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Estrogens in males: what have we learned in the last 10 years?

Vincenzo Rochira, Antonio R. M. Granata, Bruno Madeo, Lucia Zirilli, Giuseppina Rossi, Cesare Carani

Integrated Department of Medicine and Medical Specialties, University of Modena and Reggio Emilia, Modena 41100, Italy

Abstract

This review focuses on the role of estrogen in men, mainly in male reproduction. The continuing increase in data
obtained, and recent discoveries in this area will enable a better understanding of male physiology; these, in turn, will
have important clinical implications.  (Asian J Androl 2005 Mar; 7: 3–20)
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1    Historical background

Traditionally the adult male reproductive function was
considered to be controlled by both gonadotropins and
androgens, and it was testosterone [1], which for many
years was considered the “male hormone”.  In 1934 the
conversion of the male hormone into the female one in
male stallions was postulated, leading to the first step in
considering testosterone as a prohormone for estrogens
[2, 3].  This may be considered the ancestor for the de-
velopment of a field of research focusing on the biologi-
cal significance of estrogens in men.  Nevertheless, tes-
tosterone was not considered a prohormone for estra-
diol with certainty until the 1950s [4–8] and detailed stud-
ies on circulating sex steroids were provided later in the
1960s [9].  Well-established evidence for testosterone
conversion into estradiol in the human male was not pro-
vided till the 1970s, when MacDonald et al. described
estrogens synthesis in peripheral tissues of normal men
[10].  A major step forward was also made in the 1970s
when it was demonstrated that the testes are a source of

estrogens in men [11, 12].  In the meantime, further re-
search on this issue has demonstrated that both imma-
ture and mature germ cells and spermatozoa, are all able
to produce estrogens [13–16].

The development of testicular paracrinology between
1980s and 1990s played a significant role in the study of
estrogens in the male reproductive function [17–19]: the
interest in understanding in detail the regulatory role of
each paracrine substance in the complicated hormonal
network in the testicular milieu, as well as the “mystery”
of cell-to-cell interaction in the testis, provided strong
stimuli to researchers.  In this view, starting from bio-
chemical studies on aromatization of androgens to estro-
gens [20–29], the following immunocytochemical stud-
ies on both aromatase [30–33] and estrogen receptors
(ER) [34–39] directed the interest of biologists to the
significance of estrogens signaling the pathway in the
male reproductive system.  Progress in molecular biol-
ogy leaded to gene cloning for aromatase [40–42], ERα
[43–45] and ERβ [46–48] gene cloning, this being a cru-
cial step for the following deep investigation of estro-
gens physiology in the male.  In fact the studies on
aromatase [42] and ER functions [49, 50], together with
corresponding gene-expression studies on aromatase
[51–54], on ERα [55] and on ERβ [55, 56] have pro-
gressively clarified the relationships between estrogens
and male reproductive function.

For a long time, data on the effects of estrogens on
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the male reproductive system have been limited to the
prenatal period, as the developing testis was considered
to be responsive to estrogens [57, 58].  A direct cause-
effect relationship between the exposure to high doses
of estrogens or diethylstilbestrol (DES) and malforma-
tion of male reproductive structures was known in both
animals [59] and humans [60–62] from the 1950s
onwards.  However, the role played by estrogens in male
reproduction became known only in the late 1990s
[63, 64].  The revelations started with the development
of lines of male transgenic mice lacking functional ERα
[65, 66] or β [67] or a functional aromatase enzyme [68].
This shed new light on the role of estrogens in male re-
production [69].  Concomitantly, the discovery of muta-
tions in both the human ERα [70] and aromatase [71]
genes have reinforced the idea that estrogens play a key
role  in the human male  reproductive system.
Accordingly, since the 1980s it was known  that seminal
fluid contains both sex steroids: testosterone and estro-
gens [72–75].

Previously a role for estrogen action in the male re-
productive system had being proposed based on scat-
tered data [61, 62], but recent advances came out from
in vitro, in vivo and immunohistochemical studies that
have begun to elucidate the mechanisms of estrogen ac-
tion on the male reproductive tract  [16, 76, 77].

2    Introduction

Today the concept that estrogens are essential for
bone maturation and mineralization in both men and
women is well established [71, 78]; however, physicians
still do not accept the idea that estrogens may also regu-
late human male reproduction.

It seems paradoxical that estrogen, the "female
hormone", may play a critical role in human male
reproduction, even though a clear demonstration of the
need of estrogen for normal fertility has been obtained in
rodents  [69, 79, 80].  Accordingly, the discovery of
mutations in both the human ERα [70] and aromatase
[71] genes fits largely with data obtained from several
lines of estrogen deficient mice.  Anyhow, at present, a
certain cause-effect relationship between congenital es-
trogen deficiency and abnormal fertility in men has not
yet been determined, and it remains a hard issue to trans-
pose to the human male what we have learned from the
animal.  Surely in the future, increasing cases of con-
genital estrogen deficiency in men will help to elucidate
whether or not the congenital lack of estrogenss is re-
lated to reduced fertility in men.  At the moment, the

increasing body of evidence on the importance of estro-
gens on male reproductive function have led to the ap-
pearance  of comprehensive chapters about estrogens
and male reproduction in some textbook of endocrinol-
ogy [81, 82], underlining the impact of this issue on both
experimental studies [80] and clinical practice [77].

3    Estrogens and the male reproductive system

The immunocytochemical studies performed on the
male reproductive structures of rodents and men revealed
the areas in which ERs and aromatase enzymes are
expressed and are functionally active.  A different pattern
exists between rodents and human males [69, 80, 81].

The site of ERs and aromatase expression varies
widely during development in rodents and both aromatase
and ERs are expressed at a very early stage [81, 83].
ERα is abundant in the developing efferent ductules, as
well as in the mature ones [15, 80, 81], leading to the idea
that ERα may be crucial for lifelong male reproduction
in rodents.  Even in the rodent testes, ERα  is expressed
early by Leydig cells when the androgen receptor is not
yet expressed.  In contrast, ERβ expression prevails during
fetal life, suggesting a major role for ERβ in the develop-
ment and function of male reproductive structures until
birth [83].  However β-ERKO mice display normal fer-
tility and reproductive structures nothwistanding non-
functioning ERβ, thus leaving partially unknown the sig-
nificance of ERβ during the development of male repro-
ductive system [67, 69].  Probably ERβ may be the tar-
get when the fetus is exposed to a supraphysiological
amount of estrogens and may be enrolled leading to nega-
tive effects on reproductive structures. Accordingly, it
was known as early as the 1930s that  prenatal exposure
to estrogens interferes with the normal development of
testes and the reproductive structures of some species
[57].  In the seminiferous epithelium (Sertoli cells and a
few germ cells) and in the epididymis of the male fetus,
ERβ expression is higher than ERα, the latter being ab-
sent or very low [69, 84].

