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Summar

The paper analyzes uncbserved-components modeling and
estimation for the simplest ARIMA process that accepts a full
decomposition into trend, seasonal and irregular components. This
prototypical model exemplifies many features of and issues arising
in model-based seasonal adjustment that are less transparent in more
complex seasonal time series models. In particular the analysis
illuminates the major issues surrounding the specification of the
component models and the identification of a unique structure for
them. In so doing, the relationship between reduced- and structural-
form approaches to uncobserved components estimation is illustrated
within an ARIMA-modeling framework. Finally, the properties of the
minimum mean-squared-error estimators of the unobserved components
are examined and the two main types of estimation error, revisions
in the preliminary estimator and error in the final estimator, are

analysed.
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1. INTRODUCTION

Model-based seasonal adjustment thas been increasingly
developed over the past several years, primarily as an alternative
to the Census X-11 method (Shiskin, Young, and Musgrave 1967) or its
ARIMA variant (Dagum 1975), which have been by far the most common
procedures for producing published seasonally adjusted series. A
number of approaches have involved expressing an observed seasconal
series as the sum of unobserved components generated by ARIMA models,
one of which is the seasonal component; see, e.g., Bell and Hillmer
(1984), Box, Hillmer, and Tiao (1978), Burman (1980), Hillmer and
Tiao (1982), Pierce (1978). The process of seasonal adjustment is
then the estimation (by signal extraction) and removal of this

component.

By far the most difficult task in developing such a
procedure 1is the specification of the model for the seasonal
component, which requires a statement (even if implicit) about what
we mean by seasonality and what we want to remove in seasonally
adjusting a series. In many approaches, including the use of
unobserved-components ARIMA models, the embodiment of such a
statement in the model specification can be a complex and
unintuitive process. Thus we believe it is of value to examine the
issues arising and the decisions required within the context of a
very simple model, which can then serve as a prototype for more

complex applications.

The model for the observable series which we have chosen
for this purpose is one that we believe to be the simplest possible
ARIMA model which possesses a nontrivial decomposition into trend,
seasonal and irregular components - namely, the model xt-xt_2 = at,
for the observable series X, in terms of white noise a,. This

model is appropriate for semiannual data or other periodic data of

period 2. Section 2 develops this model and the corresponding



component-model specifications which embody our usual concepts of
seasonality and trend. Howevef, there are an infinite number of such
specifications consistent with the assumed model for Xt’ and
Section 3 characterizes the class of all admissible decompositions.
Section 4 then focuses on one of these, the "canonical" decomposition,
discusses some of its most relevant properties and presents a
structural interpretation of the decomposition. In Section 5 the

decomposition problem is analysed in the frequency domain.

Having solved the identification/specification problem,
Section 6 considers estimation of the unobserved components, and
discusses properties of the derived estimators. The last section
analyzes the two implied types of estimation error: revision error
contained in the preliminary estimator and error still present in

the final estimator.

2. THE MODEL

Numerous recent applications of signal extraction consist
of two-component decompositions such as into signal plus noise, or
into seasonal plus nonseasonal. However, frequently there are
reasons for desiring a separation of Lhe nonseasonal component into
trend and irregular components as well. Purposes given for seasonal
adjustment are typically that seasonality is extraneous to and
interferes with what we want to observe in a series, so that its
removal facilitates interpretation of the remainder of the series.
But then, insofar as the irregular component may also be extraneous,
its removal should still further aid in these goals, as the remaining
component (the trend) would then represent the long-term evolution
of the series, which is presumably of greater interest.The estimation
of trend has in fact been recommended for years as an alternative or

adjunct to seasonal adjustment, a few of the more recent examples



being Moore et. al. (1981), Kenny and Durbin (1981), Box, Pierce and
Newbold (1986), Maravall and Pierce (1986).

It should be noted that not always is a separation into
additive components desired or desirable; for some applications (an
obvious example 1is forecasting) the overall model's relatively
simple form and interpretation may suffice. We are addressing
situations where a separation into components is useful (such as,
for example, whenever seasonal adjustment is desired.) Thus we focus

our attention on the three-component model
X =7p + s, +u (2.1)

where pt, st, and ut are respectively the unobserved trend,
seasonal and irregular components of the observable series xt, at
time t.

