28 John F. Banzhauf, “When Your Com

puter Needs a Lawyer,” Communications
 of the ACM, August, 1968, pp. 543-544.

29 Robert B. Bigelow,
“

Legal Aspects of
Proprietary Software,” Datamation, Oc

tober, 1968, pp. 32-34.

30 The reader is referred to both Allen

W. Puckett, “Protecting Computer Pro
grams,” Datamation, November, 1967,

 pp. 55-60, and Robert P. Bigelow,
“

Le
gal Aspects of Proprietary Software,”

 Datamation, October, 1968, pp. 32-39,
 for

a
 detailed discussion of the total

relationship of software to statutory and
 common law.

31 Bigelow, op. cit.

To make matters more complex,

we have not so much an undefined
 product as a product whose defi

nition keeps changing. Software
 may be viewed from several levels.
 It can be simply the program, or
 it can be the program plus the re

search effort that has been ex
pended on the total study of the
 problem. Think, for example, of all
 the programing for a time sharing

 system. It is all software. But the
 individualized customer programs,
 each a subset, are marketable com

modities in and of themselves, as
 are the executive routine and,

 maybe, the documentation. Then
 there are the constantly changing

 relationships among hardware and
 software. Again using time sharing
 as an example,

as
 the problems of

the security of data have become
 more important, what used to be

 software is now being built into
 hardware, and the term firmware

 has been used to define the de
veloping concept of a hybrid per
sonality.29

Even with the recent patent de

cision, there remain two distinct

 arenas for the discussion of the
 protection of the program devel

oper’s proprietary interests in the
 software against unauthorized use.

 The first arena is that of the law
 of intellectual property, primarily
 expressed by statute in patent,

 copyright, and trademark laws; the
 other arena is that of the common

law, including the law of trade

secrets, unfair competition, and
 contracts.30

Now that the patent decision has

been made, however, where does

 this problem stand? Allen W. Puck
ett, an attorney with McKinsey &

 Co., Inc., predicted in 1967 that
 even if patents were granted their

 use would be severely restricted.
 His prediction has been somewhat

 substantiated by the infrequent use
 of the copyright in registration of

 computer programs. In May, 1964,
 the Copyright Office decided that

 it would allow the registration of
 computer programs. By mid-1967,

 within a period of more than three
 years, only about a hundred com
puter programs had been regis

tered.31
Mr. Puckett offers four reasons

why patents will not be used to

 any great extent: First, patents are
 very expensive. To get a patent re
quires not only significant legal

 fees but also lost programer time,
 and programer time is a critical

 commodity that industry is seeking
 to conserve.

Second, obtaining patents is

very time-consuming. On the av

erage, the lapse from the time an
 application is originally submitted

 to the time a patent is approved
 is about three years, and then the

 patentee has merely a “license to
 litigate.” If the patent then is liti

gated, protection is even further
 away. In view of the past rate of

 development of the industry it is
 likely that the program will be

 obsolete by then.
Third, a program patent is risky.

An obvious risk is that large ex

penditures may have to be made
 defending the patent. If the patent

 is struck down by the courts, the
 opportunity for other types of pro-

To make matters more

complex, we have not so

 much an undefined product

 as a product whose definition

 keeps changing. Software .. .

 can be simply the program,

 or it can be the program plus

 the research effort that has

 been expended on the total

 study of the problem.

July-August, 1970 55
8

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 7 [1970], No. 4, Art. 8

https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8

tection, such as copyright, trade

mark, trade secret, unfair compe
tition, and contract, may well have

 vanished. For instance, the pro
gram would no longer be a “se

cret,” protectable against unfair
 competition.

Finally, in practice, program pat

ents would probably be unenforce

able for all but major corporations
 because of the prohibitive litiga
tion expenses and the extreme dif
ficulty in detecting patent infringe

ments. To obtain a patent, an in
ventor must file a description of

 the invention with the patent office.
 A complete copy of that descrip
tion may be obtained from the Pat

ent Office in return for a small sum.
 Since creating the program from
 a detailed description would be

 inexpensive and since programs
 would be duplicated for use rather

 than for resale, it would be almost
 impossible for a patent holder to
 track down the clandestine users of
 a patented program.32

32 Puckett, op. cit.

33 Phyllis Higgins, “Users Resisting IBM

SE Contract Selling,” Computerworld,
 February 11, 1970, pp. 1-2.

34 Bigelow, op. cit., pp. 37-38.

What is the long-range solution

to this problem? It appears that
 the best solution would be program

 protection provided explicitly by a
 new act of Congress.

