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Introduction

The current project for estimating Spanish
Quarterly National Accounts, now being developed 1in the
Research Department and, particularly, the obtaining of
retrospective quarterly series pose needs of a different
nature. Among these needs are those that are derived from
methods that can be used to satisfactorily handale the basic
problem, which can be formulated in the following general
terms: given an annual magnitude, how to obtain quarterly
data that are compatible with this magnitud and that
incorporate exogenous information, should it be available;
this information would take the form of a time series,

equally quarterly, which we will call the indicator.

Choosing the indicator will be based on theoretical
or other considerations. Although we will not discuss them
here, we will assume that these considerations have prompted
us to conclude that fluctuations in the indicator provide
information on what should be the evolution of the quarterly

series to be estimated.



In some cases, no available indicator will exist.
Thus, the problem will be reduced to generating, under some
valid criterion, four quarterly data from the corresponding

annual data.

Based on what has been said up to this point, one
might suggest classifying the aifferent methods proposed in
literature(*), according to whether or not they use an
indicator. Nevertheless, although this outline will be
followed in part in this paper, we will later see that it 1is
possible to establish a relatively nested sequence, in the
sense that some simple methods that operate without
indicators can be treated as a special case of other more
general and complete ones. For this reason, we will spend
virtually no time at all with the first methods, limiting
ourselves only to those that were used as a starting point
in more elaborate alternatives. Methods using indicators
from stage one of their development are examined in greater
detail, and as was stated earlier, we will see that these
same methods are perfectly suitable for constructing

quarterly series should other information be unavailable.

Independently of the degree of information that
each method attemps to incorpofate, some methods tackle the
problem by introducing special conditions or restrictions,
whose degree of reasonableness depends on the criterion of
the authors proposing them; given these conditions proposed
a priori, the solution to the problem will be unique in each
case. There are other methods based on fixing a unique

objective criterion that the quarterly series must respect.

(*) A description of some of these methods can be found in
Chapter 2 of a recent OECD report (1979). Unfortunately,
in the synthesis provided therein the most important
methods have been omitted.



Thus, the solution to the problem posed is reduced to a
simple optimization exercise. The methods gathered in this

paper are representative of these two alternative approaches.

This exposition is based on the problem that gave
rise to this paper, even though what follows can also be
applied to obtain, for example, monthly data from quarterly
data or to any other temporal desaggregation. For the same
reason, the exposition centers on obtaining quarterly data
from an annual flow, that is, the aforementioned
compatibility between the annual and quarterly data 1is
understood in the sense that the sum of the quarterly data
must equal the corresponding annual data, as is required to
determine the quarterly series for the product, spending or
income of the National Accounts. Another alternative
compatibility criterion could be the fitting of the average
of four quarters to annual data, which occurs when
constructing quarterly data from an annual deflator or price
index. The transition from one criterion to another is
trivial. For this reason, without any loss of generality,
henceforth we will always refer to the case of an annual
flow.

In the first section, some methoas that construct
quarterly data without indicators are summarized. For
reasons already expressed, far from trying to carry out an
exhaustive compilation, the contents of this section are
limited to those cases which, in turn, will be the point of
departure for other more elaborate ones. Section 2 will
include a brief summary of these more elaborate methods. In
Section 3, which is the central part of this paper, three
methods are discussed, all of which have been initially

conceived to use indicators,and some important relationships



between them are underlined. In Section 4 the choice of the
method recommended in this paper to obtain quarterly data is
justified. Last of all, in the last section where
conclusions and summaries are drawn up we will take up the
basic criteria to be followed when deriving the quarterly

data of real economic series.

1. Methods of temporal desaggregation without indicators

Two different methods are summarized 1in this
section., The first was developped by Lisman and Sandee
(1964), the second by Boot, Feibes ana Lisman (1967). Both
works are representative of the two alternative approaches
cited in the introduction. We will find these methods again

in more elaborate ones analyzed later in this paper.

1.1. Method of Lisman and Sandee (L-S)

After posing the problem of obtaining quarterly
data from an annual series with an absence of exogenous
information, L-S have proposed a method in which the
resulting quarterly series would conform to some previously
established conditions. The first condition 1s that each
quarterly data in year t is considered a weighted average of

years t-1, t and t+1l.



With Yt(t=l,...,T) representing the series of
known annual data and ytj(t=l,...,T)(j=l,2,3,4) the
quarterly series to be obtained, bearing in mind our

starting assumption, we have:

~ T
Yt1 Ye-1
(1.1) Yt2 =M Y
Vi3 Ye+l
L B
Yta

where M is a 4x3 matrix that distributes the three annual

data among the quarters of the central year.

L-S point out that, from a practical point of view,
it is not worthwhile to increase the number of annual values

on which ytj is made to cepend.

To estimate the elements of the M weights matrix,
L-S have introduced four additional conditions that ensure

that the solution to the problem is unique:

1. The first 1is a symmetry restriction: if the
annual totals for years t-1, t ana t+l are X, Y, Z, the
quarterly data for vyear t will be the same, although the
order will be reversed for data obtained if the total years
are 72, Y, X, respectively. This means that the M matrix
would only contain six different elements, taking the

following form:
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2, The sum of the quarters of each year must be

equal to the corresponding annual data:

3. If Yt increases or wuecreases by a constant
amount, k (that 1s, Yt+1_Yt= Yt“Yt—l= k), the
quarterly data ytj must increase or decrease by a constant

amount equal to 1/4 k.

4. If Yt is a series that alternates between
constant increases and decreases (that is, Yt+l—Yt:
—(Yt—Yt_l)), the ytj quarterly seriles will be

sinusoidal.

Under these four conditions, the following weights
are obtained: a=0.073, b=-0.010, =-0.042, d=-0.021,
e=0.198, £f=0.302.

Given the form of (1.1), it 1is obvious that
quarterly data cannot be obtained for the first and last
years of the sample. Although the conditions imposed to
estimate the weights matrix are more or less reasonable,
they are, in any event, arbitrary, as would be any other

criteria chosen.



1.2. Method of Boot, Feibes anad Lisman (B-F-L)

Instead of starting with a set of restrictions a
priori, B-F-L have proposed an alternative based on the
minimization of some criterion and fixed an objective the
series to be estimated must meet. The mathematical
formulation of the criterion makes it possible to find 1its

solution by means of a simple optimization exercise.

The first possibility consists in minimizing the
sum of the quadratic differences between each pair of
successive quarters, under the constraint that the sum of
the four quarters of each year be equal to the corresponding

known annual total.

Using the same notation as before, it 1involves

minimizing

2

(1.2) )

I3
s

Ye37¥¢ (5-1)

t=1 j=1

under the constraints:

Yt:

o
w
ot
i}
24

In matrix notation, the above problem would be

formulated as

(1.2b) min. vy'Ay
b.c. B'y=Y
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where y, Y are 4Tx1l and Txl vectors, respectively, A 1is a

4Tx4T symmetric matrix such that A=D'D, where D 1is a

(4T7-1)x4T matrix, defined as

-1 1 0 .... O

0 -1 1 0 .. O
(1.3) D=

0 ieeieeeee -1 1

*

and, lastly, B is a 4TxT matrix such that( ):

1 1 1 1 0 0 0 0 ...

0 0 0 0 1 1 1 1 ....
(1.4) Bi= |.

The solution to the problem could

solving the Lagrangean

(1.5) L(y,A) = y'Ay- X (Y-B'y)

where A is a vector of T multipliers

minimization leads to the 5T equations system:

(1.6) =

where the matrix 0 is TxT.

(*) To obtain quarterly adata for a deflator
flow, B need simply be replaced by B*, with

be obtained

whose

tl

instead of a
B*=1/4E.
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The solution of (1.5) requires the inversion of a
5Tx5T matrix, although B-F-L have reformulated the problem
so that it can be solved by inverting a matrix of order
(T+1)x(T+1). In any event, annual totals more than three
years removed exercise practically no influence on the
quarters of a given year. This means that by applying a
seven year matrix to the central year, we can obtain the
same results given by working with the complete system.
Consequently, from a practical point of view, an 8x8 matrix
need only be inverted. Moreover, since the matrix to be
inverted does not depend on data Y -see (1.6)-, the elements
of the inverted matrix may be considered as given for

generating quarterly data from any series.

Another alternative minimization criterion, also
proposed by B-F-L, consists in minimizing the sum of the

squares of the second differences of the series, 1i.e.,

2

z
t
[where A is the operator of the first differences such that
AY{=Y{=Yi_qv i=l,...,4T(*)} , subject to the same sum
restriction of the previous criterion. In terms of matrixes,
the problem is presented in the same terms as in (1.2b), by
redefining the D matrix in order to incorporate the second
differences(**). For this reason, the analytical form of

the solution continues to be (1.6).

