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ABSTRACT

This paper provides an updated survey of a burgeoning literature on testing, estimation and
model specification in the presence of integrated variables. Integrated variables are a spe-
cific class of non-stationary variables which seem to characterise faithfully the properties of
many macroeconomic time series. Their statistical properties and implications for the inter-
pretation of regression models are covered in a unified way.
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I. INTRODUCTION.

The majority of econometric theory is built upon the assumption of
stationarity. Until recently, this assumption was rarely questioned, and
econometric analysis proceeded as if all the economic time-series were
stationary, at least around a deterministic trend. Stationary series
should, however, at least have constant unconditional mean and variance
over time; a condition which appears rarely to be satisfied in economics.
The importance of the stationarity assumption had been recognised for
many years, but the important papers by Granger and Newbold (1974) and
Nelson and Plosser (1982) allerted many to the econometric implications
of non-stationarity. Integrated variables are a specific class of
non-stationary variables with important economic and statistical
properties. These are derived from the presence of stochastic trends, as
opposed to determjnistic trends, with innovations to an integrated
process being permanent instead of transient. For example, in terms of
welfare costs, this implies that the costs of expectational errors
produced by, say, policy shifts are far more serious than in the case

where the shocks were purely transient.

In particular the presence of a unit root is implied in many economic
models by the rational use of available information by economic agents.
Standard applications include futures contracts, stock prices, yield
curves, real interest rates, exchange rates, hysteresis theories of
unemployment, and, perhaps the most popular, the implications of the
permanent income hypothesis for real consumption. In view of this

epidemic of martingales in economics a voluminous literature on testing,



estimation, and model specification in the presence of integrated
variables has developed in the last few years, and the purpose of this
survey 1is to provide a guide through this increasingly technical

literature.

The analysis of cointegration developed out of the work on testing for,
and implications of, unit reoeots in economic time-series. This survey
covers both literatures in 2 unified way. Cointegration considers the
conditions under which the use of standard regression analysis, when the
individual s=series under consideration are integrated, is valid. Some of
the oproperties of these 'colntegrating regressions' are extremely
surprising, and suggest new ways to incorporate 'long-run’ information
{and constraints imposed by theory} into the statistical model. In
addition, the concept of cointegration is, in many-ways, a statistical
definition of equilibrium. As such, cointegration offers a generic route

to test the validity of the egquilibrium predictions of economic theories.

The analysis of non-stationary variables requires a different statistical
framework from the standard stationary case, and in Section II this
framework is introduced, and testing procedures for unit roots are
discussed. The proper treatment of integrated processes in regression
analysis is then analysed using a variety of examples. This Section
includes a number of more technical parts {(denoted by an asterix) which
could be avoided by those readers wishing to proceed quickly to the
discussion of cointegration. Section III introduces the concept of
cointegration, and discusses the implications for economic modelling and
estimation, and the use of cointegration to discriminate between economic

theories. Section V concludes.



It should be stressed that the concept of cointegration is relatively
new, and that further developments, applications and Monte Carlo studies
are appearing extremely rapidly. As a result, this survey is selective,

and "best-practice" methods may well change in the near future.

II. INTEGRATION AND UNIT ROOTS.

A weakly stationary series should have a mean and variance that are
time-invariant. However, many economic time-series certainly do not
satisfy this condition, having first and second moments that appear to be
increasing over time (see Escribano (1987) for precise definitions of
integration in the ith moment of a stochastic process). Such series are
non-stationary, and may require differencing to induce stationarityz. A
series requiring differencing d times to induce stationarity is denoted
I{d), or "integrated of order d" (see Granger (1983)). A simple example
of an I(1) series is the random walk:
Ayt = € v, = 0

where, for instance, €, is distributed IN(O,ci). If, however, y were an

t
autoregressive series such as

2.-1 2
dy, = ey, 4t € lel < 1 v, ~ N0, 11 - (1 - a)7] "a,)

then y would be stationary, or I(0). In this Section some of the

important and far-reaching implications of the existence of unit roots

{z = 0) in economic time series are discussed.

20 . cs . : .
This condition is really too strong. In fact all that is needed is
absence of trend in variance after suitable mean transformations ksee,

for example, Dickey et al (1986) and Escribano {(1987)).
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2.1 Statistical Properties of Integrated Series

We will concentrate, in this section, on the statistical properties which
stem from the presence of a single unit root, and start by considering

the following data generation process (DGP) for the canonical stochastic

integrated process {yt}g
Ayt =-ayt_1+#+gt x =0 y0=0 Lo (1)
t
or yt = upt + St St = ?ei ol (2)

where as a particularly interesting case we consider the driftless
version of (1) with w = 0. In general, integrated series such as y, are
linear functions of time (with a slope of zero if u = 0). The deviations
from this function of time are non-stationary, as they are the
accumulation of past random shocks, giving rise to the concept of an

integrated series.

To complete the specification of the DGP we need to impose some

L] . .
} These restrictions are

conditions on the innovation sequence ¢ 1

€t
necessary if non-degenerate limiting distributions of the statistics
discussed below are to be derived. The weakest set of conditons that
achieve this aim is defined in detail in Phillips (1987a), and can be
summarised as follows:

(a) E(et) =0 for all t

2B
{b) sup, E!eti < » for some £>2

(c) 02 = lim E(Tnlsi) exists and 62>0

(d} et is strong-mixing with mixing coefficients am such that

za;I”Z/ﬁ)< infinity



Condition (b) restrains the heterogeneity of the process, while (c)
controls the normalisation «t a rate which ensures non-degenerate
limiting distributions. Condition (d) moderates the extent of temporal

dependence in relation to the probability of outliers (see White (1984)).

The generality of the previous set of conditions implies that model (1)
encapsulates a wide variety qf DGP's. These include wvirtually any
auto-regressive moving average (ARMA) model with a unit root, and even
ARMAX models with unit roots and non-evolutionary exogenous processes. It
is important to notice at this stage that only if we assume that the
errors are iid(o,oz) will 02 = 02. This restrictive case 1is an
interesting one since most limiting distributions that have been
numerically tabulated have been based on this assumption. However, this
~will not be the case in most empirical applications and hence in general
02 # 05.3

In order to derive the aforementioned limiting distributions, it is
necessary, as in the stationary framework, to use a sequence of random
variables, whose convergence is ensured by suitable transformation. More
precisely, in the non-stationary framework, we need to focus on the
sequence of partial sums {St}f which has to be transformed so that each
element lies in the space D(0,1) of all real valued functions on the

interval [0,1]1 that are right continuous and have finite left limits.

This is achieved by defining the functions

-1/24 i-1

T -1 T

XT(P)

o -1/2
XT(l) = T ST

Under the previous assumptions on the sequence {et} we have that as T

3 .
As an example, if Et follows an MA(1) process then Et = et - Bet_l where
e is 1id(0,0%) . Then ¢%/a® = (1 « 8)2/(1 « &%),

t e’ U "Te
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tends to infinity, XT(r) 2 W(r), where = denotes weak convergence in
probability. That is, XT(r) converges to a Wiener process.4 Notice that
W(r) behaves like a random walk in continuous time such that for fixed r

it is N{O,r) and has independent increments.5

The most striking difference between the conventional and this new
asymptotic theorv is that whereas in the former the sample moments
converge to constants, thev converge to random variables in the latter.
Similarly, as a result of the absence of stationarity and ergodicity,
traditional Central Limit Theorems are substituted bv Functional Limit

Theorems (see, for example, Billingsley (1968)}.

As an example of the previous remarks, the following standardised sample

moments converge to Wiener functionals:

1
(i) T %5y? 5 g° I Wit)2 dt L (3)
t
0
-3/2 1
(ii) T Ly - o j W{t) dt N 5
g 0
(ii1) T lsy. e, s o (1?2 - ¢%/6% L (5)
t-17¢ é €

Note the divergences in the orders of magnitude of these limiting

distributions with the conventional stationary distributions, i.e. order

in probability Tz, denoted OD(TZ), instead of OD(T) in (3}; Gp(Ts/z)

instead of OD(T) in (4); and OD(T) instead of OD(T1/2) in {(8). These

4This Wiener vprocess will lie in the space C[0,1] of all real-valued

functions continuous on the interval [0,11.

5 . . . N .