For x we require a seasonal ARIMA model which admits a

)
decomposition Zuch that the components themselves have ARIMA-model
specifications and moreover reflect the essential properties
ordinarily associated with them, namely, ‘“periodicity" for the
seasonal and low frequency dominance for the trend. We consider the

simplest model to do so, given by
V x =a s (2.2)

where V2 = 1-B = (1-B)(1+B), and where at is white noise.

It is illuminating to examine the frequency-domain behavior
of this series. The model (2.2) 1is nonstationary so that the
spectrum of Xt is not defined. However it 1is customary to define

the "pseudospectrum' of this series by
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g () = a - a (2.3)
® | 1-e21@ 2(1l-cos 2w)

for O<w<w where ]z}z = zz for a complex number z with conjugate Z.
This spectrum is graphed in Figure 1 where it is seen to be synmetric
about w = w/2. The low-frequency behavior can be asgociated with
trend, and the frequencies mnear « with seasonal behavior (w is
the single seasonal frequency, corresponding to a seasonal cycle of

period 2.)

Since: (1) the autoregressive polynomial in the model for

xt is Vz = (1+B)(1-B), and (ii) the peaks for o = 0 and © = «w are
associated with the roots B = 1 and B = -1 of VZ, respectively,
from the additive relation (2.1) it follows that acceptable trend

and seasonal component models are of the form

BB
P, = . bt (2.4)
and
Y(B)
St = s Ct . (2.5)
where bt and ct are white noise and B(B) and vy(B) are

polynomials in B. Multiplying both sides of (2.1) by V2' it is
obtained that

at = (1+B) B(B)bt + (1-B) Y(B)ct + V2 ut. (2.6)

Since the lag-two autocorrelation of the r.h.s. of (2.6) has to be

equal to zero, reasonable models for the components are of the form

- = (1-BB) :
(1-B) p, = (1-BB)D, (2.7)



(1+B) St (1~'YB)<:t s (2.8)

white noise s (2.9)

[™
1]

where, in order to avoid model multiplicity (see Box and Jenkins,

1970, p. 185-200), we assume
IBl<l , Jvl<1 . (2.10)

Recapitulating, in this model the seascnality is of period
2, appropriate for semi-annual data. The trend P, is an integrated
process, reduced to stationarity by the ordinary difference operator;
and the seasonal component S is summed to attain stationarity.
These specifications are consistent with those of several recently
developed model-based seasonal adjustment procedures, including

Burman (1980), Hillmer and Tiac (1982) and Bell and Hillmer (1984).

We note that the same component specifications as (2.7)
through (2.9) (though with different parameter values) are

consistent with a slightly more general IMA (2,2) model for xt,

2
V2 X, = (1—618~62B )at s (2.11)

which reduces to (2.2) by taking ©, = 92 = 0. Another peint is that

the irregular component ut is required to be white noise. This 1is
not always imposed, though two of the procedures where ut is
allowed to be serially correlated (Burman 1980, Hillmer-Tiao 1982)
do produce a white noise irregular for this example. In general,
having specified the seasonal component, one can define the trend to
have certain properties and the irregular as the residual, which
could then be autocorrelated; or alternatively one could specify the
irregular as white nocise and the trend as the residual, which could

then exhibit features in addition to the smooth, low-frequency

behavior ordinarily associated with this component. Our prototypical
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model is sufficiently well behaved that such a choice 1is not

necesgary.

3. AUTOCOVARIANCE EQUATIONS AND ADMISSIBLE DECOMPOSITIONS

Given the difference/summation specifications for pt and
St and the white noise ut, the models (2.7)-(2.9) are the most
general first-order component models which imply the overall model
(2.2) for xt. As we shall see in this section, they are in fact

too general, as an infinite number of models (2.7)-(2.9) are

compatible with (2.2), and the components pt, st, and ut are
thus unidentified.
Given x = p + s + u,, if we multiply through by

t t t t
(1-B)(1+B) and use the model specification (2.7) through (2.9), we

obtain

o
i

(1~B)(1+B)Xt

]

<1+B><1—ﬁs)bt+<1_s)<1~Y8)ct+(1-32>uf

bt+(1—B)bt_ -Bb +ct—(1+y)c Y (3.1)

17PP g1 tYC P T g

The system of equations used to determine relationships
among the parameters is obtained by equating autocovariances on the
left and right sides of (3.1). In particular, for k = 0, 1, 2 we

have:
2 2.2 2.2 2
Oa/2 = (1-B+B )db + (L+y+y )cc + oo, (3.2)