(*) Strictly speaking, in this case the operator does not
act only on j or t (consider the jump from one year to
another) .

(**) In the discussion of Denton's method in Section 3, we
will return to the problem of appropriate definitions
for the D matrixes associated with each criterion.
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B-F-L compare the results obtained with the
Lisman-Sandee method with their own method ana use first or
second differences -which we will call FD and SD,
respectively-, applying them to two short series, with T=3.
In the first, the annual data grow by a constant amount
(Yt=l60, 200, 240), while in the second, the daata approach
a cyclical change, with increases that are equal in absolute
value, though of the opposite sign (Yt=l60, 200, 160). 1In
both exercises, the results obtained with FD are inferior to
those derived from SD, in the sense that the quarterly
series with FD produce figures that are less consistent with
the evolution of the annual data than those with SD. The
comparison with the L-S method does not make much sense
since, with T=3 and the loss of the two end years implied in
the method, it is reduced to the four central quarters. L-S
and SD give the same results for these quarters in the case
of the annual series with constant growth, and somewhat

different ones for the cyclical series.

The choice between setting an objective in terms of
first or second differences in methods based on quadratic
minimization is important. Some aspects of the problem are

discussed in detail later in section 3.

2. Towards the incorporation of indicators

This section summarizes two methods firmly based on
those described in the previous section, although they take

into account the information of an indicator.
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2.1. Method of Vangrevelinghe

The first method, proposed by Vangrevelinghe
(1966), was used in France by the INSEE to obtain the
quarterly data of private consumption from the annual
aggregate of the National Accounts. This method operates in
two steps: in the first one, Vangrevelinghe obtains what he
calls the quarterly trend of the annual series; 1in the
second, this trend is modified, by working with the
discrepancies that are observed between the quarterly series

of the indicator and its own trend. More specifically, if

xtj represents the series indicator and, similarly to the
4
notation already introduced, Xt = I Xyar the method may be
j=1 )
summarized as follows:
1lst) Interpolate the annual series Yt’ Xt to
obtain the "quarterly trends” §tj' Qtj' This

interpolation is carried out by following the L-S method.
2nd) Fit an annual regression:

Y, = a+bXt+u

t t

N
to calculate the estimator b.

3rd) Obtain the final quarterly series, Ytj’ by

modifying §tj in the following way:
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This method has various weaknesses, such as the
initial derivation of quarterly figures based on the
criteria of L-S and, in particular, the regression of the
second step. Vangrevelinghe states that this regression
enables him to verify if "a good correlation" exists between
the annual series and the indicator, and to eventually
ensure the scale change between the units of measurement of
the two series. As far as the first objective is concerned,
it would be preferable to present other contrasts; for
example, without leaving the same simple regression analysis
proposed, the relationship could be estimated by using the
interannual rates of change of each variable, in this way
avoiding the danger of measuring correlations dominated by
the strong trend usually contained 1in .economic temporal
series. Turning to the estimation of parameter b, which will
play an important role in the third step, some assumptions

on the distribution of u, would have to be offered, and a

t
suggestion would have to be ventured on what should be done,
for example, when the residual estimated for a particular

yvear is guite high.

2.2. Method of Ginsburg

The overall approach of the previous method was
used by V. A. Ginsburg (1973) to propose a more interesting
variant. Subject to the same limitations already mentioned
in the second step, his procedure can be expressed in an
alternative way that reveals its meaning. From this point of
view, this method is clearly preferable to the previous one,
granting that this is a special case of more general

alternatives, as we will later see.
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Although Ginsburg proposes following the same steps
used by Vangrevelinghe, he alters the first step, in which
the quarterly trend 1s estimated according to the B-F-L
method instead of to the L-S one. That 1s, the three stages

are:

lst) Obtain the quarterly trend series, §, Q, from
(see (1.6)):
N 7 r' -1 1 '1 - r “i-1 [‘
Vo lA BI 0 | X A B 0
(2.1) ‘z ‘ ! L7 =
| [ iB' 0 Y b B' 0 X
g)xyg ; ')‘“X
L7 I W L
where Xy’ AX are the two vectors (Tx1) of Lagrange

multipliers associated with the respective problems of

conditional minimization.
2nd) Fit the same annual regression

(2.2) Yy, = a+bXt+u

t t

3rd) Calculate the final quarterly series, y, from

the first 4T equations of the system:

—
i

-
Y |

(2.3) | =
|

|

|
i
xyj Ay

U

In the first stage, Ginsburg only considers the
minimization criterion of B-F-L with first differences -see
(1.2)- and not the second ones, that 1is, in (2.1), A=D'D
with D defined in (1.3). The regression fitted in the secona
step suffers from the same problems commented on 1in the
previous method. Nevertheless, with some manipulation, the
final solution (2.3) can be expressed in a daifferent, more

interesting way.
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A B
By premultiplying (2.3) by and using (2.1):
B' O
b= + b -b
B' 0 Lu\ Y B'x X
- . - -
and, given that B'x = X, we finally have:
r 3 -1 ™A T
y A B b Ax !
(2.4) = l
u B' O Y

As we will see later, this expression 1is the

solution to the problem of minimizing:

2

2 > A
(2.5) by Bbxy)

tJ

under the usual sum constraint

=Y

L Yy t

J
. . . A . -
which, 1in the particular case of b = 1, is reduced to the

conditional minimization of:

(2.6) 2

z
t
As a result, the Ginsburg method makes it possible
to obtain a series whose interquarterly increments minimize
the sum of the quadratic aifferences with respect to the

interquarterly increments of the indicator.
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In these terms the interpretation of the method 1is
totally clear. Given that this has been a particular case,
for the timebeing we will not appraise this method, since
its merit will become more evident when we analyze more

general ones.

3. Methods of temporal disaggregation with indicators

This section provides a detailed presentation of
various methods that incorporate the information of one or
more indicators from the initial stages of their
development. The first of these methods is due to V. L.
Bassie. Among those methods based on an a priori set of
conditions imposed on an obtainable result, V. L. Bassie's
method is the most elaborate. The length of its presentation
here is justified by the importance of its use in various
countries -see the OECD report (1979); it was also employed
in an earlier estimation of the Spanish quarterly national
accounts published by the Bank of Spain (1975). The second
method, that of F. T. Denton, is also the most complete
among those based on a quadratic minimization of an
objective criterion. Last of all, we will summarize the
method of Chow and Lin, whose theoretical properties will be
used to draw attention to the importance of Denton's

approach and to enhance its interpretation.
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3.1. Method of Bassie

In his initial presentation, Bassie (1958) proposed
his method to temporally disaggregate a magnitude by using
the information of an 1indicator. Nevertheless, in the

absence of indicators, his method is perfectly usable.

In general, there will be some aiscrepancy between
the value taken by the inaicator of a given year and the
corresponding annual data, which we will represent by Kt.
For example, the sum of four quarterly flows contained in
the 1indicator 1s 1less than the annual data, since the
indicator represents a partial coverage of the annual
data(*). In the particular case in which this discrepancy
will be nule for every t, the quarterly series to be
obtained will obviously be the 1indicator 1tself. Another
special situation is defined by the total absence of
information; here Kt would <coincide with the annual
magnitude from which qguarterly wata is to be constructea. As
a result, the problem posed by Bassie o0of constructing
quarterly data from an annual series with an indicator can
be expressed as the need to construct quarterly data for the
Kt discrepancy without using an indicator. And, given that
no limitations have been placed on the value of Kt’ the
Bassie method can obviously be used to construct quarterly
data from annual magnitudes, whether or not the information

contained in an indicator is used.

(*) We will later give a more precise definition of K¢,
since such a definition is not necessary at the moment.
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One of the objectives of this method is to ensure
that any new annual data added to a series for which
quarterly data has previously been constructed will have a
minimal effect on the data already obtained. This criterion
presents undeniable practical advantages, but it may be far
from optimum, for there is no reason to systematically
reject that the new annual data contain relevant information
that should be 1incorporated 1in the quarters of several

previous years.

In order to respect this <criterion of minimal
reviews of the past, the method operates by making
successive fittings to two consecutive years. After
completing one of these fittings, or steps, let's say on
years t and t+l1, the process begins again starting at the
beginning of t+1, with a new step fitted to t+l1 and t+2. In
other words, each year is dealt with twice: first of all, as
the second year of a step and later, as the first year ot
the following step. In this way, the final quarterly profile
of each year will exclusively be the result of the net
effect of two steps, and the addition of new annual data to
a series ending in T will not affect the quarters of vyear

T-1 or the previous ones.

