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A B S T R A C T

To explore the crossover linkage of the bacterial infections resulting from the viral infection, within the host
body, a computational framework is developed. It analyzes the additional pathogenic effect of Streptococcus
pneumonia, one of the bacteria that can trigger the super-infection mechanism in the COVID-19 syndrome
and the physiological effects of innate immunity for the control or eradication of this bacterial infection. The
computational framework, in a novel manner, takes into account the action of pro-inflammatory and anti-
inflammatory cytokines in response to the function of macrophages. A hypothetical model is created and is
transformed to a system of non-dimensional mathematical equations. The dynamics of three main parameters
(macrophages sensitivity 𝜅, sensitivity to cytokines 𝜂 and bacterial sensitivity 𝜖), analyzes a ‘‘threshold value’’
termed as the basic reproduction number 𝑅0 which is based on a sub-model of the inflammatory state. Piece-
wise differentiation approach is used and dynamical analysis for the inflammatory response of macrophages
is studied in detail. The results shows that the inflamatory response, with high probability in bacterial super-
infection, is concomitant with the COVID-19 infection. The mechanism of action of the anti-inflammatory
cytokines is discussed during this research and it is observed that these cytokines do not prevent inflammation
chronic, but only reduce its level while increasing the activation threshold of macrophages. The results of the
model quantifies the probable deficit of the biological mechanisms linked with the anti-inflammatory cytokines.
The numerical results shows that for such mechanisms, a minimal action of the pathogens is strongly amplified,
resulting in the ‘‘chronicity’’ of the inflammatory process.
Introduction

The severe acute respiratory syndrome due to the Corona virus has
evolved into a pandemic that is among the most serious in modern
history, critically affecting health systems around the world.

The CoVID-19 syndrome, resulting from the SARS-CoV2 viral infec-
tion, has also shown events of superinfection and concomitant bacterial
co-infection that are highly critical in patients hospitalized in intensive
care. It is observed that the mortality rate worsened during the frequent
waves of COVID-19 and the pathological events, collateral to the viral
infection, increased.

The acute respiratory distress syndrome (ARDS) in CoVID-19 is initi-
ated by the SARS-CoV2 virus, which subsequently leads to inflammation-
driven lung injury [1].
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Secondary bacterial infections are well-described processes that
are ‘‘collateral’’ in viral diseases. Such infections are believed to be
responsible for the ‘‘morbidity’’ as well as the ‘‘mortality’’ in viral
ARDS [2].

Secondary bacterial infections are generally referred to as superin-
fections, while the term co-infection is intended to describe simultane-
ous virus infection. Both, the co-infections and the superinfections have
been described in COVID-19 patients [3].

Data on bacterial superinfections of COVID-19 pneumonia is lim-
ited and new evidence is currently emerging [4]. A recent review
concluded that the rate of bacterial superinfections is quite low, ex-
posing the idea that frequent use of broad-spectrum antimicrobials is
counterproductive [5]; however, the presence of associated pulmonary
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aspergillosis (CAPA) has been reported in various cases of critical
CoVID-19 syndrome [6].

It is still an open problem since the accurate linkage of the ten-
dency of the concomitant bacterial and viral infections, in critically ill,
CoVID-19 patients, is poorly understood [5]. Although it is reported by
different research labs that the increased mortality in critical cases of
COVID-19 patients is partly due to ‘‘secondary-infections’’ ( in addition
to the strong viral presence in the lower respiratory tract leading to
lung lesions and the ARDS [7,8]).

Superinfection, therefore, appears to be an important risk factor for
mortality in patients with CoVID-19 although, currently there is limited
understanding of the related clinical situations [9].

Rapid diagnosis of co-infections and superinfections can help to
improve survival and to administer targeted antimicrobial therapy,
allowing further control of the patient’s prognosis and avoiding further
collateral damage [10].

An interesting study by Buehler et al. [11] detected lung pathogens
ten days after admission to the ICU; the most frequently isolated
bacteria per patient were Enterococcus spp., Enterobacter/Citrobacter
and Klebsiella spp.

Additionally, Streptococcus pneumonia, Streptococcus anginosus,
Escherichia coli, Enterobacter spp., Citrobacter spp., Pseudomonas
aeruginosa, and Burkholderia cepacia have been found.

Although some studies conclude that bacterial superinfections do
not play an important role in disease severity and therapy, the results
of the study by Buehler et al. question this conclusion and during
the investigated cohort, the isolation of respiratory bacteria was as-
sociated with a more severe COVID-19 syndrome with longer disease
courses and with the adoption of invasive mechanical ventilation which
resulted in prolonged stays in intensive care [11].

Based on these studies, we can admit that SARS-CoV2 infection, like
other respiratory viral infections, predispose patients to co-infections
and superinfections and these lead to an increase in the severity of the
disease and mortality.

Various types of antibiotics such as azithromycin have been used
for the prevention and treatment of secondary bacterial infections in
patients with a viral respiratory infection such as SARS-CoV2 and al-
though antibiotics do not directly affect this virus, such viral respiratory
infections often cause bacterial pneumonia to a limit that, it is possible
to think that some patients die from bacterial superinfection rather than
from the virus itself [12].

Currently, a considerable number of bacterial strains are resistant
to various antibiotics such as the aforementioned azithromycin and
excessive use without clinical control could make other antibiotics less
effective as well.

Therefore, in assessing the clinical status of a patient with severe
COVID-19 syndrome, both viral coinfection and secondary bacterial su-
perinfection should be considered as critical risk factors for COVID-19
severity and mortality rates. Furthermore, it is strongly recommended
to consider the resistance to antibiotics, that may take place due to their
excessive use. Streptococcus pneumoniae is one of the various bacteria
that cause superinfection in conjunction with COVID-19 syndrome. It
is a gram-positive bacterium belonging to the genus Streptococcus and
a cause of bacterial pneumonia.

Although the contribution of the respiratory microbiota to SARS-
CoV2 infection and pathogenesis has not been extensively studied [13],
interesting work by Lewnard et al. [14] suggests a potential interaction
between this pneumococcus and the SARS-CoV2 virus.