Moreover, an extension of the Slutsky Theorem in conventional asymptotic
theory also applies in this framework, in the sense that if g(.) is any
continuocus function on C{0,1] then XT(r) <+ W{r) implies that g{XT(r)] >

giw(ryl.
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differences shed 1light on the non-conventional features of the
coefficient consistency and limiting distributions when testing for unit
roots, and will be important in the discussion of cointegration in

Section III.

if, for instance, OLS is applied to (1} , it is easy to show that, using

the sample variability results summarised in (3} - (5), the slope « and

its t-ratio converge to the following distributions, in the case when

mo= 0:
- 1 2 2, 2
Tox - 2 [wW(1) - ce/c 1 ... {8}
T
teo 1o W® - o%/6? AT

~

From (6) we note that o converges to its true value zero at a rate of

—1/2). Similarly, from (7), the

OD(T“I) instead of the conventional OD(T
corresponding t-ratio has a non-degenerate distribution which is
different from the standardised normal distribution which is used in

conventional asymptotic theory.

2.2 Testing for Unit Roots.

The previocus statistical implications of the unit root hypothesis in the
time-series representation of univariate models underscore the need to

have reliable procedures to test formally this hypothesis. Investigations
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by Dickey (1976), Dickey and Fuller (1979, 1981) and Fuller (1976) have
constructed by numerical simulations the corresponding critical values of
the limiting distributions expressed in (6) and (7). Table 1 collects the
exact null and alternative hypotheses under which these simulations were
performed. The unrestricted model contains both a constant and a trend as
regressors, plus an error term subject to a first order autoregressive
representation. Three interesting cases follow. Case 1 in that in which
both the drift and the trend are zero, such that under the null we find a
pure driftless random walk. Case 2 describes the case in which there is a
drift but no trend, and consequently the model under the null is again
the driftless random walk. Finally, Case 3 relates to the most general
case in which both constant and trend are different from zero, and hence
the model under the null hypothesis is random walk with drift. Notice
that in all cases the error terms under HO are assumed to be iid(o,az)

for simulation purposes.

Table 1: Use of Tables to Test for a Unit Root in Univariate Models.

HO (e = 0) H1 (yt = u + Bt + ut)
£t T e T
Case 1 (u = 8 = 0) dvt =€, ¢—~M—~B£——m——> Ayt = —avt_l * e
Case 2 (u # 0,8 = 0) Ayt =6, ¢ B2 > Ayt = ey, 4 oMt oE
1
« 0

Ce = = -
Case 3 (4 # 0,8 # 0) Ayt B+ ete-—Bé——-» Ayt ay, 4o+ Bat

+ fpo + B{1-a)l + €,

Note: Bi {i=1,2,3) denote 1St, 2“d and 3rd blocks of Table 8.5.2 in

Fuller (1976), T0 denotes Table for critical values for the standardised

Normal distribution.
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From (6) and (7) two basic statistics can be derived to test the null
hypothesis of a unit root. The first test refers to the scaled regression
coefficient T; while the second concentrates on the t-ratio t;. Critical
values for both asymptotic distributions are found in Fuller (1976)6. The
arrow scheme in Table 1 explains the proper use of these tables,
depending on the choice of the model representing the unrestricted
hypothesis. If we start with Case 1, then we should use the first block
(denoted Bl) of critical values in Tables 8.5.1 and 8.5.2. Similarly, thé
choice of model with constant and constant plus trend implies the use of
the second and third blocks (denoted B2 and Bs) respectively. A very
interesting case, of which some practitioners are unaware, is that, when
choosing the models with a constant, if that nuisance parameter is
significant under the null (checked by simply regressing Ayt on a
constant) then the right critical value for the t-ratio will be found in
the standardized normal distribution table (denoted To), rather than in

the Dickey-Fuller tables (see West (1986))7.

The same peculiar result obtains when, after using the most general

model, the constant and the trend are significant under the null (checked

6Chapter 8, Tables 8.5.1 and 8.5.2.

/2

7 -
In general for Case 2 it can be shown that T3 o ~ N(O, 1202/p2) and

~ 2,2
ta N(O, o /oe).
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by regressing Avt oq a constant and trend)g. In both instances, the
interesting outcome of looking at the wrong tables is enlightened when we
find t; ,say at the 5% level, larger than 1.896 but smaller than the
corresponding critical values in the D-F tables. Upon these conditions,
we should be rejecting the null hypothesis instead of accepting it. The
intuition behind this peculiar result is that if there is a unit root
and, say, a constant, the integrated series depends on a deterministic
trend and a stochastic one. Moreover, the sample variability of the
deterministic trend is of OD(T3) which dominates the order of the sample
variability of the stochastic trend which is of OD(Tz). But we know that
the existence of a deterministic trend in a regression model does not
affect the asymptotic normality of the standardised estimates, hence

normality follows.

It is clear from‘ the previous discussion and the derivations of the
conventional and unconventional statistics shown in (6) & (7) that if the
error sequence {et} is correlated, the distributions will depend on the
nuisance parameter cz/o:‘ In such a case there is a need to either change
the estimation method (that is, adopt another regression model), or
modify the statistics described above. Dickey and Fuller (1981) favour
the first approach by enlarging the regression model by adding in a lag
polynomial of Ayt such that these terms capture the serial correlation in

any of the unrestricted models contained in Table 1. It can be shown,

8The case where the DGP contains a unit root and a trend does not seem to
be too realistic a priori since, in logarithmic form, it implies an ever
increasing (or decreasing) rate of change. In general for Case 3 it can

5/2”
(]

be shown that T ~ N(O, 18062/82) and t& ~ N(O, 02/02).
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that under the null hypothesis, t; in the enlarged model has the same
limiting distribution as when the errors are iid, giving rise toc the
so-called Augmented Dickey-Fuller tests. Note, however, that it is no
longer legitimate to use T; as the basis of a test in any of the

variants, since they are not invariant to the true population value of

the parameters of the distributed lag in Ayt.

Nevertheless, this solution introduces the problem that we might need a
large number of lags of Ayt in order to obtain uncorrelated residuals.
Recently, Said and Dickey (1984) have shown that if €t contains moving
average terms, the number of extra regressors needs to increase with fhe

. 1/3
sample size at a rate (T

). Given that the majority of the
macroeconomic variables studied in the seminal paper by DNelson and
Plosser (1982} were adequately represented by an IMA{1) process, this
seems a oquite likely situation. Schwert (1i985), using Monte Carlo
simulations, has recently shown that the exact size of the test may be
far from the nominal size if the order of the autoregressive correction
is not increased as the sample size increases. Accordingly, it would be
desirable to have an approach for the test which takes into consideration
the structure of the residuals in a non-parametric way under the
assumptions (a} - (d) above. This is the approach developed by Phillips
and Perron (1986) and Perron {(1987), and described briefly in the

Appendix.

Next, we briefly discuss a testing strategy based on the choice of the
appropriate initial unrestricted model in Table 1, as well as on the
choice of data sample. With respect to the first issue, we advocate

estimating the most unrestricted model initially, as in Case 3. Then use
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the test statistic (c) in Table 2 of the Appendix to test for a unit
root, using the critical values contained in B3 of Table 8.5.2. If the
null hypothesis of a unit root is rejected there is no need to go
further. If it is not rejected, test for the significance of the trend (a
rather implausible case, as discussed earlier) using the test statistic
in row (d) of Table 2. If it 1is significant, then test for its
significance under the null using the ordinary tables. Its significance
under the null would imply that the ordinary tables, instead of Table
8.5.2 should have been used to test for the unit root. If the trend is
not significant under the alternative, estimate the unrestricted model in
Case 2 in Table 1. Test again for the unit root using the test statistic
(b) in Table 2, looking at B2 in Table 8.5.2. If the null hypothesis is
rejected, again there is no need to go further. If it is not rejected,
test for the significance of the constant under the alternative using the
test statistic shown in row (e} of Table 2. If the procedure reaches the
most restrictive alternative model, as in Case 1, then the unit root
should be tested with the critical values contained in B, of Table 8.5.2.

1

Failure to follow this strategy may lead to serious misinterpretations.

An alternative strand to the literature on testing for unit roots is that
suggested by Sargan and Bhargava (1983). They advocate the use of the
conventional Durbin-Watson (DW) statistic from the simple OLS regression
of the variable under consideration on a constant, that is
Ve T €7 %
Aut = oug + € € distributed IN(O,ai)
Then the null hypothesis of a=0 is tested against the alternative that
the errors follow a stationary first order autoregressive process. A unit

root for the error process is equivalent to the structural element
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following a random walk. The value of the DW statistic will obviously
tend to be very low when the rcot in the error process tends towards
unity, since DW =~ 2(a). The test can be performed using the standard DW
statistic generated'by most statistical programs along with the table of
critical values presented by Sargan and Bhargava (1983) under the unit
root null hypothesis. This test can be shown to be the uniformly most
powerful invariant test against the alternative of a stationary first
order autoregressive error process. An important feature of the test is
its invariance to whether a trend enters into the true model, unlike the
other tests considered above. However, the test is only powerful in
discriminating between the simple random walk and stationary first order.

autoregressive processes, and thus lacks generality.

