
Management Services: A Magazine of Planning, Systems, and Management Services: A Magazine of Planning, Systems, and

Controls Controls

Volume 7 Number 1 Article 6

1-1970

What a Financial Manager Should Know About COBOL and What a Financial Manager Should Know About COBOL and

Assembly Language Assembly Language

David K. Banner

Follow this and additional works at: https://egrove.olemiss.edu/mgmtservices

 Part of the Accounting Commons

Recommended Citation Recommended Citation
Banner, David K. (1970) "What a Financial Manager Should Know About COBOL and Assembly Language,"
Management Services: A Magazine of Planning, Systems, and Controls: Vol. 7: No. 1, Article 6.
Available at: https://egrove.olemiss.edu/mgmtservices/vol7/iss1/6

This Article is brought to you for free and open access by the Archival Digital Accounting Collection at eGrove. It
has been accepted for inclusion in Management Services: A Magazine of Planning, Systems, and Controls by an
authorized editor of eGrove. For more information, please contact egrove@olemiss.edu.

https://egrove.olemiss.edu/mgmtservices
https://egrove.olemiss.edu/mgmtservices
https://egrove.olemiss.edu/mgmtservices/vol7
https://egrove.olemiss.edu/mgmtservices/vol7/iss1
https://egrove.olemiss.edu/mgmtservices/vol7/iss1/6
https://egrove.olemiss.edu/mgmtservices?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol7%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/625?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol7%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/mgmtservices/vol7/iss1/6?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol7%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

If a company man is chosen over a computer expert

to run the EDP installation, how much should he
 know about computers? At least this much about the

 software used with them, the author maintains —

WHAT A FINANCIAL MANAGER SHOULD KNOW

ABOUT COBOL AND ASSEMBLY LANGUAGE

by David K, Banner
Peat, Marwick, Mitchell & Co.A question still occupying hours

of seminar and discussion time is this: Who is best qualified to run an EDP installation, the experienced company man or the quali fied EDP technician? And, assuming this question is resolved in favor of the company executive, the inevitable next question arises:How much technical knowledge does he need?Our answer would be that he needs comparatively little provided he has the right EDP technicians working for him and has the proper communication lines open to them. He does not need to know how the machines do what they do, but he does definitely need to know what they can do. And he certainly needs to understand enough of the spe cialized EDP language so that communications do not constantly bog down between his specialists and himself.

We would suggest, too, that a

modern financial manager must be aware of the relative advantages of using COBOL (Common Business Oriented Language) or an assembly language in a given ap plication. Both languages have relative strengths and the enlightened manager must exploit these to maximize his EDP effectiveness. This, then, is the purpose of this article: to give the financial manager a feeling for the characteristics of these computer languages as they might influence his operating environment in hopes his decision making with regard to EDP will be more enlightened as a result.First of all let’s define our terms:An EDP term of interest is “hard ware,” i.e., the machine itself with all its peripheral equipment. The term “software” refers to a wide va riety of programing aids designed to save time, money, or both by re

ducing personnel time at the ex

pense of machine time. A program, i.e., the instruction for a specific application, is a part of the software. Programs can be coded in machine language, assembly language, or compiler language, but the choice of language can mean quite a lot in terms of machine efficiency, as we shall see.To give a frame of reference for this subject: We feel that several additional key definitions are in order. What is an assembly language? An assembly language is made up of symbolic statements; the assembler, i.e., the language processor, converts a single symbolic statement from a source pro gram into a single binary or ma chine statement (see Exhibit 1 on page 38). Obviously, this language processor offers little leverage since the one-for-one conversion does not substitute “machine
January-February, 1970 37

1

Banner: What a Financial Manager Should Know About COBOL and Assembly Language

Published by eGrove, 1970

time” for “people time.” In this

light, assembly languages can be said to require more human skills and less machine “skills.”The compiler, on the other hand, is a language processor with great leverage. The compiler expands each macro-code source statement, e.g., move, add, multiply, etc., into several machine statements. (It creates, in other words, a macro code language, in which each statement or comment incorporates several instructions.) Two familiar examples of compiler languages are COBOL (business-oriented) and FORTRAN (primarily for scientific applications). Another factor distinguishes compiler languages from assembly languages. The compiler source statements emphasize the steps in problem solution rather than being concerned, as are the assembly language statements, with the symbolic expression of machine language (see Exhibit 1).
History of COBOLCOBOL was designed to satisfy

a need for standardization of cod ing in business data processing applications. In May, 1959, a Pentagon meeting of users, manufacturers, and other interested parties was called to consider the desirability and feasibility of a common business source language. This meeting, called CODASYL (Conference on Data Systems Languages), developed the specifications for COBOL. A short-range committee was appointed to develop the source language from these specifications. COBOL-60, the first edition of COBOL, was