The results reported by this study are in agreement with other works
that suggest that the pathogenicity of respiratory viruses can be modi-
fied by the bacterial load that leads to a defect in the functioning of the
physical barriers, to a dysfunction of the immune responses, and delays
in the restoration of homeostasis [15]. Evidence that commensal upper
respiratory tract bacteria promote viral infection has been evident as
2

early as 1987 [16] with scientific work demonstrating how enzymes
expressed by bacteria, including pneumococcal species [17], improve
the replication and pathogenicity of a virus such as influenza.

For this reason, it is worth considering the hypothesis of Lew-
nard et al. [14] that takes into account the action of Streptococcus
pneumoniae as an additional pathogenic element, and the net effect
may be the growth of pathogens, that increases the pathology in an
immune-mediated manner and thus increases the morbidity.

Furthermore, an evaluation of the previous (or concomitant pres-
ence of pneumococcus) SARS-CoV2 infection is associated with differ-
ent immune responses, to this virus, that could further clarify the host-
mediated interaction mechanisms between pneumococci and SARS-
CoV2 itself.

Pathogenic cycle of streptococcus pneumonia superinfection in COVID-19
syndrome

Streptococcus pneumoniae (also called pneumococcus) is a Gram-
positive bacterium commensal of the respiratory tract, and the infection
is possible in conditions of chronic disease or immunosuppression.
This type of bacterium is responsible for the onset of various dis-
eases, including bacterial pneumonia, ear infections, sinus infections,
bacteremia, and sepsis up to meningitis with a high fever.

Although the pathological effects of this infection are known, the
true burden of disease caused by pneumococcus is uncertain as these
disorders can be caused by a variety of different organisms and are
often treated without bacteriological diagnosis of the cause; in order
to have a better prognosis of the disease and a specific and early
therapy, it would therefore be advisable to have a better diagnosis or
a highly effective vaccine to provide a more faithful picture of the
pneumococcal disease burden and to confirm that the current values
are underestimated [18].

Pneumococci are highly adapted commensals and their main reser-
voir sits on the mucosal surface of the hosts’ upper airways, allowing for
transmission. As noted above, these bacteria can cause serious disease
when they manage to invade essentially ‘‘sterile’’ sites such as the
middle ear spaces, lungs, bloodstream and meninges. Transmission,
colonization and invasion depend on Streptococcus pneumoniae’s re-
markable ability to evade or exploit host inflammatory and immune
responses [19].

This pneumococcus has appeared as a secondary pathogen, during
the SARS-CoV2 superinfections, this further complication has led to a
greater number of hospitalizations and to increasingly critical clinical
conditions [9,20,21].

Moreover, it is very likely that SARS-CoV2 infection facilitates pneu-
mococcal superinfection [14] and that there are molecular mechanisms
that provide for this facilitation. The mechanism of inflammation that
pneumococcal infection creates is, in the case of SARS-CoV2, very
particular because it is affected by the immune response to the virus
which, in some way, accentuates the superinfection condition.

Streptococcus pneumoniae, through the activation of the MAPK/
ERK pathway, induces an inflammatory state that is fueled by the
production of proinflammatory cytokines by the effectors of the im-
mune system such as macrophages, already activated by the COVID-19
syndrome, which in turn produce, further secretion of proinflamma-
tory cytokines via the ‘‘cytokines storm’’ [22–24]. This condition is
amplified by a further production of these cytokines implicit in the
pathological condition triggered by the SARS-CoV2 virus which is fur-
ther increased by the exposure of the LPS antigen (lipopolysaccharide)
typical of pneumococcus (Fig. 1).

Superinfection with Streptococcus pneumoniae, therefore, consti-
tutes an additional pathological stimulus which, in addition to inducing
additional bacterial pneumonia, leads to an even more severe and
widespread inflammatory condition. Understanding the superinfection
model, therefore, can lead to greater therapeutic precision in the case of
superinfections related to the COVID-19 syndrome and to a prevention

activity that can allow a reduction in the number of hospitalizations.
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Fig. 1. Schematic description of SARS-2 inflammatory action.
For this reason, we have worked on a model of Streptococcus pneu-
moniae superinfection secondary to SARS-CoV2 infection that tends to
clarify, quantitatively, and qualitatively, some parameters of immune
response that are referable to the additional inflammatory state that
could constitute additional damage and a critical element in hospital-
ized patients with severe COVID-19 syndrome.

Computational framework

Here, we state some basic definitions and important lemmas, and
other theorems for both sorts of incommensurate and commensurate
model of fractional order that is suitable to define the analytical results
of model.

Definition. The Caputo fractional derivative of order 𝛼 where 𝛼 ∈
(𝑛 − 1, 𝑛), as n is a natural number for the function 𝐾 ∈ 𝐶𝑛 is given
as follows

𝐶𝐷𝛼
𝑡 (𝐾(𝑡)) = 1

𝛤 (𝑛 − 1) ∫

𝑡

0

𝐾 (𝑛)𝜘
(1 − 𝜘)𝛼−𝑛+1

𝑑𝜘. (1)

where 𝛾 is a gamma function. 𝐶𝐷𝛼
𝑡 (𝐾(𝑡)) → 𝐾 ′(𝑡) as 𝛼 → 1.

Definition. Fractional integral of 𝛼 order of function ℎ ∶ 𝑅+ → 𝑅+

define by as follows

𝐼𝛼𝑡 (𝐾(𝑡)) = 1
𝛤 (𝛼)

= ∫

𝑡

0
(𝑡 − 𝜘)𝛼−1𝐾(𝜘)𝑑𝜘. (2)

Definition. The equilibrium point for this model is defined as:
𝐶𝐷𝛼

𝑡 (𝑌 (𝑡)) = 𝐾(𝑡, 𝑌 (𝑡)), 𝛼 ∈ (0, 1) (3)

iif 𝐾(𝑡, 𝑌 ∗) = 0.