Short-range protection

According to Robert P. Bigelow,

the best current protection of pur
chased software seems to be a con
tract between the manager and the

 supplier. There are several impor
tant items that must be covered in

 any contract for software. Where a
 program is to be developed by an

 application company for the user,
 the contract should specify, in ad
dition to such important items as

 the time schedule and the price,
 the purpose of the program, the

 documentation required, the on
site assistance to be rendered by

 the software house, and, above all,
 the ownership rights in the pro

gram.
The standards of performance

the software is to meet must be

 spelled out in detail for both the
 user and the developer, and the

developer should be required to

correct all errors found. To date,
 the literature shows, there have
 been no cases litigated on failure

 to meet contract specifications on
 software, but there have been two

 cases dealing with the problem of
 a hardware supplier’s failure to ful

fill the terms of its contract. In one,
 decided in the state of New York,

 the Federal Reserve Board spelled
 out in great detail what it was to

 receive. The hardware supplier was
 unable to produce; the damages

 were over a quarter of a million
 dollars (U.S. v. Wegematic Corpo

ration, 360F2d674).

Liability problems

The manager may be liable to

someone who is hurt, without that
 person’s having to prove negli

gence, particularly if the program
 is of the process control type where

 a failure to meet specifications
 could have dangerous results. This

 would be similar to the cases in
volving exploding soda pop bottles

 or cars that lose wheels. There is
 a distinct trend in the courts to dis

pense with the requirement that a
 person injured under such circum

stances prove that the defendant
 was negligent. Probably we can
 expect to see this thinking applied

 when computer programs are op
erating and something blows up.

 The contract should cover this lia
bility, and both parties should at
tempt to obtain insurance coverage

 against such an event.
The contract should also cover

the developer’s liability for the in

fringement of the rights of others.
 While the developer’s own rights

 in software against unauthorized
 use are becoming clearer, it is pos

sible that in developing the pro
gram he might infringe a copyright

 or a trade secret, particularly if,
 in developing the program, he used

 someone who had been under a
 restrictive agreement with another
 computer-oriented firm.

Debugging and testing times

should also be included in the con

tract. In a recent issue of Com
puterworld, a user was quoted,

“My fight with the manufacturers

is over their software contracts.
 You have to start paying while you

 are still testing, and you can’t can
cel for three months. I don’t see

 why we should pay for the priv
ilege of testing software and ad

vising them what is wrong with
 it.”33

Particularly important in con

tracts for software is provision

 for penalties. The history of soft
ware has been one of dilatoriness.

 The State of California, as of 1968,
 is putting a penalty clause into

all of its contracts for software. It
 has been reported that IBM has

 signed a contract with the State
 of California to provide software

 which must “show substantial con
formance to the manufacturer’s spe
cifications,” with penalties for fail
ure to meet such specifications on

 time. This type of contract clause
 may become quite common, not
 only in government procurement
 but also in acquisition by sophisti

cated managers. And into the bar
gaining equation will go the nor
mally heavy economic weight of

 the user as compared to the nor
mally light weight of the software

 house.
The contract may also include

clauses specifying whether the

 software is or is not for one user
 only; the user’s rights to improve
ments made by the software devel

oper; the user’s rights to make
 modifications; and perhaps the de
veloper’s rights to improvements

 made by the user. On the other
 hand, when software is leased

or rented, the manager may have to
 sign a contract which carefully

 spells out the reservation of rights.
These are some of the matters

which should be considered in
 contracts for proprietary software.

 The best protection for the man
ager, however, is to deal with an

 honest man and give him a square
 deal.34

Even in the software area, taxes

56

Management Services
9

Lindsay: Software and the General Manager

Published by eGrove, 1970

must be considered, says Mr. Bige

low. There is a good argument that
 developmental costs for software

 should be treated as an expense
 item. Accountants who have looked

 into the matter have defined soft
ware to include the justification

 study, the feasibility study, the sys
tems work, and the training of per
sonnel as well as the actual pro
graming—in other words, every

thing related to the installation of
 a computer system except the hard

ware costs. Obviously, these costs
 can be considerably higher than
 the actual hardware outlays, espe

cially if the hardware is rented.
 From the manager’s point of view,

 the price or rental of software is
 but the visible portion of his soft

ware costs. There are some useful
 precedents going back

as
 far as

1925, including outlays for effi
ciency systems, management sur

veys, revisions of accounting sys
tems, and so forth, to indicate that
 the proper tax treatment, at least

 from the manager’s point of view,
 may be to take all software costs
 as an expense of doing business in

 the year in which they were in
curred.