DAVID K. BANNER is a

management consultant

in
 the Houston office of

Peat, Marwick, Mitchell
 & Co. He received his BS

 from the University of
 Texas at Arlington. He

 received his
MBA

 from
the University of Hous

ton. Mr. Banner has
been a guest lecturer on finance at the

University of Houston. He has also been

 employed as an aerospace engineer at the
 Manned Spacecraft Center, NASA, in Hous

ton.

EXHIBIT I

FOUR LANGUAGES

DESCRIBING ONE

PROCESS

ENGLISH

Multiply The Unit Price By The Quantity To Get The Total Price.

COBOL

Multiply Unit-Price In Old Master By Quantity Giving Total Price.

ASSEMBLY LANGUAGE

LX,M X8,OLDMAS

LA A5,UNITPR,

X8

SLEUTH II

MSI A5,QNTY UNIVAC 1108

SA A5,TOTPR

MACHINE LANGUAGE

BINARY

01011111 1010000000001000100001010001

010001000001011000000000000100011100

011010000001010000001011010011100110

000001000001010000001110001111111001

the result. A maintenance commit

tee was set up to initiate and review recommended changes to keep COBOL up to date. COBOL- 61, published in 1961, reflected its changes.COBOL was not an instant success. At first it was plagued with excessive compile times, the generation of inefficient object coding, and excessive core requirements. In the last several years, however, COBOL has undergone a maturing process. The major deficiencies have been overcome: Compile times are good; core requirements have been reduced to workable limits; and user techniques have become more effective. Many manufacturers now offer COBOL compilers with their equipment (see Exhibit 2 on page 39). It is easy to see that

OCTAL

277200104

 210160000

 320120132

 010120161

COBOL has gained widespread ac

ceptance. However, assembly languages still have many applications. In the next few paragraphs we shall evaluate the advantages and disadvantages of the two types of languages.These two types of languages will be evaluated in terms of ten criteria (see Exhibit 3 on page 39).
Programer training time — COBOL is designed with the programer in mind; the organization of the language (English-like syntax) is simple. An individual doesn’t need to know machine language or assembly language to code COBOL; however, as we shall see later, such knowledge will aid COBOL efficiency. Administrative personnel, e.g., financial managers, can improve their ability to com-

38 Management Services2

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 7 [1970], No. 1, Art. 6

https://egrove.olemiss.edu/mgmtservices/vol7/iss1/6

EXHIBIT 2

EQUIPMENT FOR WHICH COBOL IS OFFERED

MFGR MODEL (SERIES)

BURROUGHS 5500, 6500, 7500,

500 SYSTEM

CONTROL DATA 3000 SERIES,

6000 SERIES

GE 115,400 SERIES,

600 SERIES

HONEYWELL 110,200 SERIES, 400,

1400, 800, 1800

IBM 1401, 1410, 7070 SERIES

SYSTEM/360

NCR 315, CENTURY SERIES

RCA 301, 3301, SPECTRA

SERIES

UNIVAC 1050, 1107, 1108,

490 SERIES,

9000 SERIES

municate systems problems or de

sires to systems people by having a knowledge of COBOL.
Programing (coding) — COBOL coding time constitutes a major saving over assembly language

EXHIBIT 3

EVALUATION OF COBOL AND

ASSEMBLY LANGUAGE

I

PROGRAMER/TRAIN

II

CODING

III

DOCUMENTATION

IV

STANDARDIZATION

V DEBUGGING

VI

EFFICIENCY

VII

MAINTENANCE

VIII

CORE

IX

COMPILE/ASSEMBLE

X

SOFTWARE

coding. The

compiler

 handles many of the details otherwise attended to by the programer.
Documentation — Both COBOL and assembly language can be documented, but, with COBOL, doc