Having discussed the main tests that have been proposed for unit roots,
an important qualification should be noted. In practice, economic time
series emerge from this testing procedure as appearing to be I(1).
However, in the context of, for example, the Sargan and Bhargava
approach, the estimated degree of autoregression in the residuals is
often in excess of 0.95. In other words, a value of 0.1 for the DW
statistic is fairly typical in the static regression (given that
DW ~ 2w¢). However, as Sargan and Bhargava note, the power of the test for
a unit root against such highly autoregressive alternatives is
exceedingly low. This is hardly suprising, since discrimination between a
0.95 autoregressive process and a random walk is extremely difficult in
the relatively short samples typically used in economics. The practical
implications are, however, important when we consider the powerful
cointegration results that depend upon the individual timé series

possessing unit roots.
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It should be noted that the definitions and propertieé introduced up to
now for scalar random variables extend to multivariate cases (see
Phillips and Durlauf (1986b)) by applying the properties to each element
of the vector. This extension immediately raises the question of having
components with different degrees of integration, or the possibility of
finding linear transformations of those components with a different order
of integration to the order of the individual elements of the vectors.

Both these issues are raised in the next two Sections.

Finally, as far as the choice of data sample is concerned the main result
concerns the trade-off between span and sampling interval (see Shiller
and Perron (1985)). For a given span, more observations lead to higher
power of the previous tests. Similarly, a longer span for a given number
of observations leads to higher power. Of course, this intuitive result
had to be mediated by the relevant alternative. So, for example, since
for macroeconomic series, the natural alternative is mean reversion over
a period similar to the length of business cycles, a long span of annual
data should be preferred to a shorter span with, say, quarterly or

monthly data.

*®
2.3 Asymptotic Theory and Monte Carlo Results

Having examined the important statistical implications of integrated
processes, we proceed to use this theory to interpret a number of results
concerning the treatment of integrated series in regression analysis. An

explicit analytical solution to the asymptotic behaviour of parameter
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estimates and regression statistics permits a unification of the
disparate Monte Carlo studies that presently exist in the literature. We
present a summary of results on analyses which range from inappropriate
detrending of integrated series, to efficiency tests, including the
familiar spurious regression results. Most of the results derive from the
work of Phillips or Phillips and Durlauf in a recent long sequence of

papers that are referenced at the beginning of each case.

In order to unify as much as possible the treatment of different cases,
the following description procedure is adopted. Each case will be
characterised by a DGP and an estimated model (denoted simply MODEL). The
distributional results, which happen to be functionals of Wiener
processes, will be denoted generically by f(W), whose precise expressions
are given in the appropriate references. At the end of each case we offer
an intuitive explanation of the analytical results, together with some
remarks about the use of certain regression statistics, which prove to be

useful to detect misspecifications in the estimated models.

De-trending (Phillips and Durlauf (1986a))

DGP Ayt = €t
.(8)
MODEL Ve = M gt + ue
Summary of Results:
%0 s ™2 g 5t TV st
e ™ s s fw) T.OW > (W)
RS 5 £(W)

This case tackles the issue of inappropriate de-trending of integrated
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processes, under the traditional belief that conventional asymptotic
theory cculd be applied to detrended series. We observe that the &
coefficient is consistent, converging to its true value of zero. However,
its t-ratio diverges to infinity, confirming the Monte Carlo results of
Nelson and Kang (1981). Both the drift and its t-ratio diverge. The
estimated variance of the residuals (sz) also diverges reflecting the
fact that the residuals of the model are non-stationary around the trend.
The coefficient of multiple correlation (Rz) converges to a
non-degenerate limiting distribution. The results for the Durbin-Watson
statistic (DW) appear quite promising, confirming its powerful role as a
misspecification diagnostic (see Sargan and Bhargava (1983)). Tﬁe
intuition behind all these disparate results stems from the different
orders of magnitude of the sampling variability of the regressors and
regressand in the model, i.e. OD(T) = ; Op(l) + é OD(TZ). The divergence
of the order of magnitude highlights the fact that & converges while ;
diverges, according to when the sample variances of their corresponding
regressors are larger or smaller than the sample variance of the

regressand.

Encompassing Tests (Phillips and Durlauf (1986a))

DGP Ayt = &

) .(9)
f = MRt -av vu

MODEL 4y ee1 * U

Summary of Resulfs:
/ -~ ~
T3’25 > f(W) Ta » f(W) T t o f(W)

2 2

s° 2 o, Fﬁ=0,a=0 > f(W)
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This case interprets the unit root test in Case 3 of Table 1, where the
issue is to discriminate between trends and integrafed processes. The
model embodies both alternatives, and uses the F test to discriminate
between the alternatives. The encompassing test works as follows:
HA(ﬁ=0,a=0) corresponds to the integrated Kprocess, whereas HB(a=1)
corresponds to the deterministic trend. Denoting rejection of a
hypothesis by “H, the following combinations of rejections and

non-rejections would operate the encompassing tests: (H “HB) supports

At

the Random Walk; ("H HB) supports the Deterministic Trend. In view of

A,

the divergence of ta we would conclude that HB is always rejected for

=0’
a sufficiently large sample. The F-test for HA converges to a
non-degenerate distribution, which differs from the ordinary F
distribution, and hence requires the Dickey-Fuller critical values as

explained above. The disparate sample variability of regressand and

regressors is given by Op(l) =M Op(l) + 8 OD(TZ) - Op(T).

Non de-trended Spurious Regression. (Phillips (1987b))

DGP Ayt = Et : Axt =V E(etvt) = poecvsts

....(10)

MODEL Ve = M *oax, touy
Summary of Results:

a > £(W) TV s pw) VR st

-1 2 2
T s 2> f(W) T.DW 3 f(W) R > (W)

This case interprets the familiar Monte-Carlo results of Granger and

Newbold (1974), reinforcing analytically the divergence of ta—O despite

-~

the fact that « and R2 possess non-degenerate distributions. Again, as in
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the de-trending case, the DW statistic detects misspecification of the
model, although GLS corrections fail to provide the right answer. The
orders of magnitude of the sampling variability in the model are:
OD(T) = ; Oﬁ(l) + é OD(T)' Notice that the equality of the orders of
magnitude between yt and xt provides the possibility of finding certain

combinations of both variables such that the residuals are stationary,

despite the non-stationarity nature of the variables themselves.

De-trended Spurious Regression. {Phillips and Durlauf (1986a))
DGP Ayt = & Axt =V E(etvs) = pcsavgts
oL (11)
MODEL Ve = B gt + ax o+ Uy

Summary of Results:
« > (W) V2L s W) ™% 5 5 £(w)

p71/2 teo > f(W) 2 s £(W) T.DW > f(W)

This case interprets results from spurious regression models where yt and

xt are de-trended, with the aim of inducing stationarity in the variables
prior to the regression. The results are similar to the previous case
with the addition that é is consistent, since the corder of magnitude of
the sample variance of the trend is Op(Tz). Notice that the presence of a

trend in the regression only has qualitative effects on the asymptotic

distribution.
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Efficiency Tests. (Banerjee and Dolado (1987))
DGP Ayt = €. Axt =V E(etvt) = pceavsts
Lo (12)
MODEL P Bt + XK, 4t U
Summary of Results: :
Ta » £(W) ™2 4 5 W) ™2 5 5 £(w)
t > f(W) T.R2 > (W)

a=0

This case interprets recent Monte-Carlo results by Mankiw and Shapiro
(1985) on the over-rejection of the orthogonality condition whiéh
characterises rational expectations models. In this case, the three

estimated parameters and R2 are consistent, but ta the basis of the

=0 ’
previous test (see Flavin (1981)) does converge to a non-degenerate
distribution which differs from the standardised normal. The orders of

magnitude of the sample variances are Op(l) = M Op(l) + B OD(TZ) + a

OD(T).