In each of these steps applieda to two years, the
fitting is carried out by applying four basic criteria,

which can be summarized as follows:

1. For the first vyear of each fitting, no
modification is made to correct the total annual aiscrepancy
Kt’

2. For the second year, the total discrepancy of

year K is distributed among four quarters.

t+1
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3. To avoid breaks in the steps from one year to
the next, the correction applied at the beginning of the

first year will be nule.

4, Since the information contained in the data of
the following years 1is not incorporated at the end of the
second year, it will not be known how the trend of the
discrepancy will evolve. The method introduces the
assumption that this trend will stop at the end of the
second year. In other words, the curve expressing the
correction will tend to be horizontal at the enda of the

second year.

This fourth condition clearly reflects the price to
be paid in order to maintain the criterion of minimal review
of previous data. If a larger horizon of information were
incorporated, 1in general, it would be possible to better
detect the trend of the discrepancy. The operative system
described, centered exclusively on two years, would be
optimum only in those cases in which using more annual data,
does not incorporate relevant information for an improved

definition of the trend.

The four afore mentioned conditions can be

formalized almost 1identically to the way Bassie himself
(*)

presented them .

(*) The nature of the problem facing Bassie made him define
an integral on a three-year period, thus leading him to
different results than those found here. Otherwise, the
method drawn up here is perfectly in keeping with his
earlier-cited work.
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Let Kj be the factor to be applied to discrepancy
Kt in order to obtain the part of Kt imputable to
quarter j, and let Kj be expressed in function of time:

K. = f(t
j (t)
If the beginning of the first year is situated at

the origin of time and the unit interval covers a year, the

four conditions cited could be represented as:

(3.1) SgE(t) dat = 0
(3.2) fff(t) it = K
(3.3) £(0) = 0

af (2)
(3.4) o =0

The simplest time function enabling the unique

solution of system (3.1) - (3.4) 1is

(3.5) F(t) = a + bt + ct? + dat>

Given this definition of £f(t), the previous system 1is

reduced to:

b C d _
(3.0) a+—= 45 5 =0

3b 7cC 15d
(3.7) a + 5 + 3 + 7 = K
(3.8) a=2~0

(3.9) b + 4c + 12d = 0
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The solution of the four equations system (3.6) -

(3.9) leads to the values of the parameters of (3.5):

2 3

(3.10) Kj = f(t) = (-1.125t+2.15625t“~-0.625t7)K
By dividing the previous expression by Kk, we obtain
the correction of each quarter of the two years included in

the step, which we will represent by fj:
(3.11) fj = Kj/K (3 = 1,...,8)

The numerical value of each fj is obtained by
solving the adefined integrals for each quarter. Given that
the unit interval in (2.1) and (3.2) wag represented by a
vear, the amplitude of each quarter will be 0,25: t e [0,0.2ﬂ
in the first quarter, t e fO,ZS,O.SO]‘in the second, etc. We
can verify that the solution of the eight integrals takes

the values includea in Table 1.

Since the fj weights are expressed in relative
terms, they need only be multiplied by each Kt to obtain
the values of each quarter of years t-1 and t, which will be
obtained when the methods is fitted to each pair of vyears.
The total of these weights is zero in the first year and one
in the seconda, as a result of conaitions (3.1) and (3.2).
Consequently, we can see that if Kt is relatively constant
in time, the resulting net effect of the two steps applied
to each vyear will induce a seasonal behavior in the
quarterly series. We will return to this subject later, at
which time, for illustrative purposes, a comparison will be

drawn between the results of alternative methods.
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TABLE 1

Value of quarterly constants fj

lst year 2nd year

1st quarter... -0.0245362 +0.1434326
2nd quarter... -0.0360107 +0.2257080
3th quarter... -0.0020752 +0.2947998
4th quarter... +0.0626221 +0.3360596
Total..oose 0.0000000 1.0000000

Before 1looking at the operative system of the
Bassie method 1in detail, the K discrepancy must be
accurately defined. To this end, two alternative criteria
can be followed, which we will term, respectively,
"additive" and "multiplicative". In the additive case, Kt
will express the difference existing in year t between the
magnitude for which quarterly data is to be constructed and
the sum(*) of the four quarters of the indicator, which
is, of course, expressed in the same unit of measurement. In
the multiplicative case, the discrepancy is the disparity
existing between the interannual rate of variation of the
annual magnitude and the average rate of 1interannual

* %
variation of the indicator( ).

(*) If the magnitud for which quarterly data 1s derived
were not a flow, but a deflator, the average, not the
sum, would be the gquantity needed to calculate the
difference. This means that in this case the integral
(3.2) must be equal to 4K, thus, the values of the
parameters b, ¢ and d included in (3.10) are multiplied
by 4. Consequently, the values of fj presented 1in
Table 1 would also be multiplied by 4.

(*¥**) With the multiplicative criterion, should quarterly
data be constructed for a flow as well as for a
deflator, the fj weights will be those given in Table

1 multiplied by 4.
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More formally, if Yt is the annual flow to
be dissagregated, xtj(j:l,...,4) the value of  the
indicator of quarter j of the same year t, and Xy the
average of the indicator in vyear t, then the 1initial

(*)

definition of Kt is, in each case, the following:
a) additive fitting:

(3.12) Kp =Y - L X4
J
b) multiplicative fitting:
Y, /Y, _
(3.13) K = ——-tL -
Xe/Xp o
The implications of each criterion will be clearly
shown by examining in detail the operative system of the
method. The exposition will be limitea to one specific case
that 1illustrates, without any loss of generality, the
mechanism of each step. Thus, Tables 2 and 3 will play a
central role, since the text that tollows is fully based on

them.

We will begin with Table 2, which covers the
generation of quarterly data from an annual flow, Yt' The
information <contained 1in series xtj was used and the
multiplicative criterion adopted. Both series, as well as
their interannual rates of variation, appear in columns 1
through 4. The method begins by applying a transformation to
the indicator, such that the sum of the first year coincides
with the corresponding annual data. Treatment of this first

year -and, as we will later see, also treatment of the last

(*) Later we will see that K¢ 1is, in fact, always
calculated on transformations of Xxti.



Table 2
Derivation of quarterly data of annual flow Yt with quarterly indicator {ti‘(t=years; j=quarters) -

Multiplicative Fitting

Inter | Quar- | Annual| Indica-| Annual Annual Annual Quar- || CQuar-
Annual annual | terly |sums and| : tor sums Bassie- sums - Bassie sums Bassie terly terly
Year Data |rate off indi- |rate of|matching precedirg KI CTET 1 |preceding K2 STEP 2 |precedind K3 STFP 3 series| . series
varia- | cator |varia- |annual [column a colunn N column - A with
Yy tdon Xty “tion 1 sups 9Lj Yij yzj Yy adjusted
X
t
1 2 3 4 5 (a? 6 7 8 (b)_ 9 o 11(c) 12 13 14 (c) 15 (e) 16 (f)
1 25,00 21,74 N2 21,99 21,99 22,0
27,50 23,91 a 24,32 24,32 | 24,3
100 - 30,00 5.0 ] 56 09 |100.00 ! 26,11 26,11 26,2
32,50 - 28,26 7 27,42 27,42 | 27,5
I T T T e s H---F---4 e e e il S S
o~ o - .
2 33,75 29,35 3 :: 27,35 S 27,19 27,19 27,3
36,25 31,52 1 1l 28,16 114 65 ! 27,91 27,91 28,0
, 1
115 15,0 37,50 150,0 32,61 130,44 : a 28,06 " 28,04 28,04 28,1
42,50 30,44 36,96 L 31,08 < 31,56 31,56 31,6
- _ _ Jb o= SRR A T | I A R R AR R
r B i - R I ~ ] _
3 42,5 (a) $3l,08 Sl 32,17 3 32,147 | 32,14 32,2
— P <y o o
144 252 45,0 185,0 32,91 135,28 — ﬁ' 34,72 143,70 i 34,68 34,68 34,8
47,5 2333 34,73 IIH 37,24 | 37,24 37,24 37,3
50,0 ! 36,56 N 39,57 2 || 39,66]|| 39,66 i 39,7
T [ N e P ) B - - h IS
4 52,5 (d) 41,55 Q_ <~ 41,76 41,76 41,8
S —
" , 55,04 43,53 | § S || a3.r7| | 43,87 44,0
0 5,0 ,0 ’ >
! 55,0 2162 43,53 2 43,98 43,98 44,1
62,50 ’ 49,46 i ™ || 50,04 50,04 50,1
Mm
* | .
(a) th = (Yt/gxtj) xtj r (3 =1,..., 4; £t =1,..., T).
o\l - *
(b) Yig = (ijl+1)th ' (fj= quarterly constants. See text).
N ~i-1 .
(€) vy = (5K +1)yig ;o (d=2,3,...,7-1)
o1 o _
(a) (yt,d/xt,4) x(t+1)j ’ (i =1,2,...,T-1)