Analysis of model

The variables of model are alveolar macrophage population (A),
inflammatory cytokine concentrations (I), anti-inflammatory cytokine
concentrations (C), and bacterial population (B). The non dimensional
mathematical equations of the model are

𝐶𝐷𝛼
𝑡 𝐴 = 1 + 𝜅𝐼

1 + 𝛽𝐼
− 𝐴,

𝐶𝐷𝛼
𝑡 𝐼 = 𝐴𝐵 + 𝛾

(

𝜂𝐴
(1 + 𝐼)(𝐶 + 1)

− 1
)

𝐼,

𝐶𝐷𝛼
𝑡 𝐶 = 𝜎𝐴𝐼 − 𝜓𝐶,

𝐶 𝛼

(4)
3

𝐷𝑡 𝐵 = 𝜇(𝜖 − I)𝐵.
Table 1
Description of the variables.

Symbols Biological meanings

𝐴(𝑡) Alveolar macrophage population
𝐼(𝑡) Inflammatory cytokine concentrations
𝐶(𝑡) Anti-inflammatory cytokine concentrations
𝐵(𝑡) Bacterial population

With the initial conditions (𝐴(0), 𝐶(0), 𝐼(0), 𝐵(0)) ≥ 0. The biological de-
scription of parameters is described in the table. In this computational
model, three parameters play an important role.

• The first parameter is macrophage sensitivity 𝜅; in absence of
infection plays an important part in defining the intensity of
long-term inflammation Macrophage sensitivity, i.e. it defines the
intensity of macrophage recruitment and it is decided by the
concentration of inflammatory cytokine. This parameter, there-
fore, is a pre-existing value in the inflammatory regime and is a
characteristic of the phagocytic cell population.
The dynamics of the parameter 𝜅 is such that its increase also
implies a slight increase in the concentration of inflammatory cy-
tokines which, in turn, provides for an increase in the population
of macrophages. This cycle involves an increase in the level of
inflammation.

• The second is sensitivity to cytokines 𝜂, which helps us to analyze
the long-term systemic situation. the parameter 𝜂 can be referred
to the presence of inflammatory cytokines in the absence of the
pathogen, thus attributing a basal value to the physiological ac-
tion of these cytokines. The sensitivity to cytokines 𝜂 is therefore
directly proportional to the inflammatory cytokines produced by
self-induction.

• The third parameter is bacterial sensitivity 𝜖, which refers to the
resolution of the pathological event (infection removed) or to a
chronicity of the same. This value is based on bacterial growth
during infection and the consequent increase in the colonization
capacity of the host. If the infection is not eradicated, the growth
of the bacterial population can exceed the defensive efficiency
of the macrophage population increasing the pathological con-
dition. In the present analysis, this does not happen and the
macrophage population is at least able to contain the infection
if not neutralized.

The description of variables an parameters are given in Tables 1 and
2.
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Table 2
Summary of parameters.

Symbols Biological Meanings

𝜅 Macrophage sensitivity
𝜂 Cytokine sensitivity
𝜖 Bacterial sensitivity
𝛽 Saturation constant for inflammatory cytokine

Positivity of model solution

Based on the above considerations and admitting a positive biologi-
cal function exerted by the immune system, we can assume 𝑅3

+ to shows
the positivity of the model solution we have following equation

𝑅4
+ = {𝑦(𝑡) ∈ 𝑅4

|𝑦(𝑡) ≥ 0}, 𝑦(𝑡) = (𝐴, 𝐼, 𝐶, 𝐵)𝑇 (5)

For more analysis the succeeding lemma is essential.

Lemma. Assume that
𝑦(𝑡) ∈ [𝑎, 𝑏] and 𝐶𝐷𝛼

𝑡 𝑦(𝑡) ∈ (𝑎, 𝑏] then,

𝑦(𝑡) = 𝑦(𝑎) + 1
𝛤 (𝛼)

𝐶𝐷𝛼
𝑡 𝑦(𝜘)(𝑡 − 𝑎)

𝛼 (6)

with condition 𝑎 ≤ 𝜘 ≤ 𝑡, for all 𝑡 ∈ (𝑎, 𝑏].

Corollary. Consider that
𝐹 (𝑡) ∈ 𝐶[𝑎, 𝑏] and 𝑐𝐷𝛼

𝑡 𝑦(𝑡) ∈ (𝑎, 𝑏], where 𝛼 ∈ (0, 1].

Then

• 𝑦(𝑡) is non-increasing for 𝑐𝐷𝛼
𝑡 𝑦(𝑡) ≤ 0 for all 𝑡 ∈ (𝑎, 𝑏),

• 𝑦(𝑡) is non-decreasing for 𝑐𝐷𝛼
𝑡 𝑦(𝑡) ≥ 0 for all 𝑡 ∈ (𝑎, 𝑏).

Theorem 1. The model (4) has the solution 𝑌 (𝑡) ∈
𝑠𝑢𝑚 for all 𝑌 (𝑡0) = (𝐴0, 𝐼0, 𝐶0, 𝐵0) ∈

∑ with initial condition for all 𝑡 ≥ 0.

Proof. Assume the region
∑

= {(𝐴, 𝐼, 𝐶, 𝐵) ∈ 𝑅3 ∶ max{|𝐴|, |𝐼|, |𝐶|, |𝐵|} ≤ 𝛺}. (7)

where 𝛺 is non negative number. suppose map 𝑌 (𝜘) = (𝑌1(𝜘), 𝑌2(𝜘),
𝑌3(𝜘), 𝑌4(𝜘)) where 𝑌 = (𝐴, 𝐼, 𝐶, 𝐵) and 𝑌 ′ = (𝐴, 𝐼, 𝐶, 𝐵).

𝑌1(𝜘) = 1 + 𝜅𝐼
1 + 𝛽𝐼

− 𝐴,

𝑌2(𝜘) = 𝐴𝐵 + 𝛾
(

𝜂𝐴
(1 + 𝐼)(𝐶 + 1)

− 1
)

𝐼,

𝑌3(𝜘) = 𝜎𝐴𝐼 − 𝜓𝐶,

𝑌4(𝜘) = 𝜇(𝜖 − I)𝐵.