III. COINTEGRATION.

Whereas the analysis and implications of unit roots in individual time
series excited mainly the econometrician, far more general economic
interest has developed in the concept of cointegration, which analyses
groups of integfated varigbles. The major reason for this is the
possibility of estimating, and testing the existence of, long run
economic relationships suggested by theory. As was explaineﬁ in the

previous sections, many individual economic time series appear to be
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non-stationary, vrequiring differencing at least once to induce
stationarity. Yet economic-theory rarely suggests equilibfia that are not
stationary functions of the variables involved. This would imply that
there may exist fundamental economic forces that, over time, make
variables move stochastically together. In other words, whereas the
individual economic variables involved in a’ theory may all be

non-statiocnary, the deviations from a given equilibrium may be bounded.

For many vears the problems associated with static regressions between
time-series have been known (for an interesting historical éccount see
Hendry (1986)). The problem of 'spurious' regressions discussed earlier
led many economists to adopt the Box-Jenkins {1970) methodology of
transforming all the variables to stationary series prior to regression,
so that, for the most part, differenced variables were considered. This,
of course, resulted in models that disregarded the low frequencies of the
variables, and so did not allow for any of the long run relationships
which economic theory normally suggested. These features made the models

difficult to interpret.

One response to such problems was the use of error-correction mechanisms
(ECM) in econometric models. Models including ECMs have been widely used
since Sargan (1964), and have the advantage of retaining information
about the levels of variables, and hence any long-run relationships
between such variables, within the model (see, for example Davidson et al
{1978), Currie (1981) and Salmon (1982)). In an important paper, Granger
(1983) establishes the equivalence between cointegration and
error-correction. That is, ECM's produce cointegrated sets of variables,

and, if a cointegrated set of variahles is found, it must have an ECM
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representation. To a great extent, cointegration provides formal
statistical support for the use of error-correcting models, and suggests
additional procedures to test model specification in a static sense, and

proposes wayvs to parameterise the error-correcting mechanism.

A vector of variables xt is said to be cointegrated if

(i) each element of xt is I(d)

and (ii) there exists a vector « such that a‘xt is I{d-b), where a # 0
and b > 0.

For example, in the case of d=b=1, if xt is cointegrated, each wvariable

in X, would each be I(1}), but some linear combination of them would be

I{0). If such a linear combination can be found, e« is called the

cointegrating vector.

The relationship between cointegration and equilibrium now becomes
clearer. One natural way to characterise equilibrium between a set of
variables is to define equilibrium to occur when a linear constraint is
satisfied, such as

a'x, =0 . (13)
For example, if we believe that a proportion A of any increase in labour
productivi£y is eventually passed on in the form of real wages then, in
equilibrium, w = ¢ + AQ where w and Q denote real wages and
productivity respectively, and ¢ is a constant. Therefore, if

wW-¢c-AQ=20 o (14)
in any time beriod, then the labour market would be in eguilibrium. Of
course, real wages may take some time to respond to changes in
productivity, and the process by which equilibrium tends to be restored

may be complex, in which case the scalar Z, = W, - ¢ - AQt would
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measure the deviation from equilibrium, or disequilibrium, in period t.
If w and Q are cointegrated, then, by the above definition, the
deviations from equilibrium will be bounded. An obvious way of testing

the theory is then to determine the order of integration of Zt' If it is

not possible to reject the null hypothesis of a unit root for zt then

there will be no tendency for the real wage to move towards the putative
eguilibrium, in which case the estimated equilibrium would be misleading

and irrelevant.

In the case of testing for cointegration between two variables x1 and x2,

if a cointegrating vector exists, it must be unique. To see this, suppose

Xy and X, are both I(1) variables and Zoo= Xy toMx, s 1(0). Then u

must be unigue, since any other linear combination would add or subtract
a term in x2t, which would be I(1), which would result in Zy also being
I(1). However, when X has more than two components, if a cointegrating

vector exists, it need not be unique. In general, if x has N components,

there may be r linearly independent cointegrating vectors, where r £ N-1.

To illustrate the possible outcomes, consider the following example,

taken from Granger and Engle (1987). Suppose yt and xt are jointly

distributed according to the following data generation process:

Ve TEx = vy Ve T O PVeor T Eq
....(15)
Ve ¥ &R 70y Ye T PRl g T fa¢

where €, and €, are distributed independently N(0,1). Four possible
cases exist:

(i) Py = 1, Py < 1 which implies that x_ and v, are I{1} and the

t

cointegrating vector is (1,-a).

{(ii} Py < 1, Py = 1 which implies that X and y_ are I(1) and the

t



cointegrating vector is (1,-8).

(iii} Py =Py = 1 which implies that x_ and y_ are I(1) but there

t t

does not exist a cointegrating vector.
{iv}] p, < 1, Py < 1 which implies that X, and v, are I{0) and so

My
1

any linear combination of x and v will be I(0).

The last case introduces some interesting issues. The test for
cointegration is actually a conditional test: conditional on X and Ve
being I(1), the discovery of an I(0} linear combination would imply that
the variables are cointegrated. However, as noted above, when Py and P,
are unknown, the power of tests for unit roots against alternatives of
roots close to the unit circle is often exceedingly low. In such
situations type II errors, that is the acceptance of a unit root rather
than a root of, say, 0.95, are likely to occur. Jenkinson (1986b)
presents some Monte Carlo evidence on the hazards of inference when some,
or all, of the variables under consideration are, in fact, highly
autoregressive rather than I(1). The intuition is that we need extremely
long time-series in order to distinguish borderline from unit root cases.
Banerjee et al (1987a,b) present easily computable approximations to the

correct critical values in general cases.

3.1 Estimation

An obvious issue is the question of estimating, and testing for the
existence of, cointegrating vectors. Consider again the problem of
estimating « and testing for the stationarity of z in the model

a'x = z ... (18)



If all the variables in x are I(1), then in general a linear combination
of these variables, and hence zy will be I{1). Therefore, almost all
the « wvectors will produce a series z with asymptotically infinite
variance. The exceptions to this will be any cointegrating vectors. Now
since Ordinary Least Sguares estimation minimises the residual variance
of zt , the estimated « vector derived from an OLS regression of the
simple model (16) where all variables are in levels and no dynamics are

included, should vield an excellent approximation to a true cointegrating

vector, if one exists.

This result is one important reason why interest in cointegration has
itself exploded 1like a non-stationary series. It implies that to
parameterise a long-run equilibrium relationship between a set of
variables, all that is needed is a simple static OLS regression between
those variables. This simple regression can even be performed at the
first stage of a reseafch program, as is advocated by the Engle & Granger
(1987) 'two-step estimator' discussed in Section 3.2 below. In any event,
such an initial check may indicate to what extent the equilibrium>
predictions of the economic theory are consonant with the data, and, to
put the argument at its strongest, whether it is fruitful to expend
resources to model the short term dynamics around the egquilibrium. To
make things even easier, at least one econometric software package,
PC~GIVE, automatically provides basic tests to determine the order of
integration of the variables in the model as an addition to such summary

measures as the means and standard deviations of the variables!

Indeed, the OLS estimate of any cointegrating vector should converge to

the true value extremely quickly. To see this, consider the following
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case characterised as in the taxonomy of Section 2.3.

DGP: Axt = €y
Ve = axotoe e, = (1 - pL)gt e (1)
MODEL: Ve T M tax o+ou
Summary of Results:
T(a - a) > £(W) T(1 - RY) > f£(W) ™% s tw)
T.DW > 2(1 - p) t_, > f(W

The interpretation of the results illustrates very clearly the previous
informal discussion. The slope in the static regression converges to its

true value « at a rate of OD(T_I) instead of the ordinary rate of

T~1/2

Op( ). The intuiticon is again clear: « is computed using the ratio of

a covariance, which is of OD(T), by a variance, which is of Op(Tz), given
1).

that both xt and y, are [{(1). Therefore, any bias in « is of OD(T~

t

However, in spite of this super-consistency of «, its distribution is not
asymptotically normal, and therefore the computed standard errors of the

coefficients lack meaning. Since both x, and y, are driftless processes,

t t

u converges consistently to zero, although at a slower speed than ;. The
coefficient of multiple correlation R2 is also Op(T) consistent to unity,
reflectiné the fact that in the bivariate case, under cointegration, the
product of the slope and the inverse slope is unity. This feature will be
exploited in the discussion below. Finally, the DW statistic converges to
the standard result under the assumption that et follows an AR(1)

process.

An important associated result relates to the existence of simultaneity

biases and errors in variables. Such biases in parameter estimates
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normally derive from the correlation between the regressors and the
errors, which is ordinarily assumed to be of OD(T). However, given the
fact that in cointegrating regressions thet will be of a lower order of

magnitude than in, such biases are asymptotically negligible. This
implies that issues of endogeneity and exogeneity are not, in general,

relevant in static cointegrating regressions.