0 = (1»B)262

22
y ~ (DT, (3.3)
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2 2 2
0 = ~ﬁcb + ch - cu . (3.4)
Adding the first and third equations,
2 2 2 2 2
03/2 = (1-B) cb + (1+v) cc (3.5)

. . . 2
which together with the second suggests expressing Ob and
ci as functions of B and vy. Adding and then substracting

(3.3) and (3.5), it is obtained that

02 0'2
o; = ———jL—E~ s 02 = ——MEL*E~ ’ (3.6)
4(1-B) 4(1+Y)

and, after substitution intoc (3.4), that

o :{- =B 5+ X 2302 . (3.7)
u 4(1-R) 4(1+Y)

Equations (3.6) and (3.7) show the dependence of the
component— model innovation wvariances on the moving average
parameters [ and Yy, so that the specification of values for B
and vy suffices to determine (identify) the system. However, in
addition to (2.10) these parameters must satisfy the restriction
that the wvariances ci,
ensures that 0230, ocgo; is the nonnegativity of ci that is at

b
issue, which from (3.7) is equivalent to the constraint

2 2
S, and S, be nonnegative. Equation (3.6)

R s ya-mi s 0 . (3.8)

Figure 2 shows the graph of the region (not shaded) where
the constraints (3.8) and (2.10) are satisfied. All points (B,v)
in this region (and only those points) correspond to an admissible
decomposition of X, in (2.2) into components Pir Sy» and u,
as given by (2.7) through (2.9). In the next section, we shall be
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interested in the decomposition which corresponds to the upper left

corner of the graph.

4. IDENTIFICATION AND THE CANONICAL DECOMPOSIT1ON

The identification of the seasonal, trend and irregular
components of X, in (2.2) is tantamount to the selection of a
point in the space of admissible (B,y) values given in Figure 2.
Several approaches to the resolution of this problem are possible.
One often employed is to restrict the order of the MA polynomials,
which 1in our cases means setting B = vy = 0 in (2.7) and (2.8)
(see Maravall, 1985). More generally, specifying in advance the
model forms for pt and st and a sufficient number of parameter

values 1is what the ‘'structural"” approach would entail (see, for

example, Engle, 1978, or Harvey and Todd, 1983.)

The identification problem encountered here is similar to
the one that appears in standard econometric models. The model for
the observed series 1is the reduced form, while the models for the
components represent the associated structural form. For a
particular reduced form, there are an infinite number of structures
from which it can be generated. In order to select one, additional
information has to be incorporated. The traditional approach in
econometrics has been to set a priori some parameters in the
structural model equal to zero (see Fisher, 1966). These zero-
parameter restrictions reflect a priori economic theory information,
for example that some variables that affect demand of a commodity do

not affect supply and vice versa.

In the case of our uncobserved-components model, such 2
priori information is not available. We follow instead an alternative

approach, originally suggested by Box, Hillmer and Tiao (1978) and
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Pierce (1978). The additional information will be the requirement
that separable white noise should not be a part of either the trend
or the seasonal, and should instead be regarded as irregular; thus
the irregular-component variance is maximized and the resulting
decomposition has been termed ‘“canonical" by Hillmer and Tiao
(1982). We now show that in the present example maximizing the
variance of the irregular component ut results in determining
unique values for both f and Yy and thus identifies the system

(2.7) through (2.9).

By differentiation of (3.7) it is seen that the maximum of

2 . . .
cu occurs at B = -1, v = +1, values which, in view of (3.6), also
minimize ci and ci, the variances of the trend and seasonal

innovations.Thus in the canonical decomposition of a series generated

by (2.2) into pt+st+ut, the models (2.7) and (2.8) for the trend and

seasonal components are given by

(1~-B)pt (1+B)bt (4.1)
and

(1+B)st = (l—B)ct s (4.2)

where morecver from (3.6) and (3.7) the innovation variances are

seen to satisfy
2 2 2 2

g =0 = /16, ¢ = o /8 . (4.3)
c a u a

Let h(z) denote a spectrum (or pseudospectrum) g(w) as a
function of 2z = cos w. An important property of the canonical

model is the following. If s, represents any admissible seasonal

*
component, and st denotes the canonical one, the spectra of the

two are given by

2

fo] ' 2
hs(Z) _ a 1+y -2vz )

8(1+Y)2 1+z




— 16 —

ot T J
* a { 1-z
hs(z) ) 14z 1

where use has been made of (3.6). Then, it 1is easily seen that
hs(z) = h:(z) + kO , where ko = (1—*{)2/16(1+Y)2 is a constant, and

hence the two spectra are parallel. Since a similar result holds for
the trend, any admissible trend or seasonal component -of the type
(2.7) or (2.8)- 1is equal to the canonical one plus orthogonal

white-noise.