It has also been suggested that

software development costs should

 be treated in the same manner as
 research and experimental expendi

tures. Certain expenditures of this
 nature can be handled either as
 capital or expense items to be

amor

tised over a period of not less than
 five years. Once the choice is made,

 you have to stick with it.
From another point of view hard

ware is tangible personal property

 which has a useful life of more
 than one year. It is depreciable,
 tangible personal property to which

 all the depreciation rules for tax
 purposes apply and for which an
 investment tax credit may be taken.

 The interdependence of hardware
 and software and the growing prob

lem of deciding where the line is
 between the two give weight to

 the argument that software devel
opment costs should be treated the

 same
as

 hardware for tax purposes.
The investment credit is available

 for depreciable tangible personal

property which is used as an integ

ral part of a manufacturing opera
tion. “Integral part” is defined to

 include cases where the property
 is “used directly in the activity and

 is essential to the completeness of
 the activity.” A computer program

 which is used for process control
 would seem to

fit
 this require

ment.35 In sum, tax regulations are
 important, and the proper han

dling of software cost may result
 in significant savings.

35 Ibid., p. 38.

Contracts with programers

A

 final legal aspect of software
that should be considered is the re

lationship between the company
 and its programers. Mr. Bigelow

 has set forth the following con
cepts in this field:

When a product is developed

by a team the individual employee

 has comparatively few rights. But
 what about the situation where

 the product is developed by a full-
 time employee on his own time?

 One company in Boston had a
 problem of just this sort. The prod

uct in question was an exceedingly
 valuable program which the com
pany, which is not in the program

 development business, nevertheless
 hoped to be able to peddle. But
 the employee, who put in a great

 deal of his own time, also wanted
 to make some money. The only

 clear answer to such a problem and
 problems like it in the future is

 a clearly written employee contract
 covering such questions. Such a
 contract should also cover relation

ships between the employer and
 the employee after the employee

 leaves the company.
To cover relationships during em

ployment, the contract might well

 include the following: (1) an
 agreement to disclose all intellec
tual accomplishments of interest to

 the company, whether made on
 company time or on the employee’s

 time, if the discovery is capable
 of being used by the company, (2)

 an agreement to execute such as
signments and other papers as the

A contract for software might

include clauses specifying

 whether the software is or is

 not for one user only; the

 user’s rights to improvements

 made by the software

 developer; the user’s rights

 to make modifications; and

 perhaps the developer’s

 rights to improvements

 made by the user.

July-August, 1970 57
10

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 7 [1970], No. 4, Art. 8

https://egrove.olemiss.edu/mgmtservices/vol7/iss4/8

company may request to give it

appropriate rights in such discov
ery, together with a representation

 that there are no such discoveries
 at the present time; this latter item
 can be very useful in avoiding
 arguments and litigation later.

To protect the company’s prop

erty rights, the contract may pro

vide that the employee will keep
 confidential information secret for
ever, whether related to the com

pany, its programs, or its products.
 He should also agree that if he

 leaves he will not, without written
 consent, take with him processes,

 formulae, and so forth relating to
 the company’s operations or its ex

periments.
Of equal importance are con

tractual arrangements after the em

ployment is over. Most agreements
 of this type which have come be

fore the courts have been agree
ments not to establish a business,

 such as a restaurant, within a cer
tain geographical area. In the soft
ware field, geography is irrelevant.

 If a manager wants a noncompeti
tive agreement, it is suggested that

 it be put on a time basis. As an
 illustration, when you employ a

 person, get him to agree that for
 three months after he leaves he
 will not engage in any activity that

 competes with any business in
 which the company is engaged at
 the time he leaves and that during

 a full year after he leaves he won’t
 compete directly with the com

pany in any such business. Reason
able time limits will be upheld

 but the courts will not deprive a
 man of his livelihood forever. Even

 without a contract, if it can be
 clearly shown that the former

 employee made unauthorized use
 of information which he had re
ceived from his employer, he can
 be enjoined from using it and

 made to pay damages.
One important item the man

ager may wish to include in a

 programer’s contract is an agree
ment that he will, after termina

tion, upon payment of an amount
 specified in the contract, return to

 work for the original company for
 the finite purpose of updating pro

grams on which he worked. With

the difficulty in updating programs,
 such a clause might avoid the

 risks of undocumented changes
 made by short-term employees.30

Summary

This article has discussed soft

ware, from a general manager’s
 point of view, in three specific

 areas, economics, standards, and
 legalities. In all these areas the
 overall impression is one of great

 flux and change, monthly if not
 weekly. Hence, the general mana

ger must make it an explicit work
 habit to keep himself totally and
 daily informed of the changes and
 the proposed changes in these im
portant software areas.