(8)

For any 𝜘,𝜘′ ∈
∑

‖𝑌 (𝜘)−𝑌 (𝜘′)‖ = |𝑌1(𝜘) − 𝑌1(𝜘′)|+ |𝑌2(𝜘) − 𝑌2(𝜘′)|+ |𝑌3(𝜘) − 𝑌3(𝜘′)|. (9)

Where

|𝑌1(𝜘) − 𝑌1(𝜘′)| = |

𝐼𝜅
1 + 𝛽𝐼

− 𝐼 ′𝜅
1 + 𝛽𝐼 ′

− (𝐴 − 𝐴′)|

≤ |

𝐼𝜅
1 + 𝛽𝐼

− 𝐼 ′𝜅
1 + 𝛽𝐼 ′

| − |𝐴 − 𝐴′
|

≤ 𝐾1𝛽𝜅|(𝐼 − 𝐼 ′)2| − |𝐴 − 𝐴′
|

(10)

|𝑌2(𝜘) − 𝑌2(𝜘′)| = |𝐴𝐵 + 𝛾
(

𝜂𝐴
(1 + 𝐼)(𝐶 + 1)

− 1
)

𝐼

− (𝐴′𝐵′ + 𝛾
(

𝜂𝐴′

(1 + 𝐼 ′)(𝐶 ′ + 1)
− 1

)

𝐼 ′)|

≤ |𝐴 − 𝐴′
|𝐵′ + 𝐴|𝐵 − 𝐵′

| + 𝛾𝜂𝜚
(

|𝐴 − 𝐴′
|𝐼

+
(

𝐼 ′ − 𝐼
)

𝐴′) − 𝛾|𝐼 − 𝐼 ′|

(11)

𝑌3(𝜘) − 𝑌3(𝜘′)| = |𝜓
(

𝐶 − 𝐶 ′) + 𝜎
(

𝐼 ′
(

𝐴 − 𝐴′) + 𝐴
(

𝐼 − 𝐼 ′
))

|

′ ( ′ ′ ′ ) (12)
4

≤ 𝜓|𝐶 − 𝐶 | + 𝜎 𝐼 |𝐴 − 𝐴 | + 𝐴|𝐼 − 𝐼 | . 𝐸
𝑌4(𝜘) − 𝑌4(𝜘′)| = |𝜇(𝜖 − 𝐼)𝐵 − 𝜇
(

𝜖 − 𝐼 ′
)

|

≤ 𝜇𝜖|𝐵 − 𝐵′
| − 𝜇|𝐼 ′|𝐵 − 𝐵′

| + 𝐵|𝐼 − 𝐼 ′|.
(13)

adding values from Eqs. (10), (11), (12) and (13) in Eq. (9) we get

‖𝑌 (𝜘) − 𝑌 (𝜘′)‖ ≤
(

𝐵 + 𝐼𝛾𝜂𝜚 + 𝜎𝐼 ′
)

|𝐴 − 𝐴′
|

+

(

𝛾𝜂𝜚𝐴′ + 𝐴𝜎 +
𝛽𝜅

(

𝐼 − 𝐼 ′
)

(1 + 𝐼𝛽) (1 + 𝛽𝐼 ′)
− 𝐵𝜇 − 𝛾

)

|𝐼 − 𝐼 ′|

+ 𝜓|𝐶 − 𝐶 ′
| +

(

𝐴′ − 𝜇𝐼 ′ + 𝜇𝜖
)

|𝐵 − 𝐵′
|

= 𝑌1|𝐴 − 𝐴′
| + 𝑌2|𝐼 − 𝐼 ′| + 𝑌3|𝐶 − 𝐶 ′

| + 𝑌4|𝐵 − 𝐵′
|

≤ 𝑌 ‖𝛾 − 𝛾 ′‖.

(14)

Where 𝑌 = min{𝑌1, 𝑌2, 𝑌3, 𝑌4} and 𝑌1 =
(

𝐵 + 𝐼𝛾𝜂𝜚 + 𝜎𝐼 ′
)

, 𝑌2 = 𝛾𝜂𝜚𝐴′ +
𝐴𝜎 + 𝛽𝜅(𝐼−𝐼 ′)

(1+𝐼𝛽)(1+𝛽𝐼 ′) − 𝐵𝜇 − 𝛾, 𝑌3 = 𝜓 and 𝑌4 = 𝐴′ − 𝜇𝐼 ′ + 𝜇𝜖. Hence, 𝑌 (𝜘)
beys Local Lipschitz’s condition.

heorem 2. Solutions of the system of equations (16) exists and will
emains in 𝑅4

+. Furthermore, the solutions of the model are positive.

roof. From the given system, we conclude the following:
𝐶𝐷𝛼

𝑡 𝐴|𝐴=0 ≥ 0,
𝐶𝐷𝛼

𝑡 𝐼|𝐼=0 ≥ 0,
𝐶𝐷𝛼

𝑡 𝐶|𝐶=0 ≥ 0
𝐶𝐷𝛼

𝑡 𝐵|𝐵=0 ≥ 0.

(15)

We thus conclude that the model’s solution remains in 𝑅4
+ and ∑ is the

feasible region with 𝛺 ≥ 0.

Inflammatory sub-model analysis

The system is given as:

𝐶𝐷𝛼
𝑡 𝐴 = 1 − 𝐴 + 𝜅𝐼

1 + 𝛽𝐼
,

𝐶𝐷𝛼
𝑡 𝐼 = 𝐴𝐵 + 𝛾

(

𝜂𝐴
1 + 𝐼

− 1
)

𝐼,

𝐶𝐷𝛼
𝑡 𝐵 = 𝜇(𝜖 − 𝐴)𝐵,

(16)

he initial conditions are (𝐴(0), 𝐼(0), 𝐵(0)) ≥ 0.

quilibrium points

The sub model has following equilibrium points which are obtained
y letting equations of the model equal to zero

𝐷𝛼
𝑡 𝐴 = 𝑐𝐷𝛼

𝑡 𝐼 = 𝑐𝐷𝛼
𝑡 𝐵 = 0. (17)

he model a unique infection free equilibrium point. The infection free
quilibrium point (𝐴0, 𝐼0, 𝐵0) is

0 = (1, 0, 0), (18)

oth biologically and computationally, we can admit that there is
lways the infection-free equilibrium point that is not affected by
ny parametric value. In other words, the meaning of its existence is
ndependent of the parametric values in analysis. In the absence of bac-
eria, two equilibrium points relative to the inflammatory process are
omputationally obtained; one is referred to as the ‘‘low inflammatory
alance point’’ and the other is the ‘‘high inflammatory balance point’’
hich are as follows:

− = (𝐴−, 0, 𝐼−) (19)
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where:

𝐴− =
𝛽𝜂 + 𝛽 + 𝜂𝜅 − 1 − 𝜌

2𝛽𝜂
,

𝐼− =
𝛽𝜂 − 𝛽 + 𝜂𝜅 − 1 − 𝜌

2𝛽
.