(e) Vi =15t year of yéj for t=1,...,7-1 (i = 1,2,...7-1)

J
=ha year of yzglfor t=T

(£) (Yt/gytj) Yy
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year- differs from the rest of the series, since only one
Bassie step, and not two, 1is applied. To achieve this
equality of sSums, the difference between them is
proportionally distributed between th’ as 1s 1indicated 1in
note a. The calculation of first discrepancy Kl is shown
in col. 7, in which expression (3.13) is simply applied to
these data. The first Bassie step, c¢ol. 8, distributes

discrepancy K by quarters, using the fj weights. This

quarterly distiibution of the discrepancy 1is affected by the
level of the indicator which multiplicatively weighs it in
accordance with its importance at each moment. This weighed
distribution of the gquarterly discrepancy 1is added to the
indgicator, thus giving us ‘'"step 1" in col. 8, as 1is

indicated in note b. p

Before beginning with step 2, applied to years 2
and 3, the scale of the indicator 1is transformed with the
criterion set forth in note a: the difference observed in
the last quarter fitted -the 4th quarter of year 2- between
the original indicator and the value obtained by the Bassie
method is distributed in proportion to the values of the 3rd
year indicator. In this way, a break is avoided between the
provisional results of step 1 and the initial values of the
indicator. K2 is calculated as was Kl, and step 2 1is
executed with the same criterion commented on in step 1 and

expressed in note c.

Here we see that the first half of the results
obtained in step 2 modify the provisional estimation
available for the same year and obtained from the second
half of step 1.

From this point on, the process followed in each

step is the same. Logically, only one step is involved 1in



—27 —

the last year, and the results obtained cannot be considerea
final. We <chould also observe that the rectification the
quarterly data of year T will be subject to is a function of
the discrepancy found between the annual data and the

indicator in T+1.

With the exception of the last year, as is
indicated in note e, the resulting quarterly series for the
entire sample used, col. 15, is simply the first half of
each step. The final results are those of column 16, in
which the results of the preceding column have been slightly
adjusted so that the sum of the quarters of each year woulad
match the corresponding annual data, since the
multiplicative criterion followed to define K

t
discrepancies cannot fully respect this condition.

Table 3 presents the same numeric example and
details seen 1in the preceding table, but here an additive

fitting criterion has been aaopted.

Apart from the Kt calculation, obviously, the

operative differences between this case anda the last one are:

a) The first fitting of the indicator designed to
respect the annual sum, col. 5, is carried out linearly and
not proportionally to the value of x See note a of both

tables.

tj”

D) The distribution of Ky discrepancies only
depends on the fj constants, and 1s unaffected by

indicator levels. See notes b and ¢ of both tables.

c) The change in the indicator scale implemented to
avoid a break with preceding steps (note d) 1s linear and

not proportional to th'



Table 3

Derivation of quarterly data of annual flow Yt with quarterly indicator xti(t=years; j=quarters)

Additive fitting

Inter-|Quar- | Annual | Indica-| Annual . | Annual Annual X Nuar- Quar-
Annual|annual| terly | sums - tor | suws Bassie| gyms Bassie | gums Bassie | ter1y terly
Year| Data |rate ofl indica| and rate|matching |precedirg K, STEP 1| preceding K, ETEF 2 |precedina K, STEP 3 | series | series
varia-| tor varia- | annual column ~ column ~y column ~a A with
Yt tion xtj tion s;?s Y%j ytj ytj ytj adzf:nd
tj .
1 2 3 4 5 (a? 6 U 8 (b) 9 o 11(c) 12 13 14 (c) 15 _(e) 116 (f)
1 25,00 21,25 Y| 21,74 21,74
27,50 23,75 24,47 24,47
100 - 30,00 | 115,0 | 26,25 9 26,29 26,29
32,50 - 28,75 :; 27,50 27,50
- - - - - - - - - -~ — — - - - -— —-— ol e - - o - -— - ‘ mn @ Lad - bd | i - - -+ - - - - = - - — - -— — - - - - - bee — — - - -— - -— -
a . 3
2 33,75 30,00 N 27,13 o 27,11 27,11
wn (o] .
36,25 32,50 : 27,99 . 27,01 27,01
115 15.0 37,50 10,0 33,75 | 135/0 0 27,85 ! 27,85 27,85
o
42,50 30441 34,75 o 32,03 q 32,09 32,09
I I . ----)-——----—-—»-——- 2 H - = =]+ = = = b - = o b = o = b = o 2 b = o - =
—
3 42,50 (@) _S 32,03 ) 32,16 o] 32,27 32,27
45,00 T 1) 34,53 5 34,73 < 34,89 34,89
141 252 049,50 || 18500 37,03 | 3120w 137,29 ' 37,30(| 37,30
50,00 23,33 39,53 o 39,83 - 39,56 39,56
T e A R/ R S TR I S IS | s
. ) ¥
4 52,50 (d) f 42,33 o 41,71 41,71
55,00 o 44,83 2 43,86 43,86
180 25,0 |55 00 || 225:0 14,83 | 184,31 a 43,56 43,56
1
62,50 21,62 52,33 . 50,88|| 50,88
X
* = o (v, -ix, ) (3 =1,...,4; t =1,...,T).
(@) xpg = %¢q + 7 (g PSS '
~1 * =
(b) ytj = ijl + th , (fj— quarterly constants. See text).
i S gi-1 i = 2,3,...,T-1)
(c) Yej = iji + Yij (1 '3y
i , , (i=1,2,...,7-1)
(@) Yi,q 7 %4 X(ern) @=1.2

A ~i - -
(e) ytj = 15t year of yt] for t=1,...,T-1 (1 =1,2,...7-1)

T-1

2nd year of ytj for t =T

1l

(£f) Unnecessary. Column 15 respects the annual sums.
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Here the fitting of col. 16 is unnecessary whenever
the quarterly data of col. 15 already respect the

corresponding annual totals.

In short, with the multiplicative fitting the
indicator is always involved in the quarterly distribution
of K discrepancies, whereas with the additive fitting,

t
the indicator plays no role at all.

The implication of this difference is important and
can be exemplified by constructing quarterly data from an
annual flow using a quarterly series as an indicator. Such a
series contains a part of the aggregate included in the
annual series, that is, it represents the same phenomenon,
but with partial coverage. Two quarterly series are obtained
from the same data: in the first, an additive criterion is

followed, in the second, a multiplicative criterion.

The results obtained in each case are represented
in figures 1 and 2, respectively. These figures also include
the common indicator of both fittings, as well as the
difference -denoted as the "remainder" in the figures-

between each quarterly series and the common indicator.

We can see how the remainder of the additive
fitting -figure 1- presents a profile that is adapted to the
trend of the annual data -which is also quite similar to
that of the indicator represented in the graph- but that is
not fitted to the quarterly variation of the indicator. On
the other hand, the remainder of the multiplicative fitting
-figure 2- 1is indeed adapted to the quarterly fluctuations
of the indicator. The result is that the series subject to

an additive criterion shows a profile resembling that of the
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indicator, while with the multiplicative <criterion, the
quarterly variations of the indicator are accentuated 1in
order to better respect the rates of variation, smoothed 1in

the previous case.

The choice between the two alternative «criteria
must be based on a previous decision as to whether the part
of the annual data not covered by the indicator shoula be
distributed throughout the year with the same profile as the
indicator or independently of the same. Obviously, the first
case will require the multiplicative criterion, the second,

the additive criterion.

In support of this last statement, it is
interesting to note that the results of this additive
fitting are the same as those obtained when the problem 1is
tackled by imposing a_priori the 1independence of the
remainders with respect to the indicator. That 1is, by
deriving quartirly data without an indicator for a new

annual series Yt’ constructed as

t t

Y =Y -7 x,.
j

and by adding the series x to the result, we obtain with

precision the resulting qsgrterly series of the additive
option of the method with the Yt and xtj series.

Lastly, we can suggest a proper way of handling the
last year of the series to which, as we stated earlier, and
as is the case of the first year, only one step of the two
that determine the quarterly profile of any intermediate
year 1is applied. This means that the four last quarters of a

series may be modified considerably when a new annual data
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is added. The importance of this modification will depend on
the magnitude of the discrepancy presented by the data of
T+1.

So as to reduce the scope of the revisions of the
last year, we can add a prediction of an annual data and of
four quarterly data of the indicator to the end of the
series, allow the program to operate on T+1 years, and
eliminate the T+l of the resulting quarterly series. If the
prediction of the values of T+1 is "reasonable", the
quarters of T will only be marginally modified when the true

data of year T+1 will be included.