The most important result of the previcus discussion relates to the
super-consistency of ;. However, biases in ;, despite being OD(T_l), can
still be large in small samples. In a Monte Carloc study, Banerjee et al
(1986) discovered large biases in & derived from bivariate cointegrating

regressions. In addition, « did not converge rapidly to «. Given that the
R2 of the regression converges at the same rate as the bias, they propose
(1 - R2) as a proxy for the latter. In fact, for the canonical model
discussed previously, the linear relationship between both statistics
turns cut to be:

-~

@ -a = a’(1 - R%) + OD(T_I) co(18)

which suggests rather strongly that cointegrating regressions without R2
very close to unity should be viewed with caution (see, for example,
Campbell and Shiller (1986)}). However, in the context of a multiple
regression, the R2 of an equation cannot fall when an additional variable
is added, and this implies that a high R2 is not sufficient to guarantee
that each included variable is germane to the model, nor that the

estimated coefficients closely approximate their true values. This issue

of functional forms is discussed in more detail below.

Another important implication is that in contrast to normal regressions

where multicollinearity amongst the regressors is often considered a
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problem, in the context of a cointegrating static regression such
multicollinearity is essential: if variables do not follow similar trends
over time then no linear combination of the (individually non-stationary)
time-series will be stationary. Indeed, in terms of estimation of the
cointegrating vector «, the multicollinearity amongst the regressors will
produce a nearly-singular (X'X) matrix corresponding to the cointegrating

vector. In this sense multicollinearity is a positive advantage!

The effect of running the static regression (16) to estimate « is to push

all the dynamic adjustment terms into the residual ut. These dynamic

terms can all be parameterised in terms of I(0) series of the form av,

Axt—i’ and (y - /?x)t_k where the values of i,j, and k will depend upon

the nature of the ARMA processes generating x and v. To illustrate this,
consider a simple model in which the true dynamic relationship is given
by:

Vt = alyt—l + azxt + asxt_l + ut o0 (19)

where v and x are I{(1) and CI(0). Suppose that in the long run the

homogeneity restriction a1'+ a2 + as = 1 holds. This is eguivalent to

saying that in the long run vy and x move together. Now equation (9) can
be rewritten as

Ve o= e, vy dxg o+ (L) X b oug coe(20)

or as

Ve = X oroly -x) coa(21)

t t *ola, - 1) &+ u

1 t

Now (v - X} and 4x must both be 1(0) under our assumptions, as will ut
Hence, by estimating the static regression
yt - axt + Et ,...FZZ)

these dynamic terms are all contained in the residual st. The fact that

the OLS estimate of « is super-consistent in such circumstances is truly
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remarkable.

3.2 Two-Step Estimators.

Once the cointegrating regression has been performed, this essentially
parameterises the long-run relationship between the variables. Engle &
Granger (1987) then suggest that the lagged value of Zt’ the derived
estimate of disequilibrium in any period, should be included in the
general dynamic model. If cointegration holds, zt will be I(0), and the
dynamic modelling problem is to transform the individually I(1) variables
into reasonably orthogonal I(0) regressors. The lagged value of Zt is
completely analogous to an error-correction term in the equation. Recent

applications of this methodology include Hall (1986), Jenkinson (1986a),

Campbell (1986) and Campbell and Shiller (1986).

The alternative approaéh to estimating the cointegrating vector « is to
include an error-correction mechanism in the dynamic model, since, as
noted above, error correction and cointegration are equivalent concepts.
This is clear from equation (20) above, which can be transformed intoe the
following dynamic model

4y = aadx

—(1~a1)(y-X) +u ... (23)

t t t-1 t

where the second regressor is the ECM. Unless y and X are cointegrated,
the ECM will be I(1), and hence, since Ayt and Axt are both assumed to be
I(0), will have an estimated coefficient tending rapidly toc zerc. In
other words, rather than use the static regression as a kind of pre-test
of the model, the full dynamic model is formulated and estimated, with
the estimate of any cointegrating vector only being derived once a

satisfactory representation of the DGP has been found. Of course, the
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specification of dynamic adjustment processes in economic models is to a
considerable extent a matter of discretion, even when broadly agreed
rules are being followed. As such, the ECM approach lacks the conceptual
and practical simplicity of the static regression approach, but may be
considerably more robust. In fact, Banerijee et al (1986) find that the
biases in the cointegrating vector are much smaller when the short-run
dynamics are jointly modelled with the long-run relationship, providing

some support for the dynamic ECM modelling strategy.

3.3 Testing.

Testing for cointegration between a set of time series is simply a test
for the existence of a unit root. The analysis of Section 2 follows
through entirely, except that instead of searching for unit roots in the
individual time series, the tests are for the existence of a unit roots

in the residuals, z from the static cointegrating regression. Because

£
the tests are based on constructed regressors, the critical values
obtained for the previous cdse have to be adjusted upwards, otherwise the
test will reject the null too often. If we cannot reject the null
hypothesis of a unit root in the residuals, then these 'equilibrium
errors' are themselves non-stationary, and cannot be relied upon to move
the system systematically back towards equilibrium. In these
circumstances cointegration could not be established and hence

considerable statistical doubt would be cast upon the theoretical

equilibrium.

In actual applications, the Cointegrating Regression Durbin-Watson (CRDW)

test, suggested by Sargan and Bhargava (1983), and discussed briefly in
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where u, denote the OLS residuals from the cointegrating regression.
However, special problems exist with this test. Firstly, whereas in
testing for integration (when there are no regressors other than a
constant) the critical values of the test, as reported in Sargan and
Bhargava (1983), are exact, the test statistics for cointegration depend
upon the number of regressors in the cointegrating equation, and only
bounds on the critical values are available. This is because, as in the
case of the standard D-W test (which is based upon a null hypothesis of
white noise residuals), the exact critical value for the D-W statistic is
itself a function of the data generation process. The bounds on the test
provide a benchmark, and can be used to accept the null hypothesis of no
cointegration, but they become rather wide apart as the number of
regressors is increased. Without the addition of, for example, the Imhof
Routine (1961) +to standard regression software, inference will be
impossible whenever the value of the DW statistic falls between the
bounds. It is possible to compute exact critical values using Monte Carlo
methods for a given DGP, an example of which are those reported in Engle
and Granger (1987) for a white noise DGP, but these values are not
generally applicable to other experiments, and should be very carefully

interpreted as the basis of cointegration tests.

An alternative approach suggested earlier is to test for cointegraton
using the long run solution in the autoregressive distributed lag model.
If the error correction term is restricted as in (23) for theoretical

reasons (e.g. log consumption and log income should have a cointegrating



slope of unity) then the t-ratio of the coefficient of this term is a
useful statistic. Banerjee et al (1986} show that this t-test has about
the correct size at the 5% level, although the results of Evans and Savin
{1981) suggest that this is not true at other levels. When the level
terms are left unrestricted, non-parametric tests, based on deviations of
the computed long-run solution, seem a fruitful approach. Some Monte
Carlo evidence in Banerjee et al (1986) suggests that the power of these
tests 1is higher than the power of the test based on the static
regression. One explanation for this mayv be the smaller biases obtained

using the dynamic modelling approach.

All the other tests described in Section 2 can be used to test for the
stationarity of the residuals from the cointegrating regression, but in
practise the Dickey-Fuller and Augmented Dickey-Fuller tests have proved
most popular. Of course, the choice of the lag structure in ADF tests is
still to a great extent ad hoc, and different results can be obtained by
changing the length of the autoregression, which suggests that greater

use should be made of the non-parametric tests described in the Appendix.

At this stage it is important fo emphasize that, given the fragility of
the tésts for cointegration, simple auxiliary tests may be interesting.
Granger and Weiss (1983) suggest increasing (or decreasing) the
coefficients of the cointegrating vector by, say, 10% and then examine
whether the corresponding sum of squares is much larger than for the
chosen cointegrating vector. The intuition of this additional check is
clear, since only using the latter should the variance be finite, and so

it should be easily distinguishable from other cases.
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3.4 Functional Forms.

