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Introduction
Pose estimation is an important task for novel engineering
applications, such as virtual and augmented reality (VR/AR),
pose-based video games, object reconstruction, target tracking,
driving assistance and recent sports analytics. Commonly, an
efficient pose estimation system depends on the pose visualiza-
tion given by a 3D configuration of location, orientation, and
scaling parameters of the target. In this work we implement
Capsule Networks to solve 3D pose estimation in computer
graphics of rigid objects using a multi-GPU architecture.

Pose Estimation with Capsule Networks
Capsule Networks (CapsNet) are composed by a convolu-
tional neural network (CNN) with structures, called capsules,
for correcting spatial relationships of a target within a scene.
CapsNets have the property of learning a whole entity by first
recognizing its parts.

As shown in Fig. 1, the output of the CNN is the input of a
capsule. The output of the capsule consists of the probability
of encoded features and a vector set of instantiation param-
eters, which ensures the invariance to estimate pose under
texture and deformations. In CapsNet, a prediction vector
ûj|i indicates how much a primary capsule i contributes to a
class capsule j. An agreement between capsules is carried out
with the product of a coupling coefficient cij . A weighted sum
sij =

∑N
i=1 cijûj|i yields the candidates for a squash function

vij = (||sij ||2sij)/(1 + ||sij ||2||sij ||)

Figure 1: Basic architecture of a Capsule Network

Experimentation
In order to achieve pose estimation, the architecture imple-
mentation of the network consists on a Convolutional layer
(256 channels, 9×9 filters, stride 1) with ReLU activation
function; a Capsule layer (6×6×32 capsules, 9×9 filters, stride
of 2) with squash function yields ten 16D capsules; a fully
connected layer (DigitCaps) performs classification based on
10 classes. Image reconstruction is done using the decoder
from fully connected layers.

We test with several pose configurations of a 3D model using
OpenGL for graphics rendering. Training is performed on
images of 28×28 pixels. The dataset consists in total of 70,000
images (each one corresponds to a pose configuration), which
equals to 60,000 images for training and 10,000 images for
testing. The experiments yield robustness to affine transfor-
mations of the target in terms of rotation angles and linear
scaling.

Figure 2: Original images from a digital model with different pose
configurations

Figure 3: Reconstructed images of each pose configuration from the
original images presented above

Performance Results
The experiments were achieved by using a CPU Intel(R) i9-
9900K processor @ 3.60 GHz 16 GB RAM, and two NVIDIA
graphics cards: GPU NVIDIA GeForce RTX 2080 Ti with 4352
CUDA cores @ 76T RTX-OPS, and a GPU GeForce GTX Titan
Black with 2880 CUDA cores.
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Figure 4: Performance results on a multi-GPU implementation

Conclusions
CapsNets are promising in terms of improving computer vi-
sion tasks for VR/AR applications. This work presents an
efficient pose estimation of rigid objects using a multi-GPU
architecture. The proposed implementation includes Capsule
Networks yielding good experimental results in terms of train-
ing loss, accuracy, and 3D pose estimation performance.
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