
Management Services: A Magazine of Planning, Systems, and Management Services: A Magazine of Planning, Systems, and

Controls Controls

Volume 7 Number 1 Article 6

1-1970

What a Financial Manager Should Know About COBOL and What a Financial Manager Should Know About COBOL and

Assembly Language Assembly Language

David K. Banner

Follow this and additional works at: https://egrove.olemiss.edu/mgmtservices

 Part of the Accounting Commons

Recommended Citation Recommended Citation
Banner, David K. (1970) "What a Financial Manager Should Know About COBOL and Assembly Language,"
Management Services: A Magazine of Planning, Systems, and Controls: Vol. 7: No. 1, Article 6.
Available at: https://egrove.olemiss.edu/mgmtservices/vol7/iss1/6

This Article is brought to you for free and open access by the Archival Digital Accounting Collection at eGrove. It
has been accepted for inclusion in Management Services: A Magazine of Planning, Systems, and Controls by an
authorized editor of eGrove. For more information, please contact egrove@olemiss.edu.

https://egrove.olemiss.edu/mgmtservices
https://egrove.olemiss.edu/mgmtservices
https://egrove.olemiss.edu/mgmtservices/vol7
https://egrove.olemiss.edu/mgmtservices/vol7/iss1
https://egrove.olemiss.edu/mgmtservices/vol7/iss1/6
https://egrove.olemiss.edu/mgmtservices?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol7%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/625?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol7%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/mgmtservices/vol7/iss1/6?utm_source=egrove.olemiss.edu%2Fmgmtservices%2Fvol7%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

If a company man is chosen over a computer expert
to run the EDP installation, how much should he
know about computers? At least this much about the
software used with them, the author maintains —

WHAT A FINANCIAL MANAGER SHOULD KNOW
ABOUT COBOL AND ASSEMBLY LANGUAGE

by David K, Banner
Peat, Marwick, Mitchell & Co.A question still occupying hours of seminar and discussion time is this: Who is best qualified to run an EDP installation, the experi­enced company man or the quali­fied EDP technician? And, assum­ing this question is resolved in favor of the company executive, the inevitable next question arises:How much technical knowledge does he need?Our answer would be that he needs comparatively little provided he has the right EDP technicians working for him and has the proper communication lines open to them. He does not need to know how the machines do what they do, but he does definitely need to know what they can do. And he certainly needs to understand enough of the spe­cialized EDP language so that com­munications do not constantly bog down between his specialists and himself.

We would suggest, too, that a modern financial manager must be aware of the relative advantages of using COBOL (Common Busi­ness Oriented Language) or an assembly language in a given ap­plication. Both languages have rel­ative strengths and the enlightened manager must exploit these to max­imize his EDP effectiveness. This, then, is the purpose of this article: to give the financial manager a feeling for the characteristics of these computer languages as they might influence his operating en­vironment in hopes his decision making with regard to EDP will be more enlightened as a result.First of all let’s define our terms:An EDP term of interest is “hard­ware,” i.e., the machine itself with all its peripheral equipment. The term “software” refers to a wide va­riety of programing aids designed to save time, money, or both by re­

ducing personnel time at the ex­pense of machine time. A program, i.e., the instruction for a specific application, is a part of the soft­ware. Programs can be coded in machine language, assembly lan­guage, or compiler language, but the choice of language can mean quite a lot in terms of machine efficiency, as we shall see.To give a frame of reference for this subject: We feel that several additional key definitions are in or­der. What is an assembly lan­guage? An assembly language is made up of symbolic statements; the assembler, i.e., the language processor, converts a single sym­bolic statement from a source pro­gram into a single binary or ma­chine statement (see Exhibit 1 on page 38). Obviously, this lan­guage processor offers little lever­age since the one-for-one conver­sion does not substitute “machine
January-February, 1970 37

1

Banner: What a Financial Manager Should Know About COBOL and Assembly Language

Published by eGrove, 1970

time” for “people time.” In this light, assembly languages can be said to require more human skills and less machine “skills.”The compiler, on the other hand, is a language processor with great leverage. The compiler expands each macro-code source statement, e.g., move, add, multiply, etc., into several machine statements. (It creates, in other words, a macro­code language, in which each state­ment or comment incorporates sev­eral instructions.) Two familiar ex­amples of compiler languages are COBOL (business-oriented) and FORTRAN (primarily for scientific applications). Another factor dis­tinguishes compiler languages from assembly languages. The compiler source statements emphasize the steps in problem solution rather than being concerned, as are the assembly language statements, with the symbolic expression of machine language (see Exhibit 1).
History of COBOLCOBOL was designed to satisfy a need for standardization of cod­ing in business data processing applications. In May, 1959, a Pen­tagon meeting of users, manufac­turers, and other interested parties was called to consider the desir­ability and feasibility of a common business source language. This meeting, called CODASYL (Con­ference on Data Systems Lan­guages), developed the specifica­tions for COBOL. A short-range committee was appointed to de­velop the source language from these specifications. COBOL-60, the first edition of COBOL, was