The actual functional form of the cointegrating regression, or ECM, is
normally dictated by economic theory. However, what inferences are valid
on completion of a set of cointegration tests? ansider first what the
inability to find a cointegrating vector, or significant ECM, might
imply. It may, of course, simply be that the theoretical equilibrium is
without statistical foundation. On the other hand, it may be that a
crucial I(1) variable has been omitted from the analysis, which if added
to the model would generate 1{(0) residuals. The temptation of the
researcher is to continue adding variables until stationarity of the
residuals is achieved. Whilst such general models may be necessary to
establish cointegration, the parsimonyv of the relationship should then be
questioned. The t-ratics of the variables in the cointegrating regression
will be badly biased, given the degree of autocorrelation of the
residuals, but if the autocorrelation is positive, we know that t-ratios
are biased upwards. On what criterion, then, should variables be included
or equuded from the equilibrium, since it is perfectly possible that
some subset of the variables is cointegrated? A low t-ratio will be
suggestive, but standard tables cannot be used. There is in fact little
alternative to testing all subsets of the variables for cointegration,
and only if all these tests are rejected can the researcher be sure that
each variable is germane %o the relationship. Thus, the discovery of a
cointegrating vector should signal the start of a further series of

tests.

The choice of functional form is also, in practice, an important



37

consideration. It can be proved that

(1) cointegration implies Granger-Causality

(ii) cointegration in levels implies cointegration in logs
and (i1ii) cointegration in logs does not imply cointegration in levels.
If theory is used to select functional form (rather than, for example,
Box-Jenkins techniques), then the use of cointegration methods to
evaluate the validity of equilibrium predictions of theories can yield
inconclusive results (see, for example, the debate between Jenkinson
(1987) and Nickell (1987) regarding the existence of NAIRUs). Intuition
suggests that there will always exist some non-linear combination of I(1)
series that will be I(0), which, if it were true, would have important
implications for the use of cointegration analysis in modelling, although
much of the simplicity and strength of the original linear case would be

lost (see, for example, Escribanc (1986)).

3.5 Common_ Trends.

An alternative way to approach the existence of cointegration is based
upon the idea of common trends (see, for example, Stock and Watson
{1986), Phillips and Ouliaris (1986}, King et al (1987), Aoki (1987))
Suppose that we have a DGP as considered in Section 3.1 equations (17},
with p = 0 without loss of generality. If we add the following process

w R AT 4

. ¢, ....(25)

then the vector (1, ymla) in the regression of yt on Zt is a

cointegrating vector, since it eliminates the presence of Xy We then say

that yt and wt have a common trend of xt. If a third process of the same

form is added, there are at most two linearly independent cointegrating
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vectors. Thus, in general, with N series and r common trends, there are
at most (N - r) cointegrating vectors. It is also possible to test for
unigueness of the cointegrating vector. The test basically consists of
checking that no subset of regressors is cointegrated in the

cointegrating relationship (see Gourierocux et al (1985)).

This approach suggests that multivariate autoregressions of the form:

|4
= = ! =
Y= EAY e E(e,) =0, Elee) =2  ....(26)

should be considered, where Y denotes an n-vector of random variables.

This can be rewritten as:

p-1
AQYt = ~BYt_1 —'E CjAYt—j + Et R A
j=1
p p-i
where B = (I -%2 Ai) and c, = % A’+s
i=1 ] s=1
Diagonalising B such that P"IBP = A, the transformed system can be
written
* « b1 *
a o= A - jilcjdyt‘j e, .. (28)
) * -1 -1
where Yt = P Yt and €, = P Et' Then we can test for the number of

common trends by testing how close the largest eigenvalue of A4 is to
zero, followed by the next largest, and so forth. Dickey and Fountis
(1987) show that tests of the form Ti can be compared with the critical
values in Table 8.5.1 of Dickey and Fuller. The natural corollary to the
existence of common trends is that there are linear combinations of the
regression coefficients in (26) which are Op(JT) consistent, and are
asymptotically normally distributed, a result which was first conjectured

by Sims (1978) and later formally proved by Phillips and Quliaris (1986).

The implications of this result are very interesting. Take, for instance,



~ 39 _

the case of testing whether c¢onsumption follows a random walk, when
income and consumption are I{(1). The test for parameter exclusion in the
regression of the change in consumption on the lagged level of income and
consumption will have the ordinary F distribution, if they are
cointegrated, but will have a non-normal limiting distribution otherwise

{see, for example, Mankiw and Shapiro (1985} and Banerjee et al (1987b}).

Finally, taking advantage of the framework used to interpret the
existence of common trends, we will briefly discuss the notion of
cointegration in trends and in variance (see Escribano (1987)). Consider,

for example, the following DGP

Ve T oM et v fxoovoey
.o {29)
w,o o= @' 't o+ YRt Ve
where gxt = € . Then, as before, the vector (1, yulﬁ) provides

cointegration in variance, since it eliminates xt which has a trend in
variance. But unless (yu - Bu') = 0 and {yg - Bg') = 0 there will not be
cointegration in means (trends). Therefore, the relevant concept of
cointegration, in the framewefk so far discussed, is that af variance. So
in order to decide if a set of series is cointegrated in variance, we
first have to detrend in mean, or include a drift and/or trend in the
cointegrating relationship. Alternatively these nuisance parameters could
be excluded from the cointegrating regression and test for their presence
jointly with integrated variance in the corresponding residuals. If the
first test, i.e. the exclusion of the constant and trend, is accepted
{rejected) and the second test, i.e. the existence of a unit root, is
accepted (rejected) there will be cointegration in trends but not in
variance {(no cointegration in trends but cointegration in wvariance). The

use of non-parametric tests, corrected for the existence of generated
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regressors, seems another fruitful testing approach which needs to be

developed further.

IV. CONCLUSIONS.

The considerable gap between the economic theorist, who has much to say
about equilibrium but relatively little to say about dynamics, and the
econometrician, whose models concentrate on dynamic adjustment processes,
has, to some extent, been bridged by the concept of cointegration. In
addition to allowing the data to determine the dynamics of the model (in
the spirit of Hendry; see, for example, Hendry (1986)) cointegration
suggests that models can be significantly improved by introducing, and
allowing the data to parameterise, equilibrium conditions suggested by
economic theory. Furthermore, the putative existence of such long-run
equilibrium relationships can, and should, be tested, using the tests for

unit roots discussed in this paper.
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Appendix: Non-Parametric Tests for Unit Roots.

The basic idea of this non-parametric approach is quite appealing. The
derivation of the statistics such as (8) and (7) highlights the way in
which the ratio 02/05 affects the shape of the distribution. It is then
possible to find an affine transformation of the various statistics which
eliminate the dependence of the limiting distribution on the nuisance
parameter 62/02 , accomplished in such a way that the transformed
statistics converge to the same random variable as do the untransformed
statistics when the errors are iid, i.e. when 62/05 = 1. This implies
that the critical values of the transformed statistics are the same as

those tabulated by Dickey and Fuller.

A simple example will help to understand the procedure. From (8}, we look

for a transformation such that

- 2
aT(@) + 5 = 2R - 1] ... (A1)
fTW(E)™ dt
0
that is, in this case
2 2
A=1 and B = - 2le -o.l ... (A2)

Using (A2) and consistent estimates of 02 and ci , which will be

discussed later, we find a consistent estimate of B, that is

. ~g
-~ / —_
B - - i/2le - ¢ el ... (A3)
772 gy?
Yt-1

PN

such that Ta + B has the same asymptotic critical values as those
tabulated by Dickey and Fuller. Similar arguments follow for those tests

which are based upon the t-ratio of «. Since the latter have proved to be

more powerful tests than the former, we will concentrate on testing
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through t-statistic from(now on. Rows (a),{b) and (c) in Table 2 present
the corresponding transformed t-statistics for the three unrestricted
models shown in Table 1. Therefore, these statistics provide a relatively
easy way to implement tests of hypotheses of a unit root with possibly
heterogeneously and dependently distributed data. However, an important
caveat to bear in mind is that the previous equivalence is asymptotic in
Tables 8.5.1 and 8.5.2 in Fuller (1976), whereés the finite sample
counterparts are not the same. This implies that when dealing with
relatively small samples the transformations are not adequate, and unless
there is strong evidence of a moving average error term, we advise the

extended regression and the Augmented Dickev-Fuller test.