The manner in which maximizing the variance of the
irregular identifies the component models is easily understood by
considering the following. For our simple model (2.1) and (2.2), the
spectra of the trend and seasonal components are decreasing and
increasing functions, respectively, of . Hence the mininum is
obtained, in the trend case, at w = w and, in the seasonal case,
at w = 0. Since for the canonical decomposition these minima are
zero, it follows that gp(w:ﬂ) = 0 and gs(w=0) = 0, where gp(w)
and gs(m) are the trend and seasonal spectra. The first condition
implies that B=-1 1is a root of the moving average polynomial
(1-BB) in the trend model; and gimilarly, the second condition
implies that the B=1 is a root of the moving average polynomial
(1-yB) in the seasonal model. In terms of (2.4) and (2.5), these
two restrictions are equivalent to B(-1) = (1) = 0, or, in our

model, to the two linear constraints 1+ = 1-y = 0.

It follows that identification is attained by, instead of
setting coefficients equal to zero, imposing linear constraints on
them, reflecting the minima of zero in the trend and seasonal
component spectra. There 1s thus a close relationship between the
ARIMA-based decomposition and the structural approach. The
requirement of noise-free components can be easily incorporated into
the latter, and equations (4.1) to (4.3) represent the structural

form associated with the reduced form (2.2).
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Since, as noted before, equations (2.7)-(2.9) are
consistent with the more general reduced form (2.11), equations
(4.1) and (4.2) and a white-noise irregular will also represent the
canonical components associated with the model (2.11). The three
innovation variances, however, would not be given by (4.3) but

would, instead, be functions of the parameters 61 and 62.

5. THE DECOMPOSITION IN THE FREQUENCY DOMAIN

The preceding sections have illustrated the decomposition
of a time series into trend, seasonal and irregular components in
the time domain. It is also of interest to examine this problem in
the frequency domain, which we do with a development similar to
£ st and ut are
orthogonal, an admissible decomposition is characterized by a

Burman (1980). Since the components p

partition of the spectrum of X, into three additive component

spectra, which we write as
h (z) =h (z) +h (z) + h (2) . (5.1)
X P s u

From (2.3), the 1l.h.s. of (5.1) is

1 1
hx(z) = 2 = s
4(1-z7) 4(1-z) (1+z)
where, without loss of generality, we set oi = 1. The factors

(1-z) and (l+z) are associated with the trend and seasonal roots
(B=1 and B=-1), respectively, of the AR polynomial in (2.2), and
hu(z) is constant. Thus an admissible decomposition can be

obtained from the identity
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n {(z) n (z)
. —P b —= + k (5.2)
4(1l-z)(Ll+z) 1-z 14z

1

where the three terms of the r.h.s. represent the trend, seasonal
and irregular spectra, which are nonnegative. For |z]<l, the
minimum of hx(z) is greater than zero; hence at least one of the
three quantities (k, min. hp(z), min. hs(z)) will be positive.
Since a positive constant can be interchanged among the three
component spectra without viclating the admissibility constraints,
it follows that the decomposition given by (5.2) will not be unique:
an infinite number of combinations of non-negative np(z), ns(z)
and k exist which satisfy (5.2). This is the frequency domain
equivalent of the existence of an infinite number of component
models satisfying the system of covariance equations (3.2)-(3.4). It
implies, as Dbefore, that, without additional assumptions, the

overall model does not identify unique models for the components.

In order to derive the canonical solution, the partial
fraction expansion of hx(z) provides an easy to compute two-stage
procedure. First, to obtain simply an admissible decomposition, we

seek values a and b such that

1 _ a + b
(1-z)(l+z) = i-z i+z

(5.3)

which are obtained by noting that, from (5.3), a(l+z)+b{(l-z)=1 so
that a=b=1/2. Consequently, from (5.2) and (5.3)

' 1 1 1 ]
h (2 8 [ 1-z 7 14z

hence

1 ) 1 ;

ho(2) =0 5 b (2) = 0D

hu(z) =0 ,

with analogous component spectra
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R ' :
a a =
gp(m) T 8(l-cos w) ’ Bglw) = 8(l+cos w) B (@) =0

Since the two minima

2
min (w) = (w) = ¢ /16 , (5.4)
Sp Sp a
O<w<w
i ) = 5 (0) = o-/16 (5.5)
min gs(w = gs = Ga s .

