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Abstract: We study the electromagnetic field in this work because we are particularly interested in the gauge sector of 
Podolsky's generalized electrodynamics, where higher-order derivatives form. To represent Podolsky's generalized 
electrodynamics, canonical quantizations and a lower-order derivatives model are applied. We demonstrate that Podolsky's 
model is equivalent to one with reduced-order derivatives. The differential equations for both models should then be 
compared. After obtaining the Hamiltonian formulation, we applied this new formula to the Podolsky Generalized 
equation. This method is used to construct a combined Riemann-Liouville fractional derivative operator as well as a 
fractional variational theory. The fraction variational notion is utilized to build fractional Euler equations and fraction 
Hamilton equations. The Hamilton equations of motion are compatible with the Euler-Lagrange equations. 
 
Keywords: Euler Lagrange Equations, Fractional Derivatives, Hamiltonian Formulation, Lagrangian Formulation, 
Reduced Order Model. 

 
 
1 Introduction  

Dirac's idea of restricted systems is significant in theoretical 
physics, and it is frequently utilized in modern basic 
particle physics [1,2,3,4]. By adding the constraints 
imposed by the Hessian matrix singularity to the 
conventional Hamiltonian and enabling the system to lose 
certain degrees of freedom, this approach determines the 
consistency requirements. Because first-class constraints 
result in gauge transformations that lead to gauge freedom, 
it's necessary to provide gauge fixing conditions for each 
one, which isn't always easy. Higher-ordered systems 
Lagrangians have piqued researchers' interest since they 
arise in a wide range of physical issues. Higher order 
regularization of quantum gauge field theories and so-
called rigid strings [5, 6], rigid particles [7, 8], a relativistic 
particle with curvature and torsion in three-dimensional 
space-time [9], and the work of Podolsky [10] and Bopp 
[11], who independently proposed generalization of 
electrodynamics containing second order derivatives, are 
perhaps the most well-known examples.  

Green [12,13] suggested an gauge invariant 
supersymmetric theories [14, 15] and the effective 
Lagrangian in gauge theories [16] are two more examples. 
Ostrogradski [17] was the first to tackle higher-order 

derivative theories, which led to the Euler-Lagrange 
equations and Hamilton equations of motion. [18] discusses 
how to quantify route integrals in higher-order derivative 
systems. Major Hamilton-Jacobi formalism applications, 
particularly for higher order derivatives, have been found 
[19, 20] .The action function is obtained by solving a set of 
Hamilton-Jacobi partial differential equations for both 
restricted and unconstrained systems, and it is then utilized 
to solve the equations of motion using the WKB 
approximation, as detailed in[21, 22]. Some authors 
investigated the Hamiltonian formulation of higher order 
dynamical systems utilizing Dirac's approach to restricted 
dynamics, where Hamiltonian formulation of regular higher 
order Lagrangians is created and Ostrogradski's traditional 
description of such systems is recovered [23, 24]. In 
reference [25] , a breakthrough was made for systems with 
higher order derivatives and degenerate coordinates.  

A unique development of systems with higher order 
fractional derivatives has been reported in reference 
[26,27], which recovers the route integral quantization for 
both conservative and non-conservative systems. The 
discrete variational approach is used to derive discrete 
Euler-Lagrange equations for higher-order Lagrangians and 
the associated discrete Hamiltonian in reference[28].The 
essential features of the fractional derivative, on the other 
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hand, are as follows [29,30,31]. 
• It imitates all of the ideas and features of an 

ordinary derivative, such as the quotient, product, 
and chain rules, that aren't satisfied by other 
common definitions. 

• It has lately piqued the interest of a lot of 
academics, and several applications have been 
rebuilt using this definition. 

• It solves ordinary differential equations and 
systems quickly and correctly. 

• It's a technique for combining the Lagrange and 
Hamiltonian equations into system ordinary 
differential equations modeling.  

• It enables the creation of new comparisons and 
applications.   

As a consequence, we recreate the Podolsky field in this 
work using the fractional derivative, which the authors 
utilized in equation modeling, and then apply the 
Generalized fractional derivative to generate Hamiltonian 
equations for this system. In actuality, solving the new 
fractional derivatives equations is more difficult. As a 
result, we've proposed a new generalized solution approach 
for these equations. These formulae have been generalized 
in continuous systems to operate with second-order 
derivatives. This method is used to address the Podolsky 
problem in generalized electrodynamics. 
The main goal of this paper is to introduce an auxiliary 
massive vector field 𝐵", lower the order of the derivatives 
in Podolsky's generalized electrodynamics, and investigate 
quantization of the resulting model. The dynamical 
development is shown to occur in a phase space with two 
first-class and two second-class constraints, for a total of 
five degrees of freedom, which is the same as in a typical 
higher order model. 
The remainder of the article is arranged as follows: The 
definitions of fractional derivatives are briefly discussed in 
Section 2. The fractional structure of the Euler-Lagrangian 
equation is discussed in Section 3. The equations of motion 
in terms of fractional Hamiltonian density are discussed in 
Section 4. One illustrative example is examined in Section 
5. The Euler-Lagrange equations are then used to obtain 
fractional Podolsky equations in section 6. In Section 7, we 
show that Podolsky’s model is equivalent to a reduced 
order derivatives one. The article ends with some final 
conclusions (Section8). 
 