The prediction problem posed is *relatively simple,
since the interannual profile of the indicator in T+1 does
not exercise any influence on the derivation of the
quarterly data of T. It 1is only the average rate of the
interannual variation of the indicator -or, simply, 1its
absolute increment in the case of an additive fitting- that
is involved in calculating the K discrepancy. As a result,
the only necessary prediction, as far as the quarterly data
of year T is concerned, is limited to obtaining annual data
from which quarterly data is derived and the value, also
annual, of the indicator, all of which is tantamount to

simply predicting the K discrepancy.

In general, although the Bassie method presents
some difficulties, later to be illustrated, it does lead to

quarterly series that closely reflect the indicator used.
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3.2. Method of Denton

The method proposea by F. T. Denton (1971) 1is the
most general among those based on a quadratic minimization
criterion, since both those of B-F~-L and Ginburg, as we will
see, are special cases of the former. Moreover, 1in some
cases, Denton's results are preferable to those derived from
the previous Bassie method. We will see in the following
section that although the point of departure of this method
is a purely mathematic criterion, it can be reinterpreted to
emphasize the statistical significance of the solution,
which shows quite desirable properties that cannot be
established for previous methods. Thus, this method can be
considerea the most appropriate one for tacking the problem

of generating quarterly data.

As 1n the Bassie <case, this method takes into
account the existence of an indicator, even though it must
also be suitable for aeriving the quarterly data from an

annual series without an indicator.

The estimation of the quarterly series 1is based on
the quadratic minimization of an objective. By using the
same previous notation, the problem formally consists 1in
minimizing.

(3.14) (y-x) 'A(y-x)

under the T constraints

(3.15) B'y = ¥
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where B is the matrix defined in (l1.4) and A is a 4T x 4T
symmetric matrix that varies with the objective function.
For example, if we wish to minimize the quadratic
differences between the series to be estimatea and the

indicator, that is,

(V. .-x,.)°
Ye37 %5

N 3
N~

t=1 j=1
A will be the wunit matrix. In order to minimize the
quadratic differences of the interquarterly increments of

both series, i.e.,

2
T L (by,..-Dx, )
¢ 5 £97P% ¢S

A = D'D, and Denton defines D as a 4T x 4T matrix:

1 0 0 wuu. 0 0

-1 1 0 wuuu 0 0

0 -1 1 ... 0 0

(3.16) D= | . ] i )
0 e -1 1

which we will return to. later. We will see other interesting

objective criteria.

The solution of the (3.14) - (3.15) system 1is

obtained from the Lagrangean:
* *
(3.17) Ly, A ) = (y-x) 'A(y-x) - A "(Y-B'y)

*
where A is the wvector of the Lagrangean multipliers

associated with the T restrictions.
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The first-order conditions are:

oL .

= - + BA =
3y 2A(y-X) 0
oL
—= = Y-BR' = 0
8)\* y

By representing the vector of annual discrepancies

between the two series by r, with r = Y-B'x, and making
A = A*/2, the previous system can be written as:
- _
{y A A x
(3.18) | =
A B'

where 0, 1 are TxT, and 0 is 4TxT.

Given that

(3.18) reduces to (2.4) when A = D'D, thus confirming that

N
the Ginsburg method with b = 1 is a special case of Denton.

On the other hand, in the absence of the indicator,
x = 0 and (3.18) reduces to (l.6). Consequently, B-F-L 1is

*
also a special case of Denton( ), which becomes obvious

(*) Actually, in order to go from (3.18) to (1l.6) we need
only make x=k, where k 1is any constant: if the matrix
elements of the partitioned inverse containing both
expressions are represented by All (ij=1,2), we can
see that the quarterly series derived from (1.6) and
(3.18) -say, yj_and yy- are, respectively, yj =
Al2y and y, = A1l Ax+Al2y. so that y; = yo,
regardless of what Y may be, all ax = 0 is a necessary
condition. One sufficient condition for this 1last
equality, if x 1is a constant different from =zero, 1is
that the sum of the elements in the rows of aAlla be
zero. Although its analytical demonstration is complex,

the 2tlA matrix satisfies this condaition.
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when comparing the respective objective functions (1.2b) and

(3.14) and defining D similarly in both cases, since A = D'D.

The (3.18) system 1is the general form that adopts
the solution to the problem posed, provided that the
objective function is expressed in terms of (quadratic
differences between any daegrees of differentiation of the
series vy, x, 1in other words, when we are conditionally
minimizing

2

-

e5)] (h = 0,1,2,...)

(3.19) © % [Ah<yt.—x
t 3 J

where Ah is the operator of differences of h order, such
h h h

that A" = (1-L)7, with L X = Xy

The differences of the h order can be obtained with
successive h applications of matrix D as defined in (3.16).
For example, for h = 2, DD(y-x), such that A = D'D'DD. This
is possible because D, according to (3.16) 1is a square
matrix. This fact allowed Denton to suggest a computational
system for (3.18) that considerably reduces computer time,
since it only requires the inversion of a TxT, and not a
4Tx4T, matrix. The cost of this simplification is, however,
quite high: by defining D as the (3.16) square matrix, the
initial condition Y =X, 1s established for t=1, i.e.,
the minimization criterion imposed on the initial guarter 1is
substantially different from the rest of the series. It 1is
therefore preferable to adopt the definition of D given 1in
(1.3) as B-F-L and, later, P.A. Cholette (1979) have done.
Although the latter only consiaers: the aifferences of the
first order, while second differences are taken up in this
paper, a similar criterion will be followed without placing
any initial conditions. With this, for h = 2, A = D2'D2,
where D2 is the (4T-2)x4T matrix, aefinea by:
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1 -2 1 0 .... O 0 0
0 1 -2 1 ee. 0 0 0
(3.20) D2 =| . . . . . . .

0 0 0 0O ... 1 =2

h
and, the matrix associated with A for h > 3, would have to
be defined similarly. In this paper, however, we will not

consider order differentiations greater than two.

The substitution of Denton's D ana DD matrixes by
those definea 1in (1.3) and (3.20), respectively, bear
considerable practical importance, as will pbe seen later 1in

a simple example.

Another possible tamily of objective criteria must
be introduced, centered on relative, and not absolute,
differences. Its most general formulation, carried out in a

manner similar to that of (3.19), is

B 2

which, in matrix notation, translates into the Langrangean

(3.22) L(y,k*) = (y-x)' X—l AX_l(y—X)

where X is a diagonal matrix formed by the elements of the x
indicator, and for h = 0,1,2, respectively, A = I, A = D'D
with D as defined in (1.3) and A = D2'D2.
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The solution of (3.22) leads to

r - r 17
é [ -1 -1 -1 | -1 -1 i ]
Ly X AX B X AX 0 ix|
(3.23) | |= | I
A B' ¢ . B! Ijir
L L iR

whose parallelism with (3.18) is evident.

To underline the basic difference between
minimizing absolute or relative differences -whatever the
order of differentiation, h, may be-, systems (3.18) and

(3.23) can be solved for y by inverting by blocks the first

*
partitioned matrix of both solutions( ).

By representing the elements of the inverse of the

\
**,.

complete matrix (3.18) by a3 (i,j = 1,2), we have'

11 -1 1,,-1 -1

A A “(I-B(B'A "B) "B'A ) , and

n

12 1

A ATiB(B'aTiE) "

thus, 1in the case of minimizing absolute aifferences, the

estimated quarterly series takes the form:

(3.24) vy =x + A ‘B(B'a"1B) "Ir

(*) This exercise makes 1t necessary to consider that D 1is
defined as in (3.16), since, under (1.3), A = D'D has
rank 4T-1 and A~l does not exist. As far as the
solution to (3.18) or (3.23) are concerned, no problems
arise, regardless of the daefinition of D, since the
complete matrix of which A forms part can 1indeed be
inverteda. Consequently, the implicit adoption of (3.16)
is only necessary to the illustration pursued at this
point.

(**) See, for example, Goldberger, Econometric Theory, page
27.
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and, operating in a similar fashion on (3.23), we can see

that in the case of relative differences the solution is:

1 1 -1

(3.25) Yy = x + XA  "XB(B'XA “XB) "r.

The interpretation of both expressions is
immediate: the quarterly series 1is equal to the inaicator
plus a part of the discrepancies, r, existing each year
between the annual series and the indicator. The
distribution of the Tx1 wvector, r, between the 47T guarters
is carried out according to the weights assigned by the
matrix expression that multiplies r. In the case of (3.24),
these weights are independent of the indicator, since they
only depend on B and on the degree of aifferentiation
includea in the objective tunction, that is, on A. On the
contrary, in (3.25), the distribution of daiscrepancies 1is

also aone according to indicator X.