ERβ is involved in estrogen-related apoptosis of germ
cells and as a consequence in the blockade of germ cell
lineage growth during fetal and neonatal life [85].  Thus,
ERβ may take part in the process through which expo-
sure to environmental estrogens produce negative effects
on male reproduction. Finally, the finding of both
aromatase and ERs in the developing fetal testes implies
a possible involvement of estrogens in the process of
differentiation and maturation of rodent testes during
prenatal life starting from an early stage of morpho-
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genesis, albeit ERβ playing a more significant role than
ERα.

In the adult male reproductive system, ERα is highly
expressed in the proximal reproductive ducts  (rete testis,
efferent ductules, proximal epididymis), and its expres-
sion progressively decreases distally in rodents  (corpus
and cauda of the epididymis, vas deferens).  The highest
degree of ERα expression is seen in the efferent ductules
of the male rat.  The presence of abundant ERα in the
efferent ductules constitutes the prerequisite for one of
the most well-documented estrogenic actions on male
reproductive system: the fluid reabsorption from semi-
nal plasma in the efferent ductules [79].  Both ERs have
been found in human testis and reproductive tract.
Conversely, in humans, ERα are confined to Leydig and
germ cells  [15, 80, 81, 86]; this suggests that they play a
minor physiological role.

Aromatase expression in human testes occurs in so-
matic and germ cells from pachytene spermatocytes
through elongated spermatids [15, 87–89], as well as in
human Leydig and Sertoli cells [88, 90].  Recently, the
presence of aromatase has been demonstrated not only
in immature germ cells [14, 90], but also in mature hu-
man spermatozoa [13, 15, 16].  This is in contrast to
what it happens in rodents.  Aromatase expression in
human gametes, in fact, is not lost during the transit
through the genital tracts as in mice; this is demonstrated
by the fact that P450 aromatase was found in ejaculated
human spermatozoa [13, 16].  Likely both ERs are present
in human sperm [91], and sperm membrane contains an
ER-related protein that accounts for a well-documented,

rapid, non-genomic action [76].  Thus, sperm has to be
considered at the same time a site of estrogen biosynthe-
sis and a target for estrogen action because ejaculated
human spermatozoa continue to express P450 aromatase
lifelong and contain active aromatase; in addition, sper-
matozoa express classical and non classical ERs [76].
Particularly mature spermatozoa are able to synthesize
estrogen as they traverse the efferent ducts and this abil-
ity gradually decreases as they move during epididymal
transit.  This suggests that the sperm itself could control
the levels of estrogens in the luminal fluid, directly modu-
lating functions such as the reabsorption of fluid from
the efferent ductules [15, 76].

A detailed map of the distribution of ERs and
aromatase enzymes in the human male reproductive sys-
tem is summarized in Figure 1.

The wide expression of both ERs and the aromatase
enzyme in the male reproductive tract of animals and
humans suggests that estrogen biosynthesis occurs in
the male reproductive tract and that both locally pro-
duced and circulating estrogens may interact with ERs,
in an intracrine/paracrine and/or endocrine fashion [64].
Thus, if male reproductive structures are able to pro-
duce and to respond to estrogens [69], the female hor-
mones necessarily play a minor or major role in male
reproduction.  However, we do not know in detail the
molecular mechanisms involved in estrogen action and
the degree of importance of estrogens in the reproduc-
tive system of men.  To date, some estrogen actions on
male reproduction have been well characterized, but
more estrogen actions and related mechanisms remain

Figure 1. Distribution of estrogen receptors and aromatase enzyme in the human male reproductive system.
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to be elucidated in detail.

4    The role of estrogens on male reproduction

The previously unsuspected physiological role of
estrogens in the testicular function of animals was re-
vealed by the creation of estrogen-deficient mice.  Lines
of estrogen-deficient mice represent a useful experimen-
tal model obtained by genetic manipulation which con-
sists in the knock-out of a single gene, resulting in a non
functioning product (enzyme or receptor) in the offspring.
Gene inactivation generated four different lines of estro-
gen-deficient knock-out mice (Table 1).  The knock-out
of genes encoding for ERs led to the following lines of
estrogen-resistant mice: 1) the α-estrogen receptor knock
out (ERKO) mice, in which the gene encoding for the
ERα is disrupted; 2) the β-ERKO mice, with an inacti-
vated ERβ; and 3) the αβ-ERKO mice, in which both
receptors α and β are non-functioning.  The α-ERKO,
β-ERKO and αβ-ERKO mice provide helpful informa-
tion regarding the loss of ERs function (estrogen
resistance).  The fourth line is that of aromatase knock-
out (ArKO) mice in which the gene encoding for the
aromatase enzyme is knocked-out with undetectable cir-
culating estrogens from birth, provides an experimental
animol model useful for studying the effects of the con-
genital lack of both circulating and locally produced
estrogens.  The reproductive phenotype of estrogen-de-
ficient knock-out mice is summarized in Table 1.

Adult, sexually mature, male α-ERKO mice are in-

fertile even though the development of the male repro-
ductive tract is mainly unaffected [69].  Seminiferous
epithelium is atrophic and degenerating, while tubules and
rete testes are both dilated [92].  Testicular histology is
normal at birth and starts to degenerate when the mouse
is 20–30 days old.  At 40–60 days, testicular histology
shows very dilated tubules, an increase in testicular vol-
ume and atrophy of the seminiferous epithelium [69].  In
α-ERKO mice, fluid absorption is reduced at the level of
the efferent ducts [79] and a defect partially mimicked
also by the administration of anti-estrogens in wild-type
mice  with a similar effect on testicular histology  [79,
93–95].  In the male genital tract, the highest concentra-
tion of ERα is found in the efferent ducts [94], and the
estrogen-dependent fluid reabsorption in this site prob-
ably results from estrogen interaction with the ERα dur-
ing prenatal development [79, 92, 96].  The lack of fluid
reabsorption in the efferent ductules of α-ERKO male
mice and the consequent dilatation of these ductules in-
duces a retroactive progressive swelling of the seminif-
erous tubules.  The damage of seminiferous tubule is
due to increased fluid back-pressure and it leads to se-
verely impaired spermatogenesis, coupled with testicu-
lar atrophy, as clearly seen at the age of 150 days [69,
79] (Table 1).  In addition, the pattern of reproductive
hormone profiles is peculiar in α-ERKO male mice: se-
rum Luteinizing hormone (LH) is increased and as a result,
serum testosterone is higher and  Leydig cells hyperpla-
sia is present, but with normal Follicle-stimulating hor-
mone (FSH) [65, 66, 69] (Table 2).