O<wgw

are both strictly positive, the decomposition obtained in the first
stage is not a canonical one. Thus in the second stage the constants
(5.4) and (5.5) are substracted from the trend and seasonal spectra,
respectively, and added to the irregular. Consequently, for the

canonical decomposition

62 02
* a a 1+cos w .
gp(m) = gp(m) T 16 T 16 l-cos w ° (5.6)

62 62
* a a l-cos w
Bglw) = g (w) - 7= = ¢ 1+cos o ° -7

and
2

o) - 2 (5.8)
Su w) = 8 .

These spectra imply the same component processes and
variances as previously derived, given by (4.1) through (4.3).
Notice that the first stage of the procedure 1is equivalent to
decreasing the order of the moving averages in (2.7)-(2.8), and
hence the admissible decomposition obtained in the first stage 1is
the one that results from identifying the component models by a

priori setting fB=v=0.
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The graph of gx(m) ;is given in Figure 1, which also
shows the spectra of the three canonical components. Figure 3
illustrates the two stages of the decomposition. For the canonical
components, the height of gu(m) is maximized, and the minima of

gp(w) and of gs(m) are both zero.

6. ESTIMATION

The foregoing has been concerned with specification of the
model forms assumed to generate the series xt and its components.
The components are unobservable and, having resolved the
identification/specification problem, we proceed to obtain estimates

of pt, s and ut given a realization of {Xt}'

t,

6.1. Signal Extraction

Consider an admissible decomposition, given by equations

(2.7) to (2.9), and let

wp(B) = (1-BB)/(1-B) (6.1)

il

WS(B) (1-yB)/(1+B)

2
¥ (B) = 1/(1-B")

i

dencote the polynomials in B of the moving average representation of
Pt’ st and Xt' Using well-known results (see Cleveland and
Tiao, 1976, or Bell, 1984), the minimum mean squared error (MMSE)

estimators of the three components are given by

St = v Bx (6.2)
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~
s, = v (B)x . (6.3)
s t
A
u, = [1-v (B)-v (B)lx , (6.4)
P s t

t

where the v-polynomials represent the two-sided symmetric filters

c2 v (B) 2 c2 v (B) 2

b P c S
v {(B) = — ’ v (B = — s (6.5)
P oi wX(B) s ci wX(B)

where the convention
2 g
Ih(B)|™ = h(B)h(¥F)

-1
is employed, F = B denoting the forward shift operator.

For the trend component estimator, (6.1) and (6.5)

eventually yield,

2
a
v (B) = P |(1+B)(1~BB)]2 = v +4v _{(B4+F)+v (Bz+ F2) s
P 02 po pl p2
a
2 2 2 2 2 2 2 2
where Vpo = (cb/ca)(2;2B+26 Y, vp = (db/oa)(lwﬁ) , va = —(cb/ca)B,
and, from (3.6), ob/oa = 1/4(1-B)". Similarly, for the seasonal
component estimator, given by (6.3),
2
% 2 2 2 .2
vS(B) = 62 l1—yB|T|1-B| = vso+vsl(B+F)+usz(B + F) ,
a
2. 2 2 2 2 2 2 2
where v = (o /o _)(242¥+2y ), v = —(o /o Y(1+Y) , v = (o /o )Y,
so c a2 2 s} c a s2 c a

and, from (3.6), dc/ca = 1/4(1+v) .