DAVID K. BANNER is a
management consultant
in the Houston office of
Peat, Marwick, Mitchell
& Co. He received his BS
from the University of
Texas at Arlington. He
received his MBA from
the University of Hous­
ton. Mr. Banner has

been a guest lecturer on finance at the
University of Houston. He has also been
employed as an aerospace engineer at the
Manned Spacecraft Center, NASA, in Hous­
ton.

EXHIBIT I

FOUR LANGUAGES

DESCRIBING ONE PROCESS

ENGLISH

Multiply The Unit Price By The Quantity To Get The Total Price.

COBOL

Multiply Unit-Price In Old Master By Quantity Giving Total Price.

ASSEMBLY LANGUAGE

LX,M X8,OLDMAS

LA A5,UNITPR, X8 SLEUTH II

MSI A5,QNTY UNIVAC 1108

SA A5,TOTPR

MACHINE LANGUAGE

BINARY

01011111 1010000000001000100001010001

010001000001011000000000000100011100

011010000001010000001011010011100110

000001000001010000001110001111111001

the result. A maintenance commit­tee was set up to initiate and re­view recommended changes to keep COBOL up to date. COBOL- 61, published in 1961, reflected its changes.COBOL was not an instant suc­cess. At first it was plagued with excessive compile times, the gen­eration of inefficient object coding, and excessive core requirements. In the last several years, however, COBOL has undergone a maturing process. The major deficiencies have been overcome: Compile times are good; core requirements have been reduced to workable limits; and user techniques have become more effective. Many manufac­turers now offer COBOL compilers with their equipment (see Exhibit 2 on page 39). It is easy to see that

OCTAL

277200104

210160000

320120132

010120161

COBOL has gained widespread ac­ceptance. However, assembly lan­guages still have many applica­tions. In the next few paragraphs we shall evaluate the advantages and disadvantages of the two types of languages.These two types of languages will be evaluated in terms of ten criteria (see Exhibit 3 on page 39).
Programer training time — CO­BOL is designed with the pro­gramer in mind; the organization of the language (English-like syn­tax) is simple. An individual doesn’t need to know machine language or assembly language to code CO­BOL; however, as we shall see later, such knowledge will aid COBOL efficiency. Administrative personnel, e.g., financial managers, can improve their ability to com-

38 Management Services2

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 7 [1970], No. 1, Art. 6

https://egrove.olemiss.edu/mgmtservices/vol7/iss1/6

EXHIBIT 2

EQUIPMENT FOR WHICH COBOL IS OFFERED

MFGR MODEL (SERIES)

BURROUGHS 5500, 6500, 7500,

500 SYSTEM

CONTROL DATA 3000 SERIES,

6000 SERIES

GE 115,400 SERIES,

600 SERIES

HONEYWELL 110,200 SERIES, 400,

1400, 800, 1800

IBM 1401, 1410, 7070 SERIES

SYSTEM/360

NCR 315, CENTURY SERIES

RCA 301, 3301, SPECTRA

SERIES

UNIVAC 1050, 1107, 1108,

490 SERIES,

9000 SERIES

municate systems problems or de­sires to systems people by having a knowledge of COBOL.
Programing (coding) — COBOL coding time constitutes a major saving over assembly language

EXHIBIT 3

EVALUATION OF COBOL AND
ASSEMBLY LANGUAGE

I PROGRAMER/TRAIN

II CODING

III DOCUMENTATION

IV STANDARDIZATION

V DEBUGGING

VI EFFICIENCY

VII MAINTENANCE

VIII CORE

IX COMPILE/ASSEMBLE

X SOFTWARE

coding. The compiler handles many of the details otherwise attended to by the programer.
Documentation — Both COBOL and assembly language can be doc­umented, but, with COBOL, doc­