Table 1. Reproductive phenotypes of ERKO and ArKO mice.
Estrogen deficient
knock-out male mice
α-ERKO

β-ERKO

α-βERKO
ArKO

Fertility pattern

Infertility starting at 30 days of
age

Normal fertility

Similar to αERKO Mouse
Normal fertility until 7 months,
fertility decreases with advanc-
ing age.
Infertility at the age of 1 year.

Testicular histology

At birth: normal in adult mice:
germ cell deprivation with dilated
seminiferous tubules and atrophy
of the seminiferous epithelium.
Normal testicular histology at birth
and in adult mice. Increased num-
ber of germ cells at birth.
Similar to αERKO mice
At birth: normal until 14 wk.
In adult mice (age > 1 year): im-
paired spermatogenesis with arrest
of spermatogenesis

Mechanism of induction of infer-
tility
Reduced fluid absorption at level
of the efferent ducts.
Impaired expression of the Na+

transported NHER
–

–
- Failure of germ cell differentiation;
- Need of estrogens for sperm matu
ration through the reproductive
tract;
- Temporary compensatory effect
of estrogens in diet.

ERKO: estrogen receptor knock-out; ArKO: aromatase knock-out.
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Studies performed on α-ERKO mice established not
only the role of estrogens on male reproduction, but also
highlighted a previously unknown physiological function
of efferent ductules.  Thus, efferent ductules, other than
providing an anatomic connection between rete testes
and the epididymis, which is useful for sperm transit
they constitute also a functional structure in which about
90 % of sperm fluid is reabsorbed.  In this view, efferent
ductules regulate sperm concentration, which becomes
higher in the ducts prior to entry into the epididymis [97].
As a matter of fact, the histology of the efferent duct is
very close to that of the proximal tubules of the kidney
[98].  It is likely that the fluid reabsorption in the efferent
ductules is mediated through the Na+ transporter, named
NHE3; the disruption of ERα or the use of anti-estro-
gens resulted in decreased expression of NHE3 mRNA,
as well as in a decrease of other proteins involved in
water reabsorption, such as acquaporin I [99, 100].

Data from the study of ArKO [68] and β-ERKO [67]
on male mice supports the idea that estrogen actions on
the male reproductive tract are more complex than pre-
viously thought on the basis of the only knowledge of α-
ERKO mice physiology [69].  In fact, unlike α-ERKO
mice, male ArKO mice are initially fully fertile [68], but
fertility decreases with advancing age [101], conversely,
β-ERKO mice are fully fertile and apparently have nor-
mal reproductivity also in adulthood [67] (Table 1).  ArKO
mice show an abnormal pattern of circulating gonadot-
ropins according to the absence of the estrogen-depen-
dent inhibitory effect at the pituitary level (Table 3), while
hormonal pattern in β-ERKO mice is less clear (Table 2).
The reproductive phenotype of αβ-ERKO mice is very
close to that of α-ERKO mice and it is characterized by
infertility and enlarged seminiferous tubules [69] (Table

1).  The modification of the testicular histology of the
testes in male ArKO starts at 7 months and, after 1 year,
a complete arrest of spermatogenesis is evident at the
level of early spermatid and Leydig cell hyperplasia, with-
out significant changes in the volume of seminiferous
tubule lumen [101] (Table 1).  Surely, the mechanism
involved in the development of infertility is different in
ArKO if compared with α-ERKO male mice, because
the early arrest of spermatogenesis suggests a failure in
germ cell differentiation, probably due to the lack of es-
trogens in the testicular environment in the first, while
reduced fluid reabsorbion occurs in the second.  These
findings, together with the observation that β-ERKO male
mice are fully fertile [67], lead to the hypothesis that
estrogen activity in the male reproductive tract differs,
with regard to both the types of ERs involved in the path-
way of estrogenic action, and the site of action through
the male reproductive tract [69].  Accordingly, in ArKO
male mice, the failure of germ cell differentiation that is
probably related to the lack of estrogen action on semin-
iferous epithelium while αER disruption and related ar-
rest of fluid reabsorption take place in the efferent ductules
of α-ERKO mice [102].  In very young ArKO mice sper-
matogenesis is preserved because a small amount of
estrogens, such as those introduced with the diet, prob-
ably is sufficient to promote germ cell maturation for a
brief period.  Thus, the degree of infertility is less severe
in ArKO mice than in α-ERKO; since ligand independent
ER pathways remains functionally active [69] in ArKO
mice.  Later, the continuous lack of estrogens causes
sperm abnormalities with advancing age in ArKO mice,
since estradiol is probably necessary to maintain sper-
matogenesis and promote normal sperm maturation, both
in the seminiferous epithelium and through the repro-

Table 2. Reproductive phenotype in estrogen-receptor disruption: a comparative analysis between mice and men.

Testis

Germ cells

Sperm characteristics

Fertility
Hormonal Pattern

α-ERKO
Germ cells loss; enlarged
seminiferous tubule
Normal development of germ cells
when transplanted in the WT
Reduced number; motility and
fertilizing capacity
Infertile
LH        ↑
FSH       =
T           ↑
E2          ↑

β-ERKO mice
Normal

Not described

Normal sperm count

Fertile
LH           =
FSH         =
T              =
E2             =

Estrogen resistance in men (ERα)
Normal volume (20–25 mL)

Not described

Normal sperm count (25×106.mL–1)
Reduced viability (18 %)
Fertile?
LH                ↑
FSH              ↑
T                   ↓=

 E2                 ↑
T  = testosterone; E2 = estradiol
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ductive tract  [15, 90, 101].  Accordingly, recent findings
from in vitro studies on human germ cells treated with
estrogens, suggest that estradiol may serve as a survival
factor for round spermatids and that the lack of estradiol
may promote apoptosis with a resulting failure in elon-
gated spermatid differentiation [103].  Again, ERα is not
present in the seminiferous epithelium, and the presence
of ERα in Sertoli cells does not impair normal
development, as shown in β-ERKO mice which are fully
fertile [69].