2 Definitions and properties of Fractional 
derivative of Riemann–Liouville 
 
Some of the basic concepts used in this work are briefly 
presented in this section of the study. The fractional 
derivatives of the Riemann-Liouville left and right are 
defined as follows: 

The fractional derivative left of Riemann-Liouville: 
 

𝐷$ %
&𝑓(𝑥) =

1
Γ(𝑛 − 𝛼) 1

𝑑
𝑑𝑥3

4

5 (𝑥
%

$
− 𝜏)47&89𝑓(𝜏)𝑑𝜏.																																				(1) 

The right Riemann- Liouville fractional derivative 
 

𝐷% <
&𝑓(𝑥) =

1
Γ(𝑛 − 𝛼) 1−

𝑑
𝑑𝑥3

4

5 (𝜏						
%

$
− 𝑥)47&89𝑓(𝜏)𝑑𝜏.																																			(2) 

 
where Γ denotes the Gamma function, and 	𝛼		is the order 
of the derivative such that 𝑛 − 	1 < 	𝛼 < 	𝑛. If 𝛼 is an 
integer, these derivatives are defined in the usual sense, i.e. 

𝐷$ %
&𝑓(𝑥) = 1

𝑑
𝑑𝑥3

4

𝑓(𝑥)																																																									(3) 
 

𝐷$ @
&𝑓(𝑥) = 1

𝑑
𝑑𝑥3

4

𝑓(𝑡)																			𝛼 = 1,2,.																					(4) 
	 

3 The Euler-Lagrangian Formula in fraction 
form with Podolsky's Generalized Equation. 
 
In the Lagrangian, the dynamics of a physical system are 
encoded as a function of the positions and velocity of all 
the degrees of freedom comprising the system. One 
considers paths in the configuration space to extract the 
dynamics. The position and velocity at each time and also 
the value of the Lagrangian are determined for a given 
direction. The continuous structure of Lagrangian density 
denoted by the dynamic field variables, generalized 
coordinate 𝝍𝝆 and its second-order derivatives, generalized 
velocities 𝐷%F <

G 𝐷%H <
G𝝍𝝆(𝑥, 𝑡)defined as 

ℒ

= ℒ J
𝝍𝝆, 𝐷$ %F

& 𝝍𝝆(𝑥, 𝑡), 𝐷%F <
G𝝍𝝆(𝑥, 𝑡),

𝐷$ %F
& 𝐷$ %H

& 𝝍𝝆(𝑥, 𝑡), 𝐷%F <
G 𝐷%H <

G𝝍𝝆(𝑥, 𝑡)
K																	(5) 

For this Lagrangian density, the Euler-Lagrange equation 
can be given as a fractional form. 

⎣
⎢
⎢
⎢
⎡

𝜕ℒ
𝜕𝝍𝝆

+
𝜕ℒ

𝜕 𝐷$ %F
& 𝝍𝝆(𝑥, 𝑡)

+
𝜕ℒ

𝜕 𝐷%F <
G𝝍𝝆(𝑥, 𝑡)

+
𝜕ℒ

𝜕 𝐷$ %F
& 𝐷$ %H

& 𝝍𝝆(𝑥, 𝑡)
+

𝜕ℒ
𝜕 𝐷%F <

G 𝐷%H <
G𝝍𝝆(𝑥, 𝑡)⎦

⎥
⎥
⎥
⎤

= 0																																																																																																(6) 
Using the variational principle, we can write: 
𝛿𝑆 = ∫𝛿ℒ		𝑑Z𝑥=0   																																																																	(7) 
Using Eq. (5), the variation of ℒ is: 
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𝛿ℒ

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜕ℒ
𝜕𝝍𝝆

𝛿𝝍𝝆

+
𝜕ℒ

𝜕 𝐷$ %F
& 𝝍𝝆(𝑥, 𝑡)

𝛿 𝐷$ %F
& 𝝍𝝆(𝑥, 𝑡) +

𝜕ℒ
𝜕 𝐷%F <

G𝝍𝝆(𝑥, 𝑡)
𝛿 𝐷%F <

G𝝍𝝆(𝑥, 𝑡) +

𝜕ℒ
𝜕 𝐷$ %F

& 𝐷$ %H
& 𝝍𝝆(𝑥, 𝑡)

𝛿 𝐷$ %F
& 𝐷$ %H

& 𝝍𝝆(𝑥, 𝑡) +

𝜕ℒ
𝜕 𝐷%F <

G 𝐷%H <
G𝝍