The next step in the test implementation consists of discussing the
choice of consistent estimates for 02 and oi . The residual variance ;2
in the unrestricted models provide consistent estimates of 02 except in
the case where the unrestricted model does not contain a drift, and the
true DGP is a random walk with drift. To consistently estimate 62 , it is
important to notice that it is equivalent to 2H0s{0), s{(0) being the
spectfal density function at zero freguency. Newey and West (1987) have

proposed a simple estimate which uses a triangular smoothing window. The

estimate is

N T - m T . .
02 = T 1{2 ei + 2% {1 - iEi] z etet—k}
i k=1 t=k+1

The choice of the truncation lag k, i.e. the suspected number of non-zerc
autocorrelations, is sometimes suggested by the framework in which the
test is carried cut (see, for example, Corbae and Oularis {1988) for the
case of unit roots in spot and forward exchange rates). In general we

suggest k ranging from 1 to 8 for guarterly data, and 1 to 24 for monthly
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data.

Table 2: Summary of Test Statistics.

H_ Test Statistic (At + B)
Ay} -
A B
- "2 2 T2 -2 -1/2
a) «=0 in Case 1 g /o -1/2 (¢~ - az)[azT Zyz i 1/
5 € t-1
Fuller (1976) Table 8.5.2 (B1})
~ ~oh ~ot ~“51 _o ~ ~
b} «=0 in Case 2 aé/a' -1/2 (02 - a: ){02 T 22y§_1] 1/2
Fuller (1976} Table 8.5.2 (B2}
-~ -~ Aot R ~nit - d
¢} «=0 in Case 3 c;'/a" -1/2 (02 - o: ){02 (T 2Zyi_1)(1/12)
- ~ ~ -1/
Fuller (1976) Table 8.5.2 (B3) - T 5/2Zyt_1t}} 172
-~ - ~a11 ~g11 _ -~ ~
d) f=0 in Case 3 ol.'/c"" 1/2 11 - (6° /o2 11T 252 4
-4 " -1/2

Dickey and Fuller (1981) [T (th_l)(l/lz) - T_7(Zyt_1t)2(zvi-1)]

. - AR -3/2 -4_"2 2 -1/2
- 1 ' —
e} =0 in Case 2 ae/c 1/2 (¢ o, HT Zyt_I][T Zyt_lzyt_ll

Dickey and Fuller (1981)

Note: (‘) denotes estimates based on residuals from the unrestricted
model in Case 1; (°') denotes estimates based on residuals from the
unrestricted model in Case 2; (7'') denotes estimates based on residuals
from the unrestricted model in Case 3; () denotes deviations with

respect to sample means.



_ 44 _

References.

Aocki, M. (1987), "Evidences of Unit Roots and Cointegration in the Time
Series for U.S. GNP, M1 and CPI", Working Paper, University of
California, Los Angeles.

Banerjee, A.; Dolado, J.; Hendry, D.F. and Smith, &. (1986}, "Exploring
Equilibrium Relationships in Econometrics Through Static Models: Some
Monte Carlo Evidence", Oxford Bulletin of Economics and Statistics 48,
pp. 253-277.

Banerjee, A. and Dolado, J. (1987}, "Tests of the Life Cycle-Permanent
Income Hypothesis in the Presence of Random Walks: An Interpretation
Using Nagar Expansions"”, Nuffield College Discussion Paper 13, Oxford
University.

Banerjee, A.; Dolade, J. and Galbraith, J. (1987a), "Orthogonality Tests
Using Detrended Data: Interpreting Monte Carlo Results Using HNagar
Expansions", mimeo, 0xford University.

Banerjee, A.; Dolado, J. and Galbraith, J. (1987b}, "Rejecting
Orthogonality 1in Rational Expectations Moedels: Further Monte Cario
Results for Extended Sets of Regressors”, mimeo, Oxford University.

Billingsley, P. (1968), Convergence of Probability Measures. New York:
John Wiley.

Box, G.E.P and Jenkins, G.M. (1970}, Time Series Analysis: Forecasting

Campbell, J.N. (1986), "Does Savings Anticipate Declining Labour Income?
An Alternative Test of the Permanent Income Hypothesis”, NBER Working
Paper 1805.

Campbell, J.N. and Shiller, R.J. (1988), "Cointegration and Tests of
Present Value Models”™, NBER Working Paper 1885,

Corbae, D. and Ouliaris, S. (1986}, "Robust Tests for Unit Roots in
Foreign Exchange Market”, Economic Letters 22, pp.375-380.

Currie, D. (1981), "Some Long-Run Features of Dynamic Time-Series
Models"”, Economic Journal 91, pp. 704-715.

Davidson, J.; Hendry, D.F.:; Srba, F. and Yeo, S. (1978}, "Econometric
Modelling of the Aggregate Time-Series Relationships Between Consumer's
Expenditure and Income in the United Kingdom”, Economic Journal 88,
pp. 661-692.

Dickey, D.A. (1976), "Estimation and Hypothesis Testing for Nonstationarv
Time Series”, Ph.D Dissertation, Iowa State University.



_ 45 —

Dickey, D.A.; Bell, W.R. and Miller, R.B. (1986), "Unit Roots in Time
Series Models: Tests and Implications", American Statistician 40,
pp. 12-26.

Dickey, D.A. and Fountis, N.G. (1987), "Testing for a Unit Root
Nonstationarity in Multivariate Autoregressive Time Series", mimeo.

Dickey, D.A. and Fuller, W.A. (1979), "Distribution of the Estimators for
Autoregressive Time Series with a Unit Root", Journal of the American

Statistical Association 74, pp. 427-431.

Dickey, D.A. and Fuller, W.A. (1981), "Likelihood Ratio Statistics for
Autoregressive Time Series with a Unit Root", Econometrica 49,
pp. 1087-1072.

Engle, R.F. and Granger C.W.J. (1887), "Co-integration and Error
Correction: Representation, Estimation, and Testing", Econometrica 55,
pp. 251-276.

Escribano, A. (1986}, "Identification and Modelling of Economic_
Relationships in a Growing Economy", Ph.D Dissertation. University of
California, San Diego.

Escribano, A. (1987), "Cointegration, Time Co-trends and Error Correction
Systems: An Alternative Approach”, CORE Discussion Paper 8715, University
of Louvain.

Evans, G.B.A. and Savin, N.E. (1981), "Testing for Unit .Roots: 1",
Econometrica 49, pp. 753-777.

Flavin, M. (1981), "The Adjustment of Consumption to Changing
Expectations about Future Income", Journal of Political Economy 89,
pp. 974-1009.

Fuller, W.A. (1976), Introduction to Statistical Time Series. New York:
John Wiley & Sons.

Gourieriox, G.; Monfort, A. and Renault, E. (1985}, "Testing Unknown
Linear Restrictions on Parameter Functions", Discussion Paper 8516,
CEPREMAP .

Granger, C.W.J. (1983), "Co-Integrated Variables and Error-Correcting
Models", University of California San Diego Discussion Paper 83-13.

Granger, C.W.J. and Newbold, P. (1974}, "Spurious Regressions in
Econometrics", Journal of Econometrics 2, pp. 111-120.

Granger, C.W.J. and Weiss, A.A. (1983}, "Time Series Analysis of Error
Correcting Models" in Karlin, §.; Amemiva, T. and Goodman, L.A. (eds),
Studies in Econometric Time-Series and Multivariate Statistics. New York:
Academic Press.

Hall, 8.G. (1986}, "An Application of the Granger & Engle 'Two—Step
Estimation Procedure to United Kingdom Aggregate Wage Data", Oxford
Bulletin of Economics and Statistics 48, pp. 229-240.




_ 46 —

Hendry, D.F. (1986), "Econometric Modelling with Cointegrated Variables:
An  QOverview", Oxford -Bulletin of Economics and . Statistics 48,
pp. 201i-212.

Imhof, P. (1961), "Computing the Distribution of Quadratic Forms in
Normal Variates", Biometrika 48, pp. 419-426.

Jenkinson, T.J. (1986a), "Testing Neo-Classical Theories of Labour
Demand: An Application of Cointegration Technigues", Oxford Bulletin of

Economics and Statistics 48, pp.241-251.

Jenkinson, T.J. (1986b), "A Note on Alternative Tests for Cointegration
when Individual Series are Highly Autoregressive rather than
Non-Stationary", mimeco, Oxford University.

Jenkinson, T.J. (1987), "The NAIRU: Statistical Fact or Theoretical
Straitjacket?", in Cross, R. (ed), Unemployment, Hysteresis and the

Natural Rate Hypothesis. Oxford: Blackwell.

King, R.; Plosser, C.; Stock, J.; and Watson, M. (1987), "Stochastic
Trends and Economic Fluctuations"”, Working Paper, University of
Rochester.