The above studies support the concept that a func-
tional ERα, but not ERβ, is needed for the development
and the maintenance of a normal fertility in male mice
[67, 69, 79, 92].  Recently, another estrogen function has
been postulated on the basis of the finding that estrogens
probably regulate cell-to-cell adhesion in the testis and
may play a role in the establishment of Sertoli-germ cell
structural connection [104].  Clearly, further studies are
needed to fully understand the precise role of estrogens
and their receptors on both spermatogenesis and func-
tion of seminal way as well as the importance of intracrine
and paracrine pathways for these effects.  It has to be
remarked, however, that results from mice lacking func-
tional ERs or aromatase enzyme point to an important
role for estrogens in the maintenance of mating behavior
in male mice, and that infertility in α-ERKO, αβ-ERKO
and ArKO mice are, at least partially, due to weekness of
various aspects of mating behavior just at early age
[69, 80].  Sexual behavior, in fact, is strictly linked to
reproductive functions, and if estrogens modulate mat-
ing behavior, they also necessarily affect reproductive

outcomes in an indirect way.
Many studies involving rodents suggest that inap-

propriate exposure to estrogens in utero and during the
neonatal period impairs testicular descent, efferent ductule
function, the hypothalamic-pituitary-gonadal axis, and
testicular function [57, 60, 62, 64, 69].  Hence, a role for
estrogens in the development of male reproductive struc-
tures has been largely supported by several studies. In
both rodents and various animal species, prenatal expo-
sure to diethylstilbestrol, a synthetic potent estrogenic
compound, led to an abnormal development of male re-
productive structures.  It seems that both a delay in
Müllerian duct formation or an incomplete Müllerian duct
regression, with a female-like differentiation of the non-
regressed caudal part may account for abnormal sex
structures at birth, after estrogens excess in prenatal life
[105].  Accordingly, an increase in the expression of anti-
Müllerian-hormone (AMH) mRNA, which is not accom-
panied by a regression of the ducts, may be involved in
male mice fetuses exposed to diethylstilbestrol (DES).
Certainly, the timing of DES exposure is crucial for the
induction of abnormalities of Müllerian duct development
and regression  [57, 105].  In animals, exposure to estro-
gens excess in the neonatal period leads topermanent
changes in testis function and spermatogenesis, with re-
sulting reduced fertility into adulthood  [64, 80].  The
concept that estrogens excess may impair fertility has
been extended also to men, and an excess of environ-
mental estrogens has been related to impaired fertility
[61, 106].  A decline in the sperm count of men in West-
ern countries has coincided with a progressive increase

Table 3. Reproductive phenotype in aromatase deficiency, a comparative analysis between mice and men.

Testis

Germ cells

Sperm characteristics

Fertility
Hormonal pattern

ARKO mice
Simpson et al.

1997[53]
Normal at
14 wk
Disruption of sper-
matogenesis  at 1 of  age
Reduced sperm count
and decreased viability
at 8 month of age
Infertile at 1 year
LH         ↑
FSH        =
T            ↑
E2              Undetect.

Morishima et al.
1995[117]

Increased Volume
34 mL

Not described

Not studied

Not studied
LH        ↑
FSH      ↑
T           ↑
E2             Undetect.

Carani et al.
1997[118]

Normal Volume
8 mL
Germ cell arrest at
spermatocyte level
Severe oligozoosper-
mia absent motility

Infertile
LH         = ↑
FSH      ↑
T            =
E2          Undetect.

Herrmann et al.
2002[120]

Normal Volume
14 mL
Not described

Oligo-asteno
Zoospermia

Fertile?
LH         =
FSH      ↑
T           ↑
E2  Undetect.

Maffei et al.
2004[116]

Normal Volume 10-11
mL Cryptorchidism
Complete germ cell
depletion
Not studied

Infertile
LH        =
FSH     ↑
T           =
E2          Undetect.

Aromatase deficiency in men

T  = testosterone; E2 = estradiol; Undetect. = undetectable
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in environmental estrogens [61, 106–108].  In the past,
uncorrect clinical use of DES by pregnant women in-
creased the incidence of genital malformations at birth
[107].  The most frequent structural and functional ab-
normalities reported were: epididymal cysts, meatal
stenosis, hypospadias, cryptorchidism and microphal-
lus [106-111].  The frequency of abnormalities was de-
pendent on the timing of estrogen exposure, and it was
higher when DES was taken before the 11th week of
gestation  (i.e. the time of Müllerian duct formation)
[109–111].  These data support the previously discussed
hypothesis that the asynchrony between formation and
regression of embryonal reproductive structures is de-
termined by estrogen exposure (e.g. the presence of
Müllerian duct remnants) [105].

In the past, various reports have also demonstrated
that the quality of the semen of men exposed to DES in
utero is significantly worse than that of unexposed con-
trols  [110, 111], although no clear condition of subfertility
or clinical infertility  has been evident [62].  While vari-
ous studies suggest that environmental estrogens affect
male fertility in animal models, the implications for hu-
man spermatogenesis are less clear [112].  Exogenous
estrogens could interfere with the development of the
genita l structures if administered during ear ly
organogenesis, by both leading to an impairment of go-
nadotropin secretion and an imbalance in the androgen-
tos to estrogens ratio, which may account for impaired
androgen receptor stimulation or inhibition, according to
the dose, the cell type and the age [107, 108, 113, 114].

The role of estrogens in male reproductive structure
development remains conflicting.  Animal studies sug-
gest that exposure to excessive amounts of estrogen may
negatively affect the development of male reproductive
organs.  However,these effects are considered to be the
result of an impaired hypothalamic-pituitary function, as
a consequence of estrogen excess and of the concomi-
tant androgen deficiency [113, 114].  Much of the knowl-
edge on estrogen overexposure and human fertility is
inferred from animal data, and the validity of these con-
cepts has not been established in men.

The negative effects of estrogen excess during fetal
life are well documented, but we do not know if con-
genital estrogen deprivation may affect the development
of male reproductive structures.  Mouse models of con-
genital estrogen deficiency show a normal male repro-
ductive structure, suggesting that congenital lack of es-
trogen activity does not affect the development of male
reproductive organs in animals [69, 80].  Anyhow, some
defects in the development of the efferent ductules in α-

ERKO mice are thought to be a consequence of a con-
genital absence of estrogen action [93], such as a defect
in cremaster muscle development [115].  Bilateral cryp-
torchidism was present in one patient with aromatase de-
ficiency [116], suggesting a possible role of estrogens in
testis descent, although this was not seen in the transgenic
mice models.  The presence of a unique case of cryp-
torchidism among men with aromatase deficiency, does
not permit to draw any conclusions about a possible rela-
tionship between estrogen deficiency and the occurrence
of abnormalities in testis development and descent.