𝜌 =
√

(𝛽(𝜂 − 1) + 𝜂𝜅 − 1)2 + 4𝛽(𝜂 − 1).

(20)

he high inflamed equilibrium point is only exists if 𝜂 > 1

+ = (𝐴+, 0, 𝐼+) (21)

here:
+ =

𝛽𝜂 + 𝛽 + 𝜂𝜅 − 1 + 𝜌
2𝛽𝜂

,

𝐼+ =
𝛽(𝜂 − 1) + 𝜂𝜅 − 1 + 𝜌

2𝛽
.

(22)

The inflamed equilibrium point only exist if and only if 𝜂 and 𝜅 greater
hen zero. The chronically infected or endemic equilibrium point 𝐸∗ =
(𝐴∗, 𝐵∗, 𝐼∗) is defined as

𝐴∗ = 𝜖,

𝐵∗ = 𝛾(𝜖 − 1)
(

1
𝜖(𝛽 − 𝛽𝜖 + 𝜅)

−
𝜂

𝛽 + 𝛽𝜖 + 𝜅 + 𝜖 − 1

)

,

𝐼∗ = 𝜖 − 1
𝛽 + 𝜅 − 𝛽𝜖

,

(23)

hose existence is depends on the basic reproduction number.
The ‘‘threshold quantity’’ is base reproduction number for fractional

rder computational dynamical system and is obtained by applying
he next generation method. Basic reproduction number 𝑅0 is a very
mportant biological variable biologically since it is able to determine
he global dynamics of the analysis of a model and to describe the an-
lytical consequences and, as seen, it is essential for the determination
nd existence of the endemic equilibrium point. R0 is defined as:

0 =
(𝛾 − 𝛾𝜂)(𝜇 + 𝜇(𝜖 − 1))

𝛾𝜇 − 𝛾𝜂𝜇
. (24)

Stability analysis

Theorem 3. Suppose that 𝑥1 and 𝑥2 be positive integers such that
gcd(𝑥1, 𝑥2) = 1. Suppose that 𝜃 =

𝑥1
𝑥2

, then the equilibrium point of model

(16) is asymptotically stable with | arg(𝜆)| > 𝜋
2𝑥2

The Jacobian matrix at infection free equilibrium point is

0 =
⎛

⎜

⎜

⎝

−1 𝜅 0
0 𝛾(𝜂 − 1) 1
0 0 (𝜖 − 1)𝜇

⎞

⎟

⎟

⎠

(25)

by expansion we get

(𝜆𝑥1 + 𝛾1)(𝜆𝑥1 + 𝛥2)(𝜆𝑥1 + 𝛥3) (26)

where the coefficients are
𝛥1 = −1,

𝛥2 = 𝛾(𝜂 − 1),

𝛥3 = 𝜇(𝜖 − 1).

(27)

Arguments of roots 𝜆𝑥1 + 𝛥1 = 0 are

𝑎𝑟𝑔(𝜆𝑖) =
𝜋
𝑥1

+ 2𝜋
𝑥1
𝑖 > 𝜋

𝑥2
> 𝜋

2𝑥2
, 𝑖 = 0, 1, 2,…(𝑝1 − 1). (28)

In the same pattern argument of root 𝜆𝑥1 + 𝛥2 = 0 and 𝜆𝑥1 + 𝛥3 = 0
and also greater than 𝜋

2𝑥2
. Furthermore, if basic reproduction number

0 < 0 and conditions holds for all polynomial (26), then system of
quations at infection free equilibrium point is stable. But in case if the
asic reproduction number 𝑅1 > 1, then according to Descartes signs
ule, there exists at least one root that gives positive root in other words
hich satisfied | arg(𝜆)| < 𝜋 .
5

2𝑥2
Hence, the endemic equilibrium point is asymptotically stable for
𝑅0 < 1, otherwise it is unstable.

Thus the polynomial analysis, therefore, tends to show a positive
evolution of the model subject to a stable infection free equilibrium
point. Through the analysis of the Jacobian matrix at equilibrium point
of infection free, the computation of the value of 𝑅0 is concluded, in
this case, to further define the development conditions of the model.

Theorem 4. For the arbitrary fractional order 𝛼 in interval (0,1], and
𝑅0 < 1, the infection free equilibrium point of dynamical model (16) always
globally asymptotically stable, otherwise it is unstable.

Proof. According to the definition of Lyapunov function

𝑃 (𝑡) = 𝑃1(𝑡)(𝐴 − 𝐴0 − 𝐴0 ln
𝐴
𝐴0

) + 𝑃2(𝑡)(𝐵 − 𝐵0 − 𝐵0 ln
𝐵
𝐵0

)

+ 𝑃3(𝑡)(𝐼 − 𝐼0 − 𝐼0 ln
𝐼
𝐼0

).
(29)

Where 𝑃𝑖 as 𝑖 = 1 ∶ 3 are positive constants. The time derivative of
above Eq. (29) we have

𝐶𝐷𝛼
𝑡 𝑃 = 𝑃1(

𝐴 − 𝐴0
𝐴

)𝐶𝐷𝛼
𝑡 𝐴 + 𝑃2𝐶𝐷𝛼

𝑡 𝐵 + 𝑃3𝐶𝐷𝛼
𝑡 𝐼

= 𝑃1(
𝐴 − 𝐴0
𝐴

)[1 − 𝐴 + 𝜅𝐼
1 + 𝛽𝐼

]

+ 𝑃2[𝐴𝐵 + 𝛾
(

𝜂𝐴
1 + 𝐼

− 1
)

𝐼] + 𝑃3[𝜇(𝜖 − 𝐴)𝐵].