Mankiw, N.G. and Shapiro, M.D. (1985), "Trends, Random Walks and Tests of
the Permanent Income Hypothesis”, Journal of Monetary Economics 16,
pp. 165-174

Newey, W.K. and West, K.D. (1987), "A Simple Positive Semi-Definite
Hetroskedasticity and Autocorrelation Consistent Covariance Matrix",
Econometrica 55, pp. 703-708.

Nelson, C.R. and Kang, H. (1981), "Spurious Periodicity in
Inappropriately Detrended Time Series", Econometrica 49, pp. 741-751.

Nelson, C.R. and Plosser, G.J. (1982}, "Trends and Random Walks in
Macroeconomic Time Series", Journal of Monetary Economics 10,
pp. 139-162.

Nickell, S.J. (1987), "The NAIRU: Some Theory and Facts", in Cross, R.
(ed), Unemployment, Hysteresis and the Natural Rate Hypothesis. Oxford:
Blackwell.

Perron, P. (1987), "Trends and Random Walks in Macroeconomic Time Series:
Further Evidence from a New Approach"”, Cahier 8650, University of
Montreal.

Phillips, P.C.B. (1987a), "Time Series Regression with a Unit Root",
Econometrica 55, pp. 277-301.

Phillips, P.C.B. (1987b), "Understanding Spurious Regressions in
Econometrics", forthcoming, Journal of Econometrics.

Phillips, P.C.B. and Durlauf, S.N. (1986a), "Trends vs. Random Walks in
Time Series Analysis", Cowles Foundation Discussion Paper 788, VYale
University.



_ 47 _

Phillips, P.C.B. and Durlauf, S.N. {(1988b}, "Multiple Time Series with
Integrated Processes”, Review of Economic Studies 53, pp.473-495.

Phillips, P.C.B. and OQuliaris, §. {(1988), "Testing for Cointegration”,
Cowles Foundation Discussion Paper 809, Yale University.

Phillips, P.C.B. and Perron, P. (18986}, "Testing for Unit Roots in Time
Series Regression”, Cahier 2186, University of Montreal.

Said, S.E. and Dickey, D.A. (1984), "“Testing for Unit Roots in
Autoregressive Moving Average Models of Unknown Order”, Biometrika 71,
pp. 899-607.

Salmon, M. (1882), "Error Correction Mechanisms”, Economic Journal 82,
pp. 6815-629.

Sargan, J.D. (1964), "Wages and Prices in the United Kingdom: a Study in
Econometric Methodology”, in P.E. Hart et al, Econometric Apalysis for

National Economic Planning. London: Butterworth.

Sargan, J.D. and Bhargava, A. (1983), "Testing Residuals from Least
Sguares Regression for Being Generated by the Guassian Random Walk',
Econometrica 51, pp. 153-174.

Schwert, G.W. (1985}, "Effects of Model Specification on Tests for Unit
Roots", mimeo.

Shiller, R.J. and Perron, P. (1985}, "Testing the Random Walk Hypothesis:
Power vs. Frequency of Observation", Economic Letters 18, pp. 381-386.

Stock, J.H. (1984}, "Asvmptotic Properties of a Least Squares Estimator
of Co-integrating Vectors", mimeo, Harvard University.

Stock, J.H. and Watson, M. (1988}, "Testing for Common Trends",
Discussion Paper 1222, Harvard University.

West, K.D. {(1986), "Asymptotic Normality when Regressors have a Unit
Root", Princeton University Discussion Paper No. 110.

White, H. (1984), Avmptotic Thecory for Econometricians. London: Academic
Press.




8507
8502

8503
8504
8505
8506
8507
8508
8509
8510
8511

8512

8514
851715
8576

8517
8518
8519
8520
8520
8601
8602
8603

8604
8605

8607

8608

8609

8610

_ 48

DOCUMENTOS DE TRABAJC (1)

Agustin Maravall: Prediccion con modelos de series temporales.

Agustin Maravall: On structural time series models and the characterization of compo-
nents.

Ignacio Mauleén: Prediccion multivariante de los tipos interbancarios.

José Vinals: El déficit ptiblico y sus efectos macroecondmices: algunas reconsideraciones.
José Luis Malo de Molina y Eloisa Ortega: Estructuras de ponderacion y de precios
relativos entre los deflactores de la Contabilidad Nacional.

José Vinals: Gasto publice, estructura impositiva y actividad macroecondémica en una
economia abierta.

Ignacio Mauleén: Una funcion de exportaciones para la economia espanola.

J. J. Dolado, J. L. Malo de Molina y A. Zabalza: Spanish industrial unemployment: some
explanatory factors (version inglés). Ei desempleo en el sector industrial espanol: algunos
factores explicativos (version espariol).

Ignacio Mauledn: Stability testing in regression models.

Ascension Molina y Ricardo Sanz: Un indicador mensual del consumo de energia eléctrica
para usos industriales, 1976-1984.

J. J. Dolado y J. L. Malo de Molina: An expectational model of labour demand in Spanish
industry.

J. Albarracin y A. Yago: Agregacion de la Encuesta Industrial en los 15 sectores de la
Contabilidad Nacional de 1970.

Juan J. Dolado, José Luis Malo de Molina y Eloisa Ortega: Respuestas en el deflactor del
valor anadido en la industria ante variaciones en los costes laborales unitarios.

Ricardo Sanz: Trimestralizacion dei PIB por ramas de actividad, 1964-1984.

ignacio Mauledn: La inversion en bienes de equipo: determinantes v estabilidad.

A. Espasa y R. Galian: Parsimony and omitted factors: The airline model and the census
X-11 assumptions (version ingl/és). Parquedad en la parametrizacién y omisiones de
factores: el modelo de las lineas aéreas y las hipotesis del census X-11 (version espariol).
lgnacio Mauleédn: A stability test for simultaneous equation modeis.

José Vinals: jAumenta ia apertura financiera exterior las fluctuaciones del tipo de cambio?
fversion espariol). Does financial openness increase exchange rate fluctuations? (versién
inglés) .

José Vinals: Deuda exterior y objetivos de balanza de pagos en Espana: Un anélisis de
iargo plazo.

José Marin Arcas: Algunos indices de progresividad de laimposicion estatal sobre la renta
en Espana vy otros paises de la OCDE.

José Marin Arcas: Algunos indices de progresividad de la imposicion estatal sobre la renta
en Espana vy otros paises de la OCDE.

Agustin Maravall: Revisions in ARIMA signal extraction.

Agustin Maravall y David A. Pierce: A prototypical seasonal adjustment model.

Agustin Maravali: On minimum mean squared error estimation of the noise in unobserved
component models.

Ignacio Mauleon: Testing the rational expectations model.

Ricardo Sanz: Efectos de variaciones en los precios energéticos sobre los precios sectoria-
les y de la demanda final de nuestra economia.

José Vinals: La politica fiscal y la restriccion exterior. (Publicada una edicién en inglés con
el mismo namero).

José Vinals y John Cuddington: Fiscal policy and the current account: what do capital
controls do?

Gonzalo Gil: Politica agricola de la Comunidad Econdmica Europea y montantes compen-
satorios monetarios.

José Vinals: ;Hacia una menor flexibilidad de los tipos de cambio en el sistema monetario
internacional?



870171

8702

8703

8704
8705

8706
8707

8708

— 49 _

Agustin Maravall: The use of ARIMA models in unobserved components estimation: an
application to spanish monetary control.

Agustin Maravall: Descomposicion de series temporales: especificacion, estimacion e
inferencia (Con una aplicacion a la oferta monetaria en Espana).

José Vinals y Lorenzo Domingo: La peseta y el sistema monetario europeo: un modelo de
tipo de cambio peseta-marco.

Gonazalo Gil: The functions of the Bank of Spain.

Agustin Maravall: Descomposicion de series temporales, con una aplicacion a la oferta
monetaria en Espana: Comentarios y contestacion.

P.L'Hotellerie y J. Vinals: Tendencias del comercio exterior espanol. Apéndice estadistico.
Anindya Banerjee y Juan Dolado: Tests of the Life Cycle-Permanent Income Hypothesis in
the Presence of Random Walks: Asymptotic Theory and Small-Sample Interpretations.
Juan J. Dolado y Tim Jenkinson: Cointegration: A survey of recent developments.

(1) Los Documentos de Trabajo anteriores a 1985 figuran en el catdlogo de publicaciongs del Banco de
Espana.

Informacion: Banco de Espana
Publicaciones. Negociado de Distribucion y Gestion
Teléfono 446 90 55, ext. 2180
Alcala, 50. 28014 Madrid