Congenital estrogen deficiency in men is the result of
naturally occurring inactivating mutations of both the
aromatase gene (aromatase deficiency) [71] or of the ERα
gene [70].  To date, five subjects with aromatase defi-
ciency have been described (four adult men and one male
infant) (Table 4) [116–120], and only a unique case of
estrogen resistance is still known [70].  Many clinical
aspects are shared by both the estrogen-resistant man
and the four adult men with aromatase deficiency, but
the possible occurrence of infertility has not been reported
in all of them [71, 81, 116–118, 120–121].  The demon-
stration of abundant ERs in human efferent ducts and
aromatase activity in human sperm, indicates the involve-
ment of estrogens in the reproductive function of men.
On the other hand, data from human subjects with con-
genital estrogen deficiencies have provided conflicting and
somewhat confusing results.  Even though it is hard to
transfer what we have learned from models of estrogen-
deficient mice to men, the comparison of rodents and
human reproductive phenotypes (Tables 2, 3) may be
helpful in resolving questions regarding the role of estro-
gens in male reproductive systems.  Again the reproduc-
tive phenotype of rodents seems to resemble, at least in
part, that of patients with naturally occurring mutations
in their ERα or aromatase gene (Tables 2, 3).

The only man know to be estrogen resistant had re-
duced sperm motility [70], but normal sperm count;
however, α-ERKO mice show an impairment of both
sperm count and sperm viability (Table 2).  The four
adult men affected by congenital aromatase deficiency
showed a variable degree of impaired spermatogenesis
[121].  A severely reduced sperm count and an impair-
ment of sperm viability with germ cell arrest at the level
of primary spermatocytes, was found in one subject [71].
A complete germ cell arrest was shown at the testicular
biopsy in a second subject, whose semen analysis was
unfortunately not available: the patient refused the analysis,
according to his religious believe [116] (Table 3).  A third
patient had a slightly reduced sperm count and reduced
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sperm viability [120] (Table 3).  There is no relevant data
concerning the fourth patient described because the
sperm count was not obtained [117].  It should be noted
that impaired sperm motility is the main feature in both
α-estrogen resistant man and mice, and that germ cell
arrest is the main feature in both aromatase-deficient men
and mice (Table 2,  3).  Thus, the possible association
between the lack of estrogen activity and infertility in
men–which is suggested by the constant finding of ab-
normal spermatogenesis in men with congenital estro-
gen deficiency, together with reproductive abnormalities
in estrogen-deficient mice – discloses the important role
played by estrogens on male reproductive function.

The effects of estrogen replacement treatment on
spermatogenesis are available only in two of the four
adult men with aromatase deficiency. In both, estrogen
administration did not improve neither sperm count nor
motility (Table 5) [71, 118, 120].  In the patient described
by Herrmann et al., estrogen treatment resulted in a de-
cline in the sperm count and a decrease in the testis
volume, probably as a consequence of LH and FSH inhi-
bition [120], but these data should be interpreted with
caution.

The variable degree of fertility impairment in men
with congenital deficiencies of estrogen action or syn-
thesis means that there is uncertainly as to whether these
features are a consequence of a lack of estrogen action
or only epiphenomena, even though a possible role of
estrogens on human spermatogenesis is suggested by
rodent studies.  Our knowledge on the role of estrogens
in human male reproduction is far from complete, and
the issue is more complex, if we consider that excessive
exposure to environmental estrogens is a possible cause
of impaired fertility [61, 106].  Thus, it is difficult to
reconcile existing data about effects of both estrogen
deficiency and excess on male reproductive function [61,
63, 106, 122].

The recent discovery of an inactivating mutation of
the aromatase gene in a male infant  [118], together with
new cases of infant or adult men with congenital estro-

gen deficiency will shed new light on this controversial
issue.  Certainly, better comprehension of the natural his-
tory of human estrogen deficiency will improve our
knowledge about the role of estrogens in male fertility.

5    Regulation of gonadotropin feedback

Animal and human models of congenital estrogen
deficiency provide further evidence on the role of estro-
gens on gonadotropin secretion [71, 78], thus confirm-
ing that aromatization of testosterone is required for the
normal functioning of the hypothalamic-pituitary testicular
axis.

Previous data obtained from gonadotrophin-releas-
ing hormone (GnRH)-deficient males treated with test-
osterone alone, testosterone plus testolactone (an
aromatase inhibitor), or estradiol [123, 124], are available.
Since longtime, these studies showed that the addition of
the aromatase inhibitor completely prevented the sup-
pression of gonadotropin secretion classically induced
by testosterone, in both normal and GnRH-deficient men,
thus revealing a direct and an indirect effect (through
aromatization) of androgens.  These studies demonstrated
an important direct inhibitory effect of estradiol on go-
nadotropin secretion in both the GnRH-deficient and nor-
mal men, and support the concept that at least part of the
inhibitory effect on gonadotropin secretion is mediated
by the conversion of testosterone to estradiol at the pitu-
itary level [123, 124].  In contrast, it seems that the 5α-
reduction of testosterone in DHT does not play an im-
portant role in the pituitary secretion of gonadotropins
[125].

More recently, a hypothalamic site of estrogen ac-
tion has been demonstrated in men.  In order to clarify
the role of estrogen on the feedback regulation of gona-
dotropin secretion at the hypothalamic level, Hayes et al.
[126] showed that the aromatase inhibitor, anastrozole,
led to an increase in the mean gonadotropin levels, in
both normal men and men affected by idiopathic
hypogonadotropic hypogonadism (IHH); the increase was

Table 4. Human aromatase deficiency: summary of the 5 described cases.
Author

Morishima et al., 1995[117]
Carani et al., 1997 [118]

Deladoey et al., 1999 [119]
Maffei et al., 2001 [116]

Herrmann et al., 2002 [120]

Age (years)
24
31
<1
28

27

Location
New York
Modena

Bern
Buenos Aires

Essen

Affected exon
IX
IX
V
V

VI

Mutation
Arg375-Cys
Arg365-Gln

Leu157XDC-stop
Nucleotide 628 G to A

insertion of 10 aa and stop
C to A in splicing acceptor site
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greater in the normal subjects, suggesting a hypothalamic
mode of action.  The authors concluded that estrogen
acts at the hypothalamic level to decrease both GnRH
pulse frequency and pituitary responsiveness to GnRH
[126].  Subsequently, it was postulated that estrogens
play a major role in FSH regulation; this was due to the
fact that anastrozole had a more pronounced effect on
FSH than LH [127].