(30)

ith the help of arithmetical geometrical inequality we have
𝐴 − 𝐴0
𝐴

)[1 − 𝐴 + 𝜅𝐼
1 + 𝛽𝐼

] ≤ 0,

[𝐴𝐵 + 𝛾
(

𝜂𝐴
1 + 𝐼

− 1
)

𝐼] ≤ 0,

[𝜇(𝜖 − 𝐴)𝐵] ≤ 0.

(31)

Hence for 𝑅0 < 1 𝐶𝐷𝛼
𝑡 𝑃 is negative. Therefore, model (16) is globally

asymptotically stable at infection free equilibrium point 𝐸0.

Stability at endemic equilibrium point

The Jacobian matrix at endemic equilibrium point is

𝐽 ∗ =

⎛

⎜

⎜

⎜

⎝

−1 𝜅
(𝛽𝐼+1)2 0

𝐵 + 𝛾𝜂𝐼
1+𝐼 𝛾

(

𝜂𝐴
(1+𝐼)2 − 1

)

𝐴
−𝜇𝐵 0 𝜇(𝜖 − 𝐴)

⎞

⎟

⎟

⎟

⎠

. (32)

or 𝑅1 > 1 stability of endemic equilibrium point has been explained
n the previous theorem 3.

heorem 5. If the basic reproduction number 𝑅0 > 1, the endemic
equilibrium point is globally asymptotically stable.

Proof. Suppose the Lyapunov function

𝑄(𝑡) = (𝐴−𝐴∗−𝐴∗ ln 𝐴
𝐴∗ )+(𝐼 −𝐼∗−𝐼∗ ln 𝐼

𝐼∗
)+(𝐵−𝐵∗−𝐵∗ ln 𝐵

𝐵∗ ). (33)

By theorem 3, derivative along endemic equilibrium point is

𝐶𝐷𝛼
𝑡 𝑄 = (1 − 𝐴∗

𝐴
)𝐶𝐷𝛼

𝑡 𝐴 + (1 − 𝐼∗

𝐼
)𝐶𝐷𝛼

𝑡 𝐼 + (1 − 𝐵∗

𝐵
)𝐶𝐷𝛼

𝑡 𝐵. (34)

Where:

(1 − 𝐴∗

𝐴
)𝐶𝐷𝛼

𝑡 𝐴 = (1 − 𝐴∗

𝐴
)[1 − 𝐴 + 𝜅𝐼

1 + 𝛽𝐼
],

(1 − 𝐼∗

𝐼
)𝐶𝐷𝛼

𝑡 𝐼 = (1 − 𝐼∗

𝐼
)[𝜇(𝜖 − 𝐴)𝐵],

1 − 𝐵∗
)𝐶𝐷𝛼

𝑡 𝐵 = (1 − 𝐵∗
)[𝐴𝐵 + 𝛾

(

𝜂𝐴
− 1

)

𝐼]

(35)
𝐵 𝐵 1 + 𝐼
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Fig. 2. Linkage of Bacteria Infection to the Viral Infection over the period of time, (top: 3D plot, bottom: contour plot.
Fig. 3. The residual graphs for two different fractional orders (top 𝛼 = 1, bottom 𝛼 = 0.9).
By simplifying we have

𝐶𝐷𝛼
𝑡 𝑄 = (1 − 𝐴∗

𝐴
)[1 − 𝐴 + 𝜅𝐼

1 + 𝛽𝐼
] + (1 − 𝐼∗

𝐼
)[𝜇(𝜖 − 𝐴)𝐵]

+ (1 − 𝐵∗
)[𝐴𝐵 + 𝛾

(

𝜂𝐴
− 1

)

𝐼].
(36)
6

𝐵 1 + 𝐼
By arithmetical geometrical inequality

(1 − 𝐴∗

𝐴
)[1 − 𝐴 + 𝜅𝐼

1 + 𝛽𝐼
] ≤ 0,

(1 − 𝐼∗

𝐼
)[𝜇(𝜖 − 𝐴)𝐵] ≤ 0,

(1 − 𝐵∗
)[𝐴𝐵 + 𝛾

(

𝜂𝐴
− 1

)

𝐼] ≤ 0.

(37)
𝐵 1 + 𝐼



Results in Physics 39 (2022) 105774Z. Yu et al.

e

P

i

D

A

𝐶

Hence 𝐶𝐷𝛼
𝑡 𝑄 ≤ 0, therefore by theorem 3 model (40) at endemic

quilibrium point is locally asymptotically stable.

iecewise derivative

All the differential equations and integral equations have numerous
mpacts.

efinition. Assume that we have two continuous functions X and Y
such that X is not a constant increasing function and differentiable
function Y, then piecewise derivative over [0, 𝑇 ] interval

𝑃𝐺
0 𝐷𝑋(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑑𝑋
𝑑𝑡

𝑖𝑓 0 ≤ 𝑡 ≤ 𝑡1
𝐷𝑌𝑋(𝑡) 𝑖𝑓 𝑡1 ≤ 𝑡 ≤ 𝑇

=

⎧

⎪

⎨

⎪

⎩

limℎ→0
𝑋(𝑡 + ℎ) −𝑋(𝑡)

ℎ
𝑖𝑓 0 ≤ 𝑡 ≤ 𝑡1

limℎ→0
𝑋(𝑡 + ℎ) −𝑋(𝑡)
𝑌 (𝑡 + ℎ) − 𝑌 (𝑡)

𝑖𝑓 𝑡1 ≤ 𝑡 ≤ 𝑇

(38)

classic derivative 𝑃𝐺
0 𝐷𝑋(𝑡) on 0 ≤ 𝑡 ≤ 𝑡1 and global derivative on

𝑡1 ≤ 𝑡 ≤ 𝑇

Definition. Consider two continuous functions X and Y which are
non-constant differentiable increasing function. Piecewise integral of
function X with respect to function Y define here

𝑃𝐺
0 𝐼𝑡𝑋(𝑡) =

{

∫ 𝑡0 𝑋(𝜏)𝑑𝜏 𝑖𝑓 0 ≤ 𝑡 ≤ 𝑡1
∫ 𝑡𝑡1 𝑋(𝜏)𝑑𝑌 (𝜏)𝑑𝜏 𝑖𝑓 𝑡1 ≤ 𝑡 ≤ 𝑇

𝑃𝐺
0 𝐼𝑡𝑋(𝑡) =

{

∫ 𝑡0 𝑋(𝜏)𝑑𝜏 𝑖𝑓 0 ≤ 𝑡 ≤ 𝑡1
∫ 𝑡𝑡1 𝑋(𝜏)𝑌 ′(𝜏)𝑑𝜏 𝑖𝑓 𝑡1 ≤ 𝑡 ≤ 𝑇

(39)

classical integral 𝑃𝐺0 𝐼𝑡𝑋(𝑡) on interval 0 ≤ 𝑡 ≤ 𝑡1 and global integral on
𝑡1 ≤ 𝑡 ≤ 𝑇 .