As 1s the case whenever the model for the observed series

is a finite autoregression, the two filters are finite, depending in



this case only on values xt 2 through Xt+2' Futhermore, they
v (-1) =1 and v (-1) = v (1) = 0.
P s

satisfy the conditions vp(l) = v,

6.2 The models for the estimators

For the canonical decomposition, B = -1 and y = 1, so that
v = v = 6/16, v = -v = 4/16, v = v = 1/16; and in
po so pl sl p2 s2
compact form

vP(B) g i1+B|4 s vs(B) = —lllvBla . (6.6)

16 16

In order to analyse the estimators, it will prove helpful
to obtain the models that express the three components as functions

of the innovations at. Using (6.6) in (6.2)-(6.4), and then

considering that xt = (1—82)“1at, the estimators of the
components can be expressed as
h 2
(1-B) V P, = (1+4B) (1+F) atllﬁ . (6.7)
~ 2
(1+B) s, = (1-B) (1-F) at/ls . (6.8)
~ 2
u, = (1-F )at/8 . (6.9)

Comparing these three expressions with the models for the
components, given by (4.1)-(4.3), it is seen that the model for the
MMSE estimator of a component is different from the model for the
component itself (see Grether and Nerlove (1970)). There are some
similarities: First, the same stationarity-inducing transformations
are required; second, since the models for ﬁt and gt contain the
moving average factor (1+B) and (1-B), respectively, estimation
preserves the canonical properties of the trend and seasonal

components.
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From (6.7)-(6.9), the spectra of the three estimators are

found to be

“ 2 3

g (w) = ca(1+cosw) /(64(1l-cosw)) ,
~ 2 3

gs (w) = oa(1~cosm) /(64(1l+cosw)) ,
- 2

g (w) = 62(1—605 w)/16 ,

u a

and comparing them with the true-component spectra, given by (5.6)-
(5.8), it is found that, when O<w<rw, g*p(w) > gp(w), g*s(w) > gs(w),
g*u(w) > gu(m); hence, in each of the three cases and for all
trequencies, the spectrum of the estimator is smaller than that of

the component.

Figure 4 compares the two spectra for the three components.
The “distorsion” induced by MMSE estimation is seen to affect
mostly, the spectrum of the irregular component, which shows dips
for @ =0 and « = w. These dips reflect the fact that, 1in
extracting the noise from the X, series, the MMSE ignores the
frequencies dominated the trend and seasonal components (notice
that, for o =0 and © = w, the ratio of the irregular variance
to that of the trend plus seasonal becomes zero). As a result, the
spectrum of the irregular estimator displays a peak for w = w/2,
which implies a periodic effect (in semiannual data associated with

a two-year period.)

From equations (6.7)-(6.9), the autocovariance functions of
the (stationary transformation of the) component estimators can also
be computed. As shown in Table 1, MMSE estimation induces additional
autocorrelation in the models for the three estimators. Furthermore,
the variances of the theoretical components are larger than those of

their estimators, particularly concerning the irregular component.
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Finally, the correlations between the estimators can be computed. It
is seen that estimation preserves orthogonality of the trend and
seasonal component estimators, although the two are correlated with
the estimator of the irregular (p = -.316 in both «cases). By
comparing the properties of the empirical estimates with those
implied by the models for the estimators, the model-based approach
provides a natural way for evaluating the results of a particular

application.

7. ESTIMATION ERRORS
7.1 Revisions

The preceding has assumed that both future and past data
are available, whereas this is not the case for the current time
period, which is in practice often the most important application.
Consider, for example, the trend estimator associated with an

admissible decomposition, given by

( + % ) (7.1)

Py = Vpofe e T Feas

Voi
i=1,2 P

where the v-coefficients were given in Section 6.1. At time t,
A .

pt cannot be computed since xt+1, and xt+2 are not\oyet known.
The MMSE ‘'concurrent" estimator of P, denoted Py is the

conditional expectation of pt at time t. Since (for i>1)

~
p, =E P

E =
P £ T St

t t Et Et+i t’

taking expectations in both sides of (7.1) yields

~ ~

Py = Voo Xt + i‘i , \)pi(xt—1 + Xt(l)), (7.2)



where Q;(i)=Et Xt+i denotes the origin-t lead-i forecast of x.
Therefore, the concurrent estimator is obtained by applying the
two-sided filter vp(B) to a forecast augmented series (see
Cleveland and Tiao, 1976). This concurrent estimator will be revised
in future periods, as forecasts are either updated or replaced with

new observations until the historical or final estimator can be

computed.