Accordingly, the effects of estrogens on gonadotro-
pin secretion at the pituitary level have recently been dem-
onstrated to operate from early- to mid-puberty [128, 129]
as well as into old age in men [130].  The administration
of an aromatase inhibitor (anastrozole 1 mg daily for 10
weeks) to boys aged 15–22 years [128] resulted in a
50 % decrease in serum estradiol, with a corresponding
increase in testosterone, LH and FSH.  Recently, another
potent aromatase inhibitor was shown to increase serum
LH, frequency of LH pulse amplitude and the response
of LH to GnRH administration in boys, just during early
and mid-puberty, indicating that estrogens act at the pi-

tuitary level during early phases of puberty [129].  It
seems that the same mechanism continues to operate
during adulthood and old age [130].

Obviously, lack of estrogen activity leads to a rise in
serum gonadotropins in men with congenital estrogen
deficiency (Tables 3, 4).  In the two tables references
for all patients are reported: four adult patients with
aromatase deficiency presented high gonadotropin levels
in presence of normal-to-increased serum testosterone,
thus highlighting the importance of estrogens for the con-
trol of circulating gonadotropins in men.

A detailed study of the effects of different doses of
transdermal estradiol on the pituitary function in men with
congenital aromatase deficiency demonstrated that es-
trogens might control not only the basal secretion of go-
nadotropins but also their responsiveness to GnRH
administration.  In this study, estrogen administration to
a male patient with aromatase deficiency reduced in both
basal and GnRH-stimulated LH, FSH and α-subunit se-
cretion in a dose-dependent manner [131].  These re-

Table 5.  Effect of estradiol treatment on fertility in the two of the four adult men with aromatase deficiency that performed semen analysis
before and during estrogen treatment.

0-6 months
Estradiol 50 µg twice
weekly for 6 months

8 mL
8 mL

1 × 106 /mL
0 %
0 %

0 month

14 mL
13 mL

4
17.4 × 106/mL

10 %
46 %
55 %

6-15 months
Estradiol 25 µg twice
weekly for 9 months

1 × 106 /mL
0 %
0 %

3 months

3
23.1 - 106/mL

5 %
48 %
45 %

15-24 months
Estradiol 12.5 µg twice
weekly for 9 months

8 mL
8 mL

1 × 106 /mL
0 %
0 %

6 months

10 mL
9 mL

1.5
1.11 × 106/mL

0 %
10 %
70 %

Estradiol 50 µg twice weekly for 3 months Estradiol 25 µg twice weekly for 3 months

Carani et al. 1997 [118]
Time

Treatment
(Transdermal estradiol)

Testicular volume
Right
Left

Sperm analysis
Density
Motility
Vitality

Time
Treatment

(Transdermal estradiol)
Testicular volume

Right
Left

Sperm analysis
Volume
Density
Motility

Morphology
Vitality

Herrmann et al. 2002 [120]
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sults have been recently confirmed in the last described
case of aromatase deficiency described  [120].  However,
a complete normalization of serum FSH during estradiol
treatment was not achieved in presence of physiological
levels of circulating estradiol and supraphysiological lev-
els of estrogens were necessary to obtain FSH normal-
ization  [117, 132]; Higher serum FSH was undoubtely
related to the concomitant severe impairment of patient’s
spermatogenesis [118, 132].

Some dilemmas still remain when we interprete these
data from men with congenital estrogen deficiency.  For
example, in the infant with congenital aromatase
deficiency, no abnormalities were found in either gona-
dotropin secretion or testes size [119].  The presence of
normal levels of gonadotropins raises the possibility that
the role of estrogens in the hypothalamo-pituitary-tes-
ticular axis becomes relevant post-infancy, probably in
the peripubertal period  [128, 129].  Thus, the control of
gonadotropin feedback exerted by sex steroids, during
early infancy and childhood, remains a matter of debate.

The precise mechanism of estrogen action at both
the hypothalamic and pituitary levels in men remains un-
clear [109, 133–135].  Whether the respective role of
each ER at these two sites and/or whether non-genomic
estrogen actions play a role in the control of the gona-
dotropin feedback remains to be determined.

Further studies are needed to establish the contribu-
tion of both circulating and locally produced estrogens
to gonadotropin feedback, as well as the target cells in-
volved in estrogen action within the hypothalamus.
Nevertheless, it is now well established that some andro-
gens need to be converted to estrogens in order to en-
sure the integrity of the gonadotropin feedback mecha-
nism in men, having testosterone itself a less significant
role than previously thought.

6    Clinical and therapeutical implication

On the basis of an undisputed role of estrogens on
gonadotropic feedback inhibition, some clinical insights
on the management of male infertility have been made
[109, 134, 135].

Since the 1960s antiestrogen agents have been used
as an empirical treatment of male infertility [136], which
was based on their effect of modulation of the hypotha-
lamic-pituitary testicular axis. The blockade of the nega-
tive feedback on gonadotrophins by the inhibiting estro-
gen action at the hypothalamic and pituitary levels, stimu-
lates LH and FSH secretions with a consequent improve-
ment of spermatogenesis, in the absence of clear evi-

dences of direct effect of antiestrogens on testicular sper-
matogenesis [135, 137–139].  Accordingly, aromatase
inhibitors administration improves fertility rate in infer-
tile men with an impaired testosterone to estradiol ratio
[77].

Clomiphene or tamoxifen have been the most used
antiestrogen agents for the treatment of male infertility
[138–143]; on the contrary the new generation of selec-
tive ER modulators does not show significant changes in
male fertility [147, 148].  Tamoxifen represents the first
line treatment for men affected by idiopathic oligozo-
ospermia as recommended by the World Health Organi-
zation (WHO) (2000) [137].  However, the real efficacy
of antiestrogens is far from being elucidated yet since
other published reports [140, 141] desceibed opposite
conflicting results [138, 142].  Also, it is a matter of
debate whether the increase of sperm density induced
by antiestrogens is actually related to a real improvement
in both sperm fertility and pregnancy rate [139, 143].  A
possible explanation of uncertain results for what con-
cerns antiestrogen efficacy in the treatment of male in-
fertility is that patients with idiopathic oligozoospermic
constitute an heterogeneous group, of which only a sub-
group responds positively to therapy [144, 145].  How-
ever till now all the studies failed to identify the charac-
teristics of this subgroup and now physicians still do not
know in advance who will improve sperm count during
treatment and differences between responder and non-
responder [144, 145].