In this way, we can see that 1in order to relate
this method with that of Bassie's, "absolute differences" in
the objective function can be associated with the "additive
criterion” in Bassie's Method, and "relative differences"

with the "multiplicative criterion".

Thus, henceforth we will qualify solution (3.24) as
the Denton additive and (3.25) as the Denton multiplicative.
The reasons for opting between one or another alternative

will be the same as those pointed out in the Bassie method.

Of course as also occurred in the Bassie additive,
(3.24) guaranties that the series for which aata are derived

is simply the indicator plus the quarterly data
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obtained without an indicator from Y - Z X In the case

J
of wvery 1little real interest, for example, in which the

£g°

absolute quadratic differences are minimized, we can easily

see that (3.24) reduces to

(3.26) ytj = th =, .

In the following section, with the presentation of
a new method, we will return to other aspects that better
clarify the properties of the Denton method. Before this,
however, we shoula show some results that Jjusfifty some

previous statements.

We have emphasized the importance of substituting
the matrixes of differentiation used by Denton based on
(3.16) by those defined in (l.3) ana (3.20), due to the
ditferent treatment given to the initial observations of the
quarterly series. In order to 1llustrate this point, data
was derived from the same annual series used by Denton 1in
his work. For our purposes here, it 1s preferable not to use

any indicator.

The annual series, with five observations, evolves
smoothly, taking the values of 500, 400, 300, 400, 500. The
quarterly data have been derived by minimizing the first ana
second differences. In each case, the Denton matrixes and
those proposed here are used. The results are presented in
Figures 3 ana 4, which cover, respectively, the two series
obtained under the first and second differences. In both
cases, the series derived from the Denton matrixes
-represented with a thick line- introduce a strong
distortion at the beginning of the series, while the

alternative series -represented with thin lines- shows a
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smooth evolution, <closely reflecting that of the annual
data. The discrepancies between both 1logically tend to
reduce with time, although this occurs much more rapidly in

the case of the first differences.

An important point posed by this method 1is the
choice of the degree of differentiation of the objective
function. The simple case of not taking any differences is
clearly of 1less interest, since, when the annual series
shows discontinuity in 1its evolution, more sudden jumps
occur in the steps from one year to the next. As a result,
the choice is ©presented between the first and second

differences.

In the non-indicator <case, we can explore the
results obtained with and 2 for some series that
reflect the different patterns of evolution that frequently
appear in economic series. As was stated in Section 1.2,
B-F-L do this by starting with two simple examples using
only three annual data: in the first, they take an annual
series with constant increments but of the opposite sign; in
the second, they take a series that continually grows in a
constant amount. To these two cases we will add a third
example, with a series that grows at a constant rate.

Specifically, the three series to be disaggregated

are Yi = 400, 300, 400; Yi = 300, 400, 500; and
Yi = 300, 360, 432.

The quarterly series obtained are presented in
Figures 5, 6 and 7, respectively, and require virtually no
comment. In all cases the second differences lead to
quarterly series with an evolution that is more <consistent

with the starting annual series. Given 1its importance,
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FIGURE 5.

DERIVATION OF QUARTERLY SERIES FROM ANNUAL SERIES
(Y, = 400, 300, 400) WITH FIRST (FD) AND SECOND (SD) DIFFERENCES
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FIGURE 6.

DERIVATION OF QUARTERLY SERIES FROM ANNUAL SERIES
(Y, = 300, 400, 500) WITH FIRST (FD) AND SECOND (SD) DIFFERENCES
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FIGURE 7.

DERIVATION OF QUARTERLY SERIES FROM ANNUAL SERIES WITH

A CONSTANT RATE OF VARIATION (Y, = 300, 360, 432),
USING FIRST (FD) AND SECOND (SD) DIFFERENCES
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perhaps we should mention the strong daistortion introduced
by the first differences in the derivation of quarterly data
of a series that grows at a constant rate (Figure 7). Far
from coming close to the regularity of the interannual rates
of the original series, the interquarterly rates of
variation show the profile represented in the lower part of
the graph, sharply contrasting with the rates derived from

applying second differences.

The three aforementioned figures 1in some way
suggest an exaggerated picture of the differences existing
between A and A2. This occurs because they contain only
three years, and the discrepancies arise primarily in the
end vyears of the series. In longer series, the similarity
shown by the two sets of data in the intermediate vyears
would be more evident than it appears here. All told, the
three cases under study point towards the same conclusion,
which could have a general nature: 1if an indicator 1is not
available, when quarterly data 1is aerived with the Denton
method it is advisable to take second differences in the

objective function.

When an indicator exists, this option is not clear.
The wide variety of real situations found in applied work
make it very difficult to adopt a merely 1illustrative
approach, such as the one followed 1in the non-indicator
case. We will let this issue hang for the moment, and return

to it after analyzing the method proposed by Chow and Lin.
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3.3 Método de Chow-Lin

The last method to be discussed in detail is that
proposed by G. C. Chow and A. Lin (1971). In some ways, this
method is the most general of those analyzed up to now,

although serious estimation difficulties do arise.

The approach of this method enables the unified
treatment of three different problems that M. Friedman
(1962) had been interested in, namely those of
interpolation, distribution and extrapolation. Chow-Lin
summed them up as follows: given the values that a series
takes at the beginning of each vyear during T years, and
given the values of an indicator at the beginning of each
quarter, the problem of interpolation consists in estimating
the observations of the remaining 3T gquarters. The problem
of distribution is seen 1in the case of the quarterly data
derivations that we are concerned with. And, 1lastly, the
problem of extrapolation, associated with the two previous
problems, is that of estimating quarterly data outside of
the sample of T annual data by making use of indicators for
part of year T+1l. All three problems can be treated jointly

in the context of a linear regression model.

The presentation of the method 1is adapted to the
general case of quarterly data. Chow and Lin describe it for
the three problems simultaneously in order to obtain monthly
data from quarterly ones. Here we will 1limit ourselves to
indicating at certain points how to move from one problem to
another. This will enable the notation of the original
article to be simplified considerably and to be fitted, with

some slight variations, to that used in previous sections.
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They assume that the unknown quarterly
observations, vy, consistent with a known annual series, Y,

are related to quarterly indicators, p, in the following

linear manner:
(3.27) y = XB+ u

where y 1is 4Txl, X 1is a 4Txp matrix formed by the
observations of the p indicators Xi(i = 1l,...p), B 1is a
pxl coefficients vector, and u 1is a random term of error
with a mean of =zero and covariance matrix V. 1In this
regression model, X may include current or lagged variables,
and the variables may be subject to any previous

transformation, such as a logarithmic one, for example.

Using the already known B matrix -see (1.4)-, the

quarterly model (3.27) could be expressed in annual terms

as(*) H

(3.28) Y = B'y = B'XB+ B'u

where, obviously, E(B'u) = 0, yv E BB'U)(B'uﬁ = B'VB.

(*) Everything that follows is applicable to the problem of
interpolation by substituting B for By, with

b 0 .. .. 0

b . . . < 0

[=Nen

B = |. . | where b = [1 0 0 0]

(es]
.
°
B
L
o
°
0
°
e
.
o
o
o
°
o e
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The proklem consists in estimating the vector y of
47 quarterly observations. A linear, unbiased estimator of
v, let us say ?, will satisfy some matrix P of order

*
4TXT( ):

(3.29) ¥ = PY = P(B'XB + B'u).

. A . .
Since y is unbiasea:

i
O

(3.30) E(¥-y) = E[P(B'XR + B'u) - (XB + u)] = (PB'X-X)p
which implies, for B % 0, that:
(3.31)  PB'X = X.
Moreover, using (3.31):
(3.32) 9§ -y = (PB'XB + PB'u) - (XB + u) = PR'u - u

. . . . A
from which we can determine that the covariance matrix of y

isze

(3.33) E(}l}—y)2 = E[(PB'u - u) (PB'u - u)']
= E (PR'uu'BP' - uu'BP' - PB'uu' + uu')
= PB'VBP' -~ VBP' - PB'V + V

Lastly, the best 1linear unbiased estimator § will
be that which minimizes the trace of (3.33) with respect to

P, subject to the 4Txp matrix (3.31).