umentation is inherent in

the

 lan guage. This is a real plus for CO BOL. A COBOL compilation, i.e., the conversion of a source lan guage program into a machine language version, results in a printed listing of the COBOL pro gram for documentation purposes. Another plus is that COBOL logic can be readily understood by personnel not familiar with the program.
Standardization — COBOL is called almost machine-independent by some people. This means that, with only minor changes, one can compile and execute a COBOL program on a machine different from the one for which the program was designed. This “machine independence” is somewhat overstated. Each machine has certain strengths and weaknesses (logic, data organization, etc.). A program written for a certain machine is likely to be better than a generalized program. Manufacturers have recognized this fact and now many of them offer several versions of the COBOL compiler. While COBOL may not be machine-inde pendent, it is at least compatible within a manufacturer’s product line.
Debugging — COBOL also has the advantage here. COBOL logic can be traced through with ease. During the compilation phase, COBOL generates a list of statements called diagnostics which indicate all errors in the source program excluding logic errors.
Efficiency—As mentioned before, COBOL object programs, i.e., the machine language version, used to be inefficient. This was largely because inexperienced people had coded certain portions of the COBOL programs sloppily. Still, even today, COBOL cannot match assembly language in overall machine efficiency. However, this is not usually significant; the rated speed of the peripheral equipment is as fast as you can go anyway. So, if the peripheral equipment is running at less than top speed, the relative inefficiency of COBOL becomes academic.

January-February, 1970 39
3

Banner: What a Financial Manager Should Know About COBOL and Assembly Language

Published by eGrove, 1970

EXHIBIT 4

PRIMARY

ADVANTAGES

OF

COBOL

DOCUMENTATION

MAINTENANCE

COMPATIBILITY

TRAINING

CODING

Program maintenance — COBOL

offers an advantage here because changes are easier to make with separate data and procedure divisions. Program maintenance can sometimes develop into a full-time job for one man; hence, with CO BOL, a relatively inexperienced man can do the necessary work.
Core requirements—COBOL re quires more core for the user cod ing portion of a program than does a comparable assembly language program. In fact, the advantage for assembly language is sometimes as high as 2:1.
Compilation/assembly—Depend

ing upon the efficiency of the compiler, assembly language is usually somewhat faster than COBOL in

Compiler languages are the latest

technique in the evolution of programing (see Exhibit 5 below). We can conclude, in the final analysis, that the advantages of the compiler language COBOL (in particular) outweigh the disadvantages. We can use the following decision rules in determining whether or not to use COBOL in an application:If the
program

 is to be run frequently, peripherals are running at rated speeds, and core is nearly used up, the use of as sembly language is indicated.If peripherals are running at

less than maximum and core re

quirements are not restrictive, COBOL should be used (even if the program is to be run frequently). If the program must be revised frequently, COBOL is especially valuable.One
can

 plainly see the way computer programing is headed. As compilers get more efficient, they will be used more frequently in varied applications. Assembly languages will most probably be restricted in use to manufacturer software. Another apparent trend is toward the use of combined programing languages, i.e., the use of English-type words (where convenient) and the use of mathematical notation (where convenient). Still a third trend seems to be toward a conversational programing. This would be the ultimate compiler language. The computer (instead of the programer) would be asked to remember the language. The computer would display to the user various available alternatives with the results of each. The user would then select and change words until he had a good statement of the problem.The contemporary financial man ager can expect his job to get even more complex in the future. With a basic knowledge of various computer languages, he should be able to use his EDP “arm” to its fullest capability.
the compilation (or assembly)

phase. However, tests have shown some COBOL compilers to be faster than assembly language in this respect.

Software—COBOL requires more time to execute when input/output bound (or process bound, for that matter). However, this can also be a moot point if the peripherals are not running at full speed.

EXHIBIT 5

EVOLUTION

OF
 PROGRAMING

MACHINE

 SYMBOLIC ---------------- COMPILER

LANGUAGE

 SYSTEMS -------------------- LANGUAGES

CODINGCOBOL,
therefore,

 offers the fol lowing real advantages: documentation, maintenance, compatibility (or standardization), training, and coding as shown in Exhibit 4 above. ADDRESSES

OPERATION CODES

40 Management Services
4

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 7 [1970], No. 1, Art. 6

https://egrove.olemiss.edu/mgmtservices/vol7/iss1/6

	What a Financial Manager Should Know About COBOL and Assembly Language
	Recommended Citation

	Managment Services, January-Febnruary 1970