Tamoxifen (20 mg.day–1) has been also used with
testosterone undecanoate (120 mg.day–1) in men affected
by idiopathic oligozoospermia. This combined treatment
was efficacious in improving not only the sperm param-
eters (total sperm number, sperm morphology and
motility) [142, 146], but also the pregnancy rate [146].

In conclusion, as indicated by WHO, anti-estrogens,
alone or in combination with testosterone, may repre-
sent a first line therapy for idiopathic oligozoospermia,
to produce the use of assisted reproduction techniques.
However, further studies will be necessary to detect the
real efficacy of antiestrogens treatment in improving the
pregnancy rate or to identify the features of the respond-
ers to treatment.

7    Estrogens and male sexual behavior

7.1 Gender-identity and sexual orientation
Sex steroids, mainly testosterone, modulate adult male

sexual behavior in mammals [149].  In non-primate
mammals, sexual dimorphism of the central nervous sys-
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tem (CNS) has classically been ascribed to androgen
exposure in male during late fetal and early neonatal
development; thus testosterone aromatization to estra-
diol was considered to be the key step towards the es-
tablishment of a masculine brain [150–155].  According
to Dorner’s hypothesis [155], a prenatal and perinatal
estrogen exposure of the brain may be responsible for
the establishment of a male brain [156], an event that
paradoxically occurs in the male brain rather than the
female one.  In rodents, ovaries release less estrogen
than testes at this stage of development, and estrogens
are inactivated in the female fetus by various biochemi-
cal mechanisms, such as binding to alpha-fetoprotein
[157].

The role of prenatal sex steroids in the determination
of both the volume of some hypothalamic structures and
adult sexual preference has been suggested in several
studies on different species [153, 154, 156, 159] and it
has been applied also to humans [150–152, 160, 161].
Recently, the role of local hypothalamic aromatase ac-
tivity and expression in partner preference has been con-
firmed in rams [162, 163].  In this study, sexual partner
preferences were strictly linked to the volume of the ovine
sexually dimorphic nucleus (oSDN) (i.e. a larger oSDN
for female-oriented rams, a smaller oSDN for male-ori-
ented rams) and the oSDN was associated with a differ-
ent pattern of aromatase expression (a higher aromatase
expression for female-oriented rams having a bigger
oSDN)  [162, 163].  This study demonstrated for the
first time that aromatase expression, brain structure and
partner preference may be all involved in the determina-
tion of adult sexual behavior [163], and behavioral as-
pects of partner preference.  If we consider also that
differences in aromatase expression in the brain between
male and female rodents develop early [164], and that
males have more neurons containing aromatase mRNA
than females at birth [165], it is possible that estrogen-
related precocious changes in brain structures will de-
termine sexual behavior during adulthood.

 All these studies indicate that it is reasonable to pos-
tulate that aromatization in the CNS may be a prerequi-
site for the development of a male brain (female-oriented
males) in animals.  However, a clear cause-effect rela-
tionship has not been established and different patterns
of aromatase expression in the hypothalamus are only
associated with differences in the volume of hypotha-
lamic structures and partner preferences [162–165].  In
addition, it should also be noted that a different pattern
of hormonal status or differences in volume of brain struc-
ture may be the results of a different behavior rather

than a condition which precedes behavioral features.
In the last two years a lot of data highlighted the

importance of non genomic actions of estrogens in the
brain. In this regard it seems that not only aromatase
expression but also aromatase activity may be modu-
lated by estrogens, via a rapid non genomic pathway,
through plasma membrane receptors [159, 166].  Thus,
non genomic actions of estrogens in the brain may be
involved in the control of sexual behavior [166] and in
the regulation of hypotalamic-pituitary axis [167].

Sexual dimorphism of hypothalamic structures de-
velops in rodents as a consequence of early estrogen
exposure in males or early lack of estrogens in females,
and the same mechanism seems to occur in men and
women [150, 155, 161, 168].  Particularly, it was thought
that testosterone deficiency, and the lack of its estro-
genic metabolites during the early phases of development
could affect sexual orientation  [155, 161, 168].  Anyhow,
the lack of a clear demonstration that sexual orientation
depends on both early estrogen exposure and the volume
of oSDN, makes it difficult to establish if the same
mechanisms operate in humans too.

In humans, the relationship between anatomic struc-
tures of the brain, sex steroid exposure and sexual orien-
tation are more complex.  LeVay suggested that the third
interstitial nucleus of the anterior hypothalamus  (INAH3),
the human analog of the sexually dimorphic nucleus in
the preoptic area  (oSDN-POA), is smaller in women
and homosexual men than in heterosexual men [161].
Previously, INAH3 resulted larger in men than in women
[150, 160]; but there have been conflicting results re-
garding the link between INAH3 and sexual preference
in humans [169] – other studies have found no differ-
ence in the INAH3 volume of homosexual and hetero-
sexual men  [151, 152, 169].

Starting from a proven association between early
estrogen exposure and brain structure on one hand, and
brain structure and partner preference on the other hand,
the role of sex steroids and of testosterone aromatization
on sexual preference has been considered of primary
importance for the determination of both adult sexual
orientation and sexual behavior in both animals and hu-
mans [150, 151, 155, 168, 170, 171].

Recently, a detailed study of a man with aromatase
deficiency did not reveal any abnormalities in gender iden-
tity and sexual orientation [172].  Based on this study,
the patient was categorized as masculine, his gender iden-
tity was male and the psychosexual orientation was
heterosexual.  Data obtained from the other men with
estrogen resistance or aromatase deficiency, confirmed
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the absence of changes in gender identity or sexual ori-
entation in men with a congenital lack of estrogen activ-
ity  [70, 81, 116, 117, 120].  These results contribute new
and important information regarding the effects of es-
trogen deprivation on human male psychosexuality; these
results conflict with the data obtained from animal studies.