umentation is inherent in the lan­guage. This is a real plus for CO­BOL. A COBOL compilation, i.e., the conversion of a source lan­guage program into a machine language version, results in a printed listing of the COBOL pro­gram for documentation purposes. Another plus is that COBOL logic can be readily understood by per­sonnel not familiar with the pro­gram.
Standardization — COBOL is called almost machine-independent by some people. This means that, with only minor changes, one can compile and execute a COBOL program on a machine different from the one for which the pro­gram was designed. This “machine independence” is somewhat over­stated. Each machine has certain strengths and weaknesses (logic, data organization, etc.). A program written for a certain machine is likely to be better than a general­ized program. Manufacturers have recognized this fact and now many of them offer several versions of the COBOL compiler. While CO­BOL may not be machine-inde­pendent, it is at least compatible within a manufacturer’s product line.
Debugging — COBOL also has the advantage here. COBOL logic can be traced through with ease. During the compilation phase, CO­BOL generates a list of statements called diagnostics which indicate all errors in the source program excluding logic errors.
Efficiency—As mentioned before, COBOL object programs, i.e., the machine language version, used to be inefficient. This was largely because inexperienced people had coded certain portions of the CO­BOL programs sloppily. Still, even today, COBOL cannot match as­sembly language in overall ma­chine efficiency. However, this is not usually significant; the rated speed of the peripheral equipment is as fast as you can go anyway. So, if the peripheral equipment is running at less than top speed, the relative inefficiency of COBOL be­comes academic.

January-February, 1970 39
3

Banner: What a Financial Manager Should Know About COBOL and Assembly Language

Published by eGrove, 1970

EXHIBIT 4

PRIMARY

ADVANTAGES

OF

COBOL

DOCUMENTATION

MAINTENANCE

COMPATIBILITY

TRAINING

CODING

Program maintenance — COBOL offers an advantage here because changes are easier to make with separate data and procedure divi­sions. Program maintenance can sometimes develop into a full-time job for one man; hence, with CO­BOL, a relatively inexperienced man can do the necessary work.
Core requirements—COBOL re­quires more core for the user cod­ing portion of a program than does a comparable assembly language program. In fact, the advantage for assembly language is sometimes as high as 2:1.
Compilation/assembly—Depend­

ing upon the efficiency of the com­piler, assembly language is usually somewhat faster than COBOL in

Compiler languages are the latest technique in the evolution of pro­graming (see Exhibit 5 below). We can conclude, in the final analysis, that the advantages of the compiler language COBOL (in particular) outweigh the disadvan­tages. We can use the following decision rules in determining whether or not to use COBOL in an application:If the program is to be run frequently, peripherals are run­ning at rated speeds, and core is nearly used up, the use of as­sembly language is indicated.If peripherals are running at

less than maximum and core re­quirements are not restrictive, COBOL should be used (even if the program is to be run fre­quently). If the program must be revised frequently, COBOL is especially valuable.One can plainly see the way computer programing is headed. As compilers get more efficient, they will be used more frequently in varied applications. Assembly languages will most probably be restricted in use to manufacturer software. Another apparent trend is toward the use of combined pro­graming languages, i.e., the use of English-type words (where con­venient) and the use of mathe­matical notation (where conve­nient). Still a third trend seems to be toward a conversational pro­graming. This would be the ulti­mate compiler language. The com­puter (instead of the programer) would be asked to remember the language. The computer would display to the user various avail­able alternatives with the results of each. The user would then select and change words until he had a good statement of the problem.The contemporary financial man­ager can expect his job to get even more complex in the future. With a basic knowledge of various com­puter languages, he should be able to use his EDP “arm” to its fullest capability.
the compilation (or assembly) phase. However, tests have shown some COBOL compilers to be faster than assembly language in this respect.

Software—COBOL requires more time to execute when input/output bound (or process bound, for that matter). However, this can also be a moot point if the peripherals are not running at full speed.

EXHIBIT 5

EVOLUTION

OF

PROGRAMING

MACHINE -------------------- SYMBOLIC ---------------- COMPILER

LANGUAGE ------------------- SYSTEMS -------------------- LANGUAGES

CODINGCOBOL, therefore, offers the fol­lowing real advantages: documen­tation, maintenance, compatibility (or standardization), training, and coding as shown in Exhibit 4 above. ADDRESSES

OPERATION CODES

40 Management Services
4

Management Services: A Magazine of Planning, Systems, and Controls, Vol. 7 [1970], No. 1, Art. 6

https://egrove.olemiss.edu/mgmtservices/vol7/iss1/6

	What a Financial Manager Should Know About COBOL and Assembly Language
	Recommended Citation

	Managment Services, January-Febnruary 1970