(*) In order to incorporate the extrapolation case, the
problem is presented in terms of estimating a vector =z
of m observations of the dependent variable, with
4T<m<4T+4, whose first 47 components are the vector vy,
while the 4T+1 to m are the extrapolations.
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The previous problem can be solved by forming the
Lagrangean:

(3.34) L(P,A) = 1/2 tr[PB'VBP' - VBP' - PB'V + V] -
- tr [A*' (PB'X-X)]

where A* is a 4Txp matrix of Lagrange multipliers. The first
-order conditions are:

(3.35) ~%%— = PB'VB - VB - X'B = 0
(3.36) Lo = PB'X - X = 0
A
where A = 1/2 AM. From (3.35) we can determine a first

definition of P:

P = (AX'B + VB)(B'VB)“l

by substituting this expression in (3.36), we obtain the

value of A which, through its introduction into the previous
first definition, leads to P matrix:

-1 1 -1

P = X(X'B(B'VB) "B'X) "X'B(B'VB) +
+ VB(B'VB)’l[I—B'X(x'B(B'VB)'lB'X)'lX'B(B'VB)'l].

As a result, the optimum (3.29) estimator is:

-1 -\
(3.37) & = xB+ vB(B'VB) 1By
where:
(3.38) B= (X'B(B'VB) *B'x) x'B(B'vB) ly
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is the GLS estimator of the model with annual data (3.28),
RS A .
and where B'u = Y-B'XBR are the T residuals estimated tor

this model.

The (3.37) estimator automatically satisfies the
condition that the sums of the quarters equal the annual
totals:

~7 -\
lB'u =Y

B'Y = B'XB+B'VB (B'VB)

As we can see, the (3.37) quarterly series
estimated breaks down into two parts: the first, Xg, applies
the regression coefficients obtained by generalized least
squares from annual data to the matrix of 4T observations on
the p indicators. In the second, the t residuals of the
annual regression are distributed among the quarterly data,
according to the weights given by the 4TxT matrix

VB(B'VB)'l.

At this point, we should open a parenthesis to
mention that Ph. Nasse (1973) proposed a method based on two
steps =-used in France to obtain quarterly National Accounts-
that closely reflect the method we are now discussing, even
though it suffers from a lack of consistency and was
criticized by J. Bourney and G. Laroque (1979) . In
synthesis, in the first part of the method, Nasse obtains
the estimator % of the regression with annual data by using
ordinary least squares, i.e., by assuming that the
covariance matrix of the annual residuals 1is 021. In the
second stage, however the annual residuals are distributed
among the quarters according to a procedure equivalent to
assume that they follow a first or second order
autoregressive distribution. Bournay and Laroque recommended
that the method used in France be modified. Their proposal

is based primarily on the contribution of Chow and Lin.
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Returning to the method of Chow and Lin, it 1is
evident that the difficulty of its application lies 1in the
fact that the weights matrix depend on the covariance
matrix of the residuals of the theoreticals model (3.27), V,
which 1is wunknown. 1Its estimation must be based on some
assumptions on the distribution of the Uy term of error.

The simplest case consists 1in assuming that Uy
has the <c¢lassical ©properties of constant variance and
independence, with V = I. In this case, the quarterly series

(3.37) reduces to

L
4

A

(3.39) ¥ = XxB+ By

that 1is, to distribute each annual residual in four equal
parts. Moving on to other nore  realistic  and interesting
specifications of V, Chow and Lin propose a method to obtain
consistent estimators for generating monthly data from
guarterly data when the residuals of the monthly model
follow a first-order autoregressive process. Extending this
method to the quarterly cata case is not obvious, and there
exists the basic difficulty of knowing the distribution of

the residuals of the theoretical quarterly model.

In spite of the estimation difticulties, the method
proposecd by Chow ana Lin has the great theoretical advantage
of 1leading to an estimator of the quarterly series with
extremely desirable properties, such as that of being the
best linear unbiased estimator one can find. Conseguently,
this method can be taken as a point of reference on which to
judge the relative merit of alternative methods. From this
point of view, it 1s interesting to return to Denton's
method in order to give it a broader statistical

interpretation.
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By comparing the Denton solution, (3.24) or (3.25),
with that of Chow and Lin, (3.37), we can see that, 1in the
particular case in which the X matrix reduces to only an
indicator and B = 1, both solutions are 1identical if the
covariance matrii, V, of Chow-Lin is made to be equal to the
inverse of Denton's differenciation matrix, that is, A or

XAX, according to the criterion adopted.

Actually, this similiarity surfaced earlier for the
special case in which V = A = I. The solution of each method
-see (3.26) and (3.39)- is the same, under B = 1 and by

reducing X to x.

At a more general level, by substituting the
indicator x 1in Denton's method witha linear combination of
indicators expressed by X B, 1t 1is possible to show the
relation between both methods, as K. B. Fernandez does
(1978)(*). This leads to the reformulation of the

Lagrangean (3.17) in order to minimize it with respect to
Ve By A*:

(3.40) L{y,B, %) = (y-Xg) "A(y-XB) - A*'(Y-B'y)

which gives solution:

1

(3.41) % XB + A~

]

B(B'a"1B) "L [v-B'xg]

1 -1 1

(3.42) 8 (X'B(B‘A-lB)_ B'X) X'B(B'A_lB)_ Y

expressions that are formally identical to the Chow-Lin

solution, (3.37) and (3.38), and clearly show that to take

(*) When this paper was written, we received another from E.
de Alba (1979) which also emphasizes this relation in a
similar manner.
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A = 1 in Denton 1is equivalent to applying ordinary least
squared in Chow and Lin, since (3.42) reduces to

B = (X'BB'X)_lX'BY

and again,

y = XB + —— (Y-Xg).
As a result, the particular case 1in which the
residuals of (3.27) satisfy classical hypothesis, the method

of Denton, with A = I, is optimal.

If the residuals were random walk, that 1is,

where e is a random variable with mean zero, serially

t
indepenaent and with a constant variance, applying first
differences to the data would 1lead to a white noise

residual, e Denton's method, with A = D'D, would be

p
optimal in this case.

In general, when matrix A closely reflects the
unknown covariance matrix of theoretical model (3.27),
Denton's method leads to the best linear unbiased estimation
of the unknown quarterly series. If it were possible to do
so, 1n each case, the D matrix that transforms residual
series into white noise would have to be selected.
Unfortunately, the structure of the residuals cannot be
observed, forcing us to limit ourselves to approximations of
the optimal criterion constituted by the method of Chow-Lin.

The following section is dedicated to this last point.
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4. Choosing a method for deriving quarterly data

Considering what has been said up to this point, a
two-fold observation can be made: 1st) from the point of
view of 1its theoretical properties, Chow-Lin's method 1is
superior to the rest; and 2na) taking into account the other
methods analyzed, only that of Denton can give, in some
cases, the same results. This is a good reason for choosing
the second method, for it has 1important operative advantages

over the first.

Of the other methods considered in this work, that
of Bassie was the only real alternative option, since, of
the rest, those of interest are particular cases of Denton's
methoa. In spite of its great operative capacity,
theoretical and practical objections can be made against the
Bassie method. From a theoretical point of view, the
properties satisfying the results derived from this method
are unknown, since they are deduced from some subjective
criteria determined beforehana; whether or not this criteria
are reasonable is an open question, although with some of
them a degree of reservation should be shown. From a
practical point of view, 1its wide wuse shows that, in
general, when a good indicator is available, effective
results are yielded, leading to quarterly series that are
reasonably similar to the ©profile of the indicator.
Nevertheless, some limitations already mentioned when
discussing this method are presented. The most important one
is the false seasonality induced in quarterly series when
the Kt discrepancy factor 1is constant in time. Since
economic series frequently grow at a relatively constant
rate, this point bears considerable importance in empirical
work. To illustrate this difficulty, a simple example can be

cited in which quarterly data were derived from an annual
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flow of 14 data artificially constructed from a value of 120
and with a constant interannual rate of 20%. Quarterly aata
was estimated from the same series with the Bassie and
Denton methods; the latter took second differences. The
results obtained are presented in Table 4, which includes
the annual series, the quarterly series derivea from each
method and their absolute differences, as well as the
interquarterly rates of variation and the aifference between
both. The aforecited rates, which require wvirtually no
comment, are represented in figure &: while Denton's method
gives practically constant rates for the entire sample, such
as occurs with the annual data, Bassie's method, aside from
showing the atypical behavior of the ends years commented on
in Section 3.1, induces a strong seasonality. This exercise
should be sufficient grounds for discarding the Bassie

method in favor of that of Denton.