For numerical scheme of model (16), following is supposed

𝐶𝐷𝛼
𝑡 𝐴 = 1 + 𝑎𝜅𝐼 − 𝐴,

𝐶𝐷𝛼
𝑡 𝐼 = 𝐴𝐵 + 𝛾 (𝑏𝜂𝐴 − 1) 𝐼,

𝐶𝐷𝛼
𝑡 𝐶 = 𝜎𝐴𝐼 − 𝜓𝐶,

𝐶𝐷𝛼
𝑡 𝐵 = 𝜇(𝜖 − 𝐼)𝐵.

(40)

Where

𝑎 = 1
1 + 𝛽𝐼

,

𝑏 = 1
(1 + 𝐼)(𝐶 + 1)

.
(41)

pplying the piece-wise derivative, we obtained

𝐴(𝑡) =

{

𝐴(0) + ∫ 𝑡10 (1 + 𝑎𝜅𝐼 − 𝐴)𝑑𝜏
𝐴(𝑡1) + ∫ 𝑡𝑡1 (1 + 𝑎𝜅𝐼 − 𝐴)ℎ′(𝜏)𝑑𝜏

𝐼(𝑡) =

{

𝐼(0) + ∫ 𝑡10 (𝐴𝐵 + 𝛾 (𝑏𝜂𝐴 − 1) 𝐼)𝑑𝜏
𝐼(𝑡1) + ∫ 𝑡𝑡1 (𝐴𝐵 + 𝛾 (𝑏𝜂𝐴 − 1) 𝐼)ℎ′(𝜏)𝑑𝜏

𝐶(𝑡) =

{

𝐶(0) + ∫ 𝑡10 (𝜎𝐴𝐼 − 𝜓𝐶)𝑑𝜏
𝐶(𝑡1) + ∫ 𝑡𝑡1 (𝜎𝐴𝐼 − 𝜓𝐶)ℎ′(𝜏)𝑑𝜏

𝐵(𝑡) =

{

𝐵(0) + ∫ 𝑡10 (𝜇(𝜖 − 𝐼)𝐵)𝑑𝜏
𝑡 ′

(42)
7

𝐵(𝑡1) + ∫𝑡1 (𝜇(𝜖 − 𝐼)𝐵)ℎ (𝜏)𝑑𝜏.
At 𝑡 = 𝑡𝑛+1 we can write

𝐴(𝑡𝑛+1) =

{

𝐴(0) + ∫ 𝑡10 (1 + 𝑎𝜅𝐼 − 𝐴)𝑑𝜏
𝐴(𝑡1) + ∫ 𝑡𝑛+1𝑡1

(1 + 𝑎𝜅𝐼 − 𝐴)ℎ′(𝜏)𝑑𝜏

𝐼(𝑡𝑛+1) =

{

𝐼(0) + ∫ 𝑡10 (𝐴𝐵 + 𝛾 (𝑏𝜂𝐴 − 1) 𝐼)𝑑𝜏
𝐼(𝑡1) + ∫ 𝑡𝑛+1𝑡1

(𝐴𝐵 + 𝛾 (𝑏𝜂𝐴 − 1) 𝐼)ℎ′(𝜏)𝑑𝜏

(𝑡𝑛+1) =

{

𝐶(0) + ∫ 𝑡10 (𝜎𝐴𝐼 − 𝜓𝐶)𝑑𝜏
𝐶(𝑡1) + ∫ 𝑡𝑛+1𝑡1

(𝜎𝐴𝐼 − 𝜓𝐶)ℎ′(𝜏)𝑑𝜏

𝐵(𝑡𝑛+1) =

{

𝐵(0) + ∫ 𝑡10 (𝜇(𝜖 − 𝐼)𝐵)𝑑𝜏
𝐵(𝑡1) + ∫ 𝑡𝑛+1𝑡1

(𝜇(𝜖 − 𝐼)𝐵)ℎ′(𝜏)𝑑𝜏.

(43)

Substituting with the formula of Newton polynomial interpolation,

𝐴(𝑡𝑛+1) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐴(0) +
∑𝑖
𝑘=2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

5
12

(1 + 𝑎𝜅𝐼𝑘−2 − 𝐴𝑘−2)𝛥𝑡

− 4
3
(1 + 𝑎𝜅𝐼𝑘−1 − 𝐴𝑘−1)𝛥𝑡

+ 23
12

(1 + 𝑎𝜅𝐼𝑘 − 𝐴𝑘)𝛥𝑡

⎫

⎪

⎪

⎬

⎪

⎪

⎭

𝐴(𝑡1) +
∑𝑛
𝑘=𝑖+3

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

5
12

(1 + 𝑎𝜅𝐼𝑘−2 − 𝐴𝑘−2)

× (ℎ(𝑡𝑘−1) − ℎ(𝑡𝑘−2))

− 4
3
(1 + 𝑎𝜅𝐼𝑘−1 − 𝐴𝑘−1)

× (ℎ(𝑡𝑘) − ℎ(𝑡𝑘−1))

+ 23
12

(1 + 𝑎𝜅𝐼𝑘 − 𝐴𝑘)

× (ℎ(𝑡𝑘+1) − ℎ(𝑡𝑘))

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

𝐼(𝑡𝑛+1) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐼(0) +
∑𝑖
𝑘=2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

5
12

(𝐴𝑘−2𝐵𝑘−2 + 𝛾
(

𝑏𝜂𝐴𝑘−2 − 1
)