Surely, aromatase deficient patients would be sub-
jected to maternal estrogens in utero, and it is also pos-
sible that such estrogen exposure would be sufficient
for normal sexual behavior development, but the fact that
congenital estrogen aromatase deficiency in men does
not affect psychosexual orientation and gender identity,
suggests that estrogen does not have a significant role in
the establishment of some aspects of sexual behavior
during early prenatal and perinatal life in men.  Thus, in
humans psychological and social factors probably re-
main the most relevant determinants of gender-role be-
havior [78, 170–172], with hormones playing a minor
role.  Evidence does exist that a man with complete an-
drogen insensitivity syndrome presents female gender
identity and female heterosexual orientation, notwith-
standing normal early estrogen exposure and a male karyo-
type [114].  Obviously, hormones may affect sexual dif-
ferentiation and sex assignment at birth and, only
indirectly, psychosexual development in men  [114].

Rare syndromes of congenital deficiency of sex ste-
roid synthesis or function in men disclose some impor-
tant differences in the sexual behavior of males of differ-
ent species and reinforce the complexity of the relation-
ship between anatomic correlates and behavior in hu-
mans [173].

However, the cause-effect relationships among sex
steroid exposure, brain structures and partner preferences
remain to be established.

7.2 Sexual behavior
In mammals, adult male sexual behavior is at least

partially dependent on the presence of testosterone, which
is the main hormone involved in male sexuality [174–176].
In men testosterone deficiency frequently produces loss
of libido and erectile dysfunction [175, 176].  At the same
time, testosterone replacement therapy increases sexual
interest and improves sexual behavior [149, 175].  In
contrast, the role of aromatization in the establishment
and maintenance of male sexual behavior has been char-
acterized only recently.  In rodents estrogens are neces-
sary for normal male sexual behavior.  Congenital
aromatase deficiency and estrogen action blockade re-
sult in a severe impairment of sexual behavior in rodents.
ArKO mice [177], αβ−ERKO male mice and α-ERKO

mice exhibit a significant reduction in mounting frequency
and a significantly prolonged latency to mount when
compared with heterozygous and wild-type animals [69,
80, 177].  On the contrary, β-ERKO mice did not show
any defect in the components of sexual behavior, includ-
ing ejaculation.  These findings suggest that at least one
of the ERs [ERα] is required for the expression of simple
mounting behavior in male mice and, as a consequence,
that activation of the androgen receptor alone is not suf-
ficient for a fully normal sexual behavior in rodents, con-
firming thus that aromatization of androgens is also
required.

However, novel evidence suggests that this issue may
be more complex than expected. Genetic background
may affect sexual behavior in some lines of imbreeded a-
knock out mice. Accordingly, some selected genetic back-
grounds restored sexual behavior (particularly intromis-
sion and ejaculation) in α-ERKO mice offspring [178].

Much less is known about the role of estrogens in
sexual behavior in the human male, particularly the de-
gree to which the effects of testosterone may be as-
cribed to its conversion into estradiol.  Some data speak
in favour of a possible role of estrogens on the sexual
behavior in men  [179, 180], but other studies did not
show estrogen to have any positive effects on male sexu-
ality  [181, 182].  A detailed sexual investigation of a man
with aromatase deficiency, before and during testoster-
one or transdermal estradiol treatment, showed an in-
crease in all the parameters of sexual activity  (frequency
of masturbation, sexual intercourse, erotic fantasies and
libido), without significant changes during testosterone
treatment [172].

In men with congenital estrogen deficiency it seems
that estrogens may play a role in adult sexual behavior,
even if it is not possible to exclude the possibility that
improvements observed were the result of an adjustments
in well being and mood, which were produced by the
estrogen replacement therapy.

These findings from transgenic mice and aromatase-
deficient men suggest that the physiological levels of es-
trogen could be required for completely normal sexual
behavior, although androgens are the main sex steroid
involved in controlling male sexual behavior [149].

Recently, ERs have been detected in the penile tissue
of corpora cavernosa  [183, 184] and increasing evidence
suggests that estrogens play an important role in the en-
dothelial function also in men [185].  Thus, it will be not
surprising if in the future it is revealed that estrogens has
a role in erectile function in men[186].
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8    Conclusion

Sex steroids account for sexual dimorphism because
they are responsible for the establishment of primary and
secondary sexual characteristics, which are under the
control of androgens and estrogens in men and women,
respectively.  A previously unsuspected role of estro-
gens on male reproduction changed our knowledge that
reproductive functions of estrogen were confined to
females.  Table 6 summarizes the role of estrogens on
male reproduction system in animals and humans. Re-
cent studies on the role of estrogens in humans  [71, 78,
88, 118] showed that a great number of estrogen actions
are preserved in both sexes  [131, 132], such as  estro-
gens effects on bone and growth arrest [71, 118, 132].
From a biological perspective, this field of research dis-
closes a new mechanism of parsimony, which has been
selected by nature, according to a general conservative
principle.

Surprisingly, data obtained from animals point the
attentions of researchers to the role of estrogens on re-
production in men, a concept  that, in the past was con-
fined only to female reproduction.

Finally, differences on estrogen actions among spe-
cies indicate how difficult it is to apply what we have
learned from animal studies to human physiology, espe-
cially for what concerns behavioral aspects.

Table 6. Summary of both well-established and supposed estrogen actions on male reproductive system.
     Function
Spermatogenesis

Gonadotropin secrection

Sexual behavior

Well-established

Supposed

Well-established

Supposed

Well-established

Supposed

Animals
Fluid reabsorption in the efferent ductules
(ERα)
Sperm concentration (ERα)
Abnormal development of male reproductive
structures after exposure to estrogen excess
Growth control of germ cells proliferation dur-
ing fetal life (ERβ)
Germ cell differentiation
Inhibition of germ cell apoptosis (ERβ)
Control of cell adhesion (particularly
on Sertoli cells)
Inhibition of gonadotropin secretion at pitu-
itary level
Inhibition of gonadotropin secretion at hypo-
thalamic level
Promotion of mating copulative behavior

Determinant for partner preference

Humans
Abnormal development of male repro-
ductive structures after exposure to es-
trogen excess

Control of spermatogenesis and sperm
maturation

Inhibition of gonadotropin secretion at
both pituitary and hypothalamic level

–

No effects on gender identity and sexual
orientation
Possible positive role on male sexual
behavior

The importance of variation among species [187],
the evidences that estrogens  are the major sex steroid
acting on some physiological functions in men [71], the
emerging minor role on others physiological functions
[81], the demonstration that at the same time some con-
servative biological estrogen actions are preserved among
species [69] and between sexes [118] seem to be in con-
trast with the concept that estrogens ensure sexual
dimorphism.  Nevertheless it simply display a multiplic-
ity of actions which demonstrates again the wonderful
way in which Nature operates in assuring the unique-
ness and variety of biological processes.
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