As far as the use of the latter method with an
indicator 1is concerned, the problem of specifying the A
matrix mentioned in the preceding section remains unsolved.
In principle, a suggestion made by Fernandez (1978) bears
interest on this point: since partial information is always
used to derive quarterly series, the residuals will be
dominated by omitted variables. If this is so, a
transformation converting annual residuals into white noise
would be informative with respect to the appropriate
treatment applicable to the quarterly residuals. As a
result, an ARIMA model could be estimated for the annual
series and used to deduce the suitable filter in quarterly
data. From a real point of view, however, a large difficulty
is presented by this suggestion: annual series are often too

short to properly identify the ARIMA model.
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Table 4

Derivation of quarterly data without an indicator

from an annual flow by Bassie and Denton

Quarterly Series Rates of Variation
Annual

Series Bassie Denton Diffe Bassie Denton fofe—

rence rence
P! 120 ! 29e41 | 2738 |  le53 | | ! -
bz ! 1 29.1¢ | 29¢29 | =ol5 | -e94 | 5.06 | =-5¢99 |
131 ! 29.95 | 3070 | =75 | 2480 | %83 | =2.04 |

(AN | ! 31630 | 32el4 | =e63 | 5,18 | %e67 | «51
G —— D w - - — L d * + > b - —— -+ ——
t s 1 les 1 32,97 ! 3361 | —eb4 | 4.67 | 4e53 ! .02 |
I e ! ! 34.70 | 35.15 | ~e45 | 5424 | 4e57 ] 67 |
I ! 37.00 | 36677 | 26 | beb4 | 4ebl | 2.03 |
o8 1 ! 39,32 | 38448 | «84 | 6426 | %e65 1 lesl |
> > +* * * R + - —
1 9 | 17263 1 40437 | 40,22 | «C9 | 2407 | 4e69 | =2.02 |
1 10 ! I 4l1a73 | 42e17 | =e46 | 3438 | 4469 ] -le31 !
I o1e | | 46066 | 40621 I «45 | 5e96 i %e67 | 129 |
N - e e o= * + — + +* ———
t o131 20736 1 48417 | 43e36 | =419 | 3424 | 4466 | =le42 1
1 14 | | SCe0S ' S00e61 ' -256 ‘ 390 i HebS ’ -2 75 !
1 15 ! { 5297 ' 5296 | «Cl ' Sedo | 4666 l lola '
| le | 1 56al7 | 5543 | o746 1 .04 | 4e66 1 1e33 1|
O ——— + -+ + + <+
‘ 17 ' 248083 ! 57.90 ' 58002 ’ -el2 , 3-07 ‘ 4067 ] -1059 l
P o1s ! | €0.07 | 5072 | =ebh | 3475 | 4467 | =e91 |
|15 | | 63e52 | 63456 | =406 | 5.74 | 4467 | 1.08 |
1 20 1 ! 6734 | 6653 | «82 | 6.02 | 4e66 | 1435 |
- - + * hd * * * ad
|21 2986 i 69644 | 69063 | =ol8 | 3012 | 4e66 ] =le54 |
12zt i 72.08 | T2.87 | =79 | 3.30 | &eb6 I =-e37 |
§o23 4 1 76024 | 76627 | =403 | 5477 | 4e66 I lell |
| 24 | | 30,83 ! 7983 1 1401 | 6403 | 4466 1 le36 |
PSS - <+ + +* — -—— -+
[ 25 1 358482 ] 83,36 | 83.55 | =.21 | 3.1l | 4.66 | =la56 |
| 26 ! 1 36450 1 37¢45 | =e95 | 3.78 1 4466 | -.33 |
P27 1 ! FlesR | 91e53 | =404 | 5.76 i «eb6 I lel0 |
123 |l 1 9699 | 95480 | 1.20 | 06402 | .67 I le36 |
P ——— - - > * Rl - D - — i —— - - — - - —— - — e d
} 25 1} 429,98 I 10Ce0l | 100.26 | =425 | 3ell I 466 | =le55 |
[Tl I 103.80 | 104e94 | =-lol&6 | 3,79 i 4.66 | =e87 |
131! I 109.78 | 10983 | =405 1 5.75 | 4eb0 I 1elG 1}
P3g ! I 11639 | 11495 | 1e45 | 6602 | 4.66 I le36 |
R - * - P + & D P e s w2 o > B e > e o o e
133t 515493 I 120401 1 120631 | =429 | 3.l1 | 4466 I =1455 |
I 34 1 I 124656 | 125092 | =le36 | 3.79 | 4467 I -.38 |
1 35 1 1 131e74 1 131.80 ! =e06 | 5.76 | 4e67 I 1.09 !
1 36 | I 13%.67 1| 137.95 1 le72 | 6602 | 4467 I 1e35 |
P —— — —— * < < * R d + >
1 37 61917 I 16401 | 144639 | =¢38 | 3ell I %e67 I =le56 |
| 38 | T 149447 | 15112 | =1e65 | 3679 | 4e66 I =e87 |

1 39 | I 158408 | 158el5 1| =4G7 | 5476 | 4465 ' lell
AV I 16761 | 15551 1 210 | 6602 ! 4465 1 1.37 |
+ + - ——— + + b —— + - -
S 7634351 I 17282 | 173421 1 =240 | 3oll | 466 | =1e55 1t
i ez I 17936 1 18130 | =1.54 | 3.79 | 4e67 ] -e38 |
I 43 | I 18970 | 189430 | =al10 | Se76 | 468 | 1.0% |
1 44 | | 20lel3 1 198e70 | 2643 | 0402 I .69 I le34 |
Pape—— e - “ G s o e Rt - - ——
a5 | 8%9l.61l | 207638 | 20799 | -ebl | 3ell | 40638 | =1e357 |
| o | | ZTS5e23 1| 21Te6T | =2443 | 379 | &4e65 I =.85 1
1 &7 | | 227e64 | 227473 1 =o09 | 5476 | 4e62 I lels |
t s | I 26135 | 238422 | 313 1 6402 | 4e6l I leal |
& s o P - + + + - - — - -
I ee | 1C0E5.9 ! 243,86 | 249,25 | =aa0 1 2,11 | 4463 I =1.52
1 osg ! | 258e2°% | 22Q0e94 | =2466 | 3479 | 4469 | =e90 |
| s1 | I 273617 1 273e34 | =o17 | 5Se75% | 4e75 ! 1.01
| =¢ | | 289.83 | 286439 | 3423 | 6.02 | 4078 I 1e25 |
P o B o - - + + - o * - s o
1 €3 | 1293.9 | 3M3.25 | 299.92 | 3,28 | 4.7 | 4,74 | =.0%
| s4 | | 316694 | 31389 | 3405 | 4eS51 | 464 | =ei3 |
| s5 | | 32842 | 327494 | 47 1 3462 | 4e43 I -e35 |
1 So | 1 32527 1 362.08 | =€679 | Z.0° | 4431 | =2.22 |
P s o & s e e o e P e e e o b o - s > o b o e e b - + — -




DENTON

— 58 —

FIGURE 8.

DERIVATION OF QUARTERLY SERIES WITHOUT INDICATOR
BY BASSIE AND DENTON

RATES OF INTERQUARTERLY VARIATION

BASSIE

[ 1]
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Here we propose a more empirical criteria, based
upon alternative specifications of A. Since the method is
optimum when A properly reflects the structure of the
differences between the quarterly series and the indicator,
the solution which leads to lower and more ranaom
discrepancies with respect to the inaicator will be the
closest to the optimal. From a empirical point of view, this
comparison can be limited to definitions of A in terms of
the first and second differences of the objective function.
For most series, the first differences will be suitable,
since they are close to the case of a first-oraer.
autoregressive structure ot the residuals with a high

autocorrelation coefficient.

The analysis of the consistency between the series
obtained and the indicator used may therefore be the basic
criterion for accepting or rejecting the estimated quarterly
dgata. This analysis should include the usual tools in time
series analysis, such as a comparison between the structure
of the indicator and that of the resulting quarterly series,
the structure ot the differences between them, the most
important outliers, and some measures of the goodness of fit

between the estimated series and the indicator.

A quarterly series obtained with Denton's method
and showing consistency with an appropriate indicator can be
accepted as a reasonable approximation to the best 1linear

unbiased estimation of a real unobservable guarterly series.



— 60 —

5. Conclusion-Summary

Given 1its theoretical properties as well as its
operative capacity, with a slight moditication in the
differentiation matrix, Denton's method can be accepted as
the best alternative to solving the problem addressed in

this paper.

When a series 1is minimized without an indicator, 1in
general, the second aifferences are more suitable than the

first.

In order to obtain quarterly data from a series
with an indicator, an option exists between the additive ana
multiplicative versions of the method. The choice, which
depends on the nature of the problem to be solved in each
case, should be basea on a prior decision as to whether the
differences between the annual data, from which quarterly
data is to be obtained, and the indicator measured in annual
terms must be distributed throughout the year following the
intraannual profile of the indicator or independently of it.
In the first case, the multiplicative c¢riterion will be
used; in the second, the additive criterion. For either of
these criteria, the objective function minimizing the method
may be expressed in first or seconda daifferences. The choice
between the two can be made by using statistical criteria,
in accordance with the empirical results obtained in each
case. First differences will be adequate in most economic

series.
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