𝐼𝑘−2)𝛥𝑡

− 4
3
(𝐴𝑘−1𝐵𝑘−1 + 𝛾

(

𝑏𝜂𝐴𝑘−1 − 1
)

𝐼𝑘−1)𝛥𝑡

+ 23
12

(𝐴𝑘𝐵𝑘 + 𝛾
(

𝑏𝜂𝐴𝑘 − 1
)

𝐼𝑘)𝛥𝑡

⎫

⎪

⎪

⎬

⎪

⎪

⎭

𝐼(𝑡1) +
∑𝑛
𝑘=𝑖+3

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

5
12

(𝜌 + 𝑎𝑋𝑘−2 + 𝑏𝑌𝑘−2 + 𝑐𝑍𝑘−2

−𝛽𝑋𝑘−2𝑌𝑘−2)
× (ℎ(𝑡𝑘−1) − ℎ(𝑡𝑘−2))

− 4
3
(𝐴𝑘−1𝐵𝑘−1 + 𝛾

(

𝑏𝜂𝐴𝑘−1 − 1
)

𝐼𝑘−1)

× (ℎ(𝑡𝑘) − ℎ(𝑡𝑘−1))

+ 23
12

(𝐴𝑘𝐵𝑘 + 𝛾
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Fig. 4. The residual graphs for Bacterial infection onset and viral infection relative to time (note that the negative values of the residuals indicate the difference between the
fitted and the modeled values, the virus and bacterial infection count was always taken to be positive).
Results and discussion

In the condition of bacterial super-infection in the condition of
COVID-19, the analysis of anti-inflammatory cytokines is very impor-
tant to understand its action against long-term inflammation resulting
from the super-infection itself. Inspired from the noteworthy findings
of Herald [25], for the proposed model analysis, it is assumed that the
action of the anti-inflammatory cytokines may reduce the parameters
relating to the equilibrium values of inflammation. In the sub-model
relating to the inflammatory state, the hypothesis admits that the state
of health always exists, regardless of the values of the parameters
reported. The existence of three other equilibrium states in this sub-
model is linked to the values of its parameters; for both computationally
quantified ‘‘inflamed states’’, the very existence of such quantification
depends on the values of 𝜅 and 𝜂. This is a fundamental point on which
the development of the proposed model is based. Hypothetically, a very
strong anti-inflammatory response could alter the parameters, perhaps
attenuating the value of the macrophages sensitivity 𝑘𝑎𝑝𝑝𝑎 thanks
to the recruitment of other innate immunity effectors and allowing
greater bacterial colonization. The complete model shows four com-
putationally relevant states of equilibrium: the healthy state (absence
of infection), the chronically inflamed state, the chronically infected
state and the remission state of inflammation with a decrease in the
bacterial population and bacterial sensitivity 𝜖 (fundamental state on
which the hypothesis to develop the model is based). The increase in
anti-inflammatory cytokines alters the conditions that lead to chronic
inflammation by shifting the R0 threshold; a higher value of 𝜅 may
be required, which implies a more marked action of macrophages
in response to the signals of inflammatory cytokines, for the activa-
tion threshold to be achieved. The model, therefore, highlights how
anti-inflammatory cytokines may not eliminate inflammation in the
situation in which macrophages are highly sensitive and stimulable
to pro-inflammatory signals, even if they tend to reduce the level of
inflammation itself.

Figs. 2–4 depicts the numerical simulations, based on the modeling
approach, the parametric values, based on the limited literature avail-
able on the novel topic, the intervals derived for the dynamical analysis
8

in the previous section and the MCMC analysis for the parametric
analysis [21,22,26–28,28–36].

It is obvious from the graphical interpretation that the linkage
between the bacterial infection, with the COVID-19 viral infection is
more stronger after the incubation period.

The proposed and hypothesized model describes an inflammatory
response of macrophages that, although not specific for the respira-
tory system, can occur with high probability in COVID-19 concomi-
tant super-infection; the present model can be adapted for analysis
of macrophages-mediated inflammation in a tissue with a resident
macrophages population. This model, therefore, can easily be a ref-
erence for the examination of super-infection in the respiratory tract
even if there are up to some limits that may be subject to the fur-
ther definition in subsequent works. The model assumes that there
is an activation of the macrophages population always present while
it is not considered that there are, within this population, two dif-
ferent states: one of rest and another activated. This situation also
provides for the existence of a sort of ‘‘double phenotype’’ to be
considered, namely the differentiation from monocyte to macrophages:
this element can influence the inflammatory response [37]. Finally,
the model could be made more specific by examining in depth the
cytokines involved in the inflammation process under consideration.
Cytokines have a redundant and pleiotropic action [38,39], while in the
present computational analysis, for the sake of simplification, they have
been considered proinflammatory and anti-inflammatory cytokines in
a generic sense, producing the respective variables (inflammatory and
anti-inflammatory) to illustrate a general picture of the process. This
model, therefore, in addition to representing a good starting point for
an analysis of the pathological event of bacterial super-infection in the
condition of the COVID-19 syndrome, is also a basis on which to further
expand and in-depth further computational processes also referable to
other pathologies related to bacterial infections.

Conclusions

The results of the model show that a bacterial superinfection con-
comitant with a viral infection such as SARS-CoV2, can lead to chronic

inflammation regardless of the presence of anti-inflammatory cytokines;
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a

in fact, the self-induction cycle of pro-inflammatory cytokines can
induce long-term inflammation even after the elimination of a sec-
ondary bacterial infection. Therefore, anti-inflammatory cytokines do
not prevent long-term inflammation, but only reduce the level of this
inflammation and increase the activation threshold. Therefore, it is
assumed that when there is a correct anti-inflammatory effect of the
cytokines, a pathogenic bacterial agent, even if not highly aggressive,
will not be able to stimulate the event of chronic inflammation. If
the macrophage population becomes more sensitive to the action of
inflammatory cytokines (which can also occur through the progression
of the disease), it is observed that a minimal pathogenic action initi-
ated by bacteria may cause long-term inflammation. Therefore, if the
biological mechanisms with which the anti-inflammatory cytokines act
are compromised, the minimal action of the pathogens may be strongly
amplified, thus boosting the chronicity of the inflammatory process.
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