Substracting (7.2) from (7.1) shows that the total revision

in the concurrent trend estimator is

A Ao

rpt = pt — pt = le et(l) + Uzp et(Z) s
N
with et(j) = xt+j—xt(j) denoting the corresponding forecast
. y = thi =
error Since et(l) at+1 and (for his model) et(z) at+2,
we have
2 2,2
Tpe = LB a, ) - Bay 0 op/o,

so that rpt is a first order moving average. Using (3.6),

1 B
r = 7 [a - a 1, (7.3)
t t+1 2 t+2
P 4 (1-B)
whence
2
] 2
Var(r_.) = 1: [1+ -ﬁ——4 1. (7.4)
P (1-B)
A
Similarly, the revision in a concurrent seasonal estimate sz is
2
cc 2
st T 2 =) 3 g+ Y3 ,,!
a
1
== -a,  +—1— & .1 , (7.5)



with variance

2
o 2
Var(r ) = —2— [1+4 —1— ] . (7.6)
st 16
(1+y)

It is of interest to examine the revision variances in
terms of the chosen decomposition. In Seétion 3 we derived the
admissible space for the parameters 3 and Y. On its boundary,
where (3.8) holds as an equality, at B = -1, we  have
Y = =3+2v2, and, at Yy =1, B = 3-2v2. Hence for all

admissible decompositions (see Figure 2):
-1 < B ¢ 3-2v2 and -3 + 2v2 ¢ vy < 1

Figure 5 shows the variances of the trend and seasonal
revisions as functions of the vrespective parameters, $ and v,
over their admissible range. The figure suggests, and equations
(7.4) and (7.6) show, that the revision variances are maximized at
the canonical-decomposition values, B = -1, v = 1. The
cccurrence of larger revisions may indicate a price paid for
choosing the canonical decomposition (i.e., a trade-off between size

of the revision and cleanness of signal).

For the canonical model the revision variance is:

[V

i
¢ = T (7.7)

for either trend or seasonal revisions, a value which is slightly
above the innovation variance of the trend or seasonal models (see
(4.3)), and well below the one-step-ahead forecast error variance

2
ca, Also, from (7.3) and (7.5) the correlation between rpt

and is seen to be (-15/17), so that joint confidence

r
st
intervals, based on these vrevisions, can be built around the

concurrent estimates of the trend and seasonal components.
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7.2 Final estimation error

Revisions may be regarded as measurement errors in the
concurrent estimate of a component, caused by limitations on the
availability of data. But even if an infinite length of data is
assumed (and the models known exactly), the final or historical
estimate still contains an error. For the historical seasonal
estimate gt in (6.3), let the error be 6t = st~g . Then:

t

6t = —uS(B)(pt+ut)+[1—vS(B)]st (7.8)

where, for the canonical decomposition,
2 2
vS(B) = (1/16)(1-B) (1-F) . (7.9)
Using (4.1), (4.2) and (7.9) in (7.8), it is found that

6t = (1/16)[—(1*82)(l-F)zbt+(1/k)(l¥F)(1~B)(1-kB)(1—kF) c t

+ (l—B)2 (1~F)2 utS

with k = 3-2v2. Thus

Var(d,) = (1/256)[10 02 + 74 02 + 70 02] .
t c u

b

and, using (4.3), we obtain

2
o
2 a 1
Var(ét) = “5 = e [1- —g—] . (7.10)

(The value (7.10) may alternatively be derived by obtaining the

stochastic process followed by nt = pt+ut and applying results

of Pierce, 1979.)
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Therefore, most of the variation in the seasonal's final
estimate is induced by the irregular and by the seasonal innovation.

The variance of the error in the historical estimate, given by

(7.10), is slightly less than the innovation variance oi in
(4.3), whereas the revision variance ci in (7.7) 1is slightly
larger. Roughly, the three standard deviations Gb’ cr and
o are of similar magnitudes and all approximately one-fourth

6’
the standard deviation ca of the innovation of the series.

Having obtained expressions for the errors and their
associated standard deviations, the model-based procedure permits us
to analyze the precision of the estimates, a major point of concern
(see Moore et. al., 1981). Combining the revision and final-data
error results, an approximate 95 percent confidence interval for
pt based on the concurrent measurement is given by $:+.70 ca; when
the final measurement is available,the interval narrows to $t+.46 ca.
The corresponding confidence intervals for the true seasonal

component St would be of the same width.
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Figure

Spectra of Theoretical Components
and Their Estimators
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Table 1

Variances and non-zero autocorrelations of the stationary

components and their estimators

var. pl p2 p3

Component .125 .50 - -
Trend

Estimator .078 .45 .30 .05

Component .125 -.50 - -
Seasonal

Estimator .078 —~. 45 .30 -.05

Component . 125 - - -
Irregular

Estimator .031 - -.50 -
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