36 Ibid., pp. 38-39.

Bibliography
Ambrose,

John,

 “The Tale of Crazy Fred
die,” Computers and Automation, Feb

ruary, 1970, pp. 14-15.
Carlson, Charles E., and Philip C. Sem

previvo, “Multi-Programing Computer

 Evaluation and Management,” Man
agement Services, September-October,

 1968, pp. 39-43.
Dansiger, Sheldon J.,

“

Proprietary Pro
tection of Computer Programs,” Com

puters and Automation, February,
 1968, p. 32.

Dorn, Philip H.,
“

Obsolescence: Systems
Software,”

Datamation,
 January, 1969,

pp. 25-36.
Fergusson, E. Stuart, “USASI and For

mal Standards Activities,” Data Proc

essing
Magazine,

 April, 1967, pp.
42-46.

Fisher, F. Peter, and George F. Swindle,

Computer Programming Systems, Holt,

 Rinehart and Winston, Inc., New
 York, 1964.

Galler,
 Bernard A., The Language of

Computers, McGraw-Hill Book Com
pany, New York, 1962.

Glans, Thomas B.; Burton Grad; David

Holstein; William E. Myers; and Rich

ard N. Schmidt, Management Systems,
 Holt, Rinehart and Winston, Inc., New
 York, 1968.

Goodstat, Paul B., “USASCIT, What’s It

All About?,” Data Processing Maga

zine, June, 1967, pp. 20-24.
Kendall, M. G.,

“

Software Costs—A Plea
for Separate Pricing,” Data Processing,

Marc

h-April, 1969, p. 117.
Ledley, Robert S., Programming and

Utilizing Computers, McGraw-Hill

Book Company, New York, 1962.
Martin, James, Design of Real-Time

Computer Systems, Prentice-Hall, Inc.,

 Englewood Cliffs, New Jersey, 1967.
Moore, Michael R., “Pitfalls in Planning

an EDP Installation,” Management

 Services, September-October, 1968, pp.
 25-32.

“New Software,” Datamation, September,

1969, pp. 221-227.

Optner, Stanford L., Systems Analysis

for Business Management, Prentice-

 Hall, Inc., Englewood Cliffs, New Jer
sey, 1960.

Reynolds, Carl H.,

“

Notes on Estimating,
and Other Science Fiction,” Data

 Processing Magazine, June, 1967, pp.
 44-45.

Reynolds, Carl H.,

“

Software Standards,”
Data Processing Magazine,

March, 1967, pp. 26-28.
Reynolds, Carl H., “The Research Insti

tution and Data Processing,” Data

 Processing Magazine,
April,

 1967, pp.
60-61.

Rosen, Saul, Programming Systems and

Languages, McGraw-Hill Book Co.,

 New York, 1967, p. 23.

Schar
f, Tom, “Management and the New

Software,” Datamation, April, 1968,
 pp. 52-59.

“Separate Hardware/Software Pricing?,”

Datamation, June, 1968, pp. 72-78.

Silber, Howard A., “A Hypothetical In

terview Between the President of a

 Computer Software Company and a
 Patent Attorney Specializing in Protec

tion of Computer Programs,” Compu
ters and Automation, February, 1970,

 pp. 14-15.
Silber, Howard A., and John Ambrose,

“IBM, the Patent Office, and the Small
 Software Company: The Emergence of

 an Industry,” Computers and Automa
tion, February, 1970, pp. 14-15.

“The Problems of Packaged Programs:

The American Management Associa

tion Conference Report,”
Datamation,

Apr il, 1968, pp. 75-79.
“The Software Explosion,” Business Au

tomation, September, 1968, pp. 24-29.

“
The Year 2000,” Computer Digest,

April, 1969, p. 14.
U.S. Congress, House Committee on Gov

ernment Operations, Data Processing

 Management In The Federal Govern
ment, hearings before

a
 subcommittee

of the Committee on Government Op
erations, House of Representatives,
 90th Congress, 1st Session, 1967.

Weinberg, Gerald M., PL/1 Program

ming Primer, McGraw-Hill Book Com

pany, New York, 1966.

“
What To Do Until The Software Pack

age Guru Comes,” Editorial, Datama
tion, October, 1968, p. 21.

Wilker, M. V., and D. F. Hartley,
“

The
Management System—A New Species

 of Software?,” Datamation, September,
 1969, pp. 73-75.

58 Management Services 11

Lindsay: Software and the General Manager

Published by eGrove, 1970

	Software and the General Manager
	Recommended Citation

	Management Services, July-August 1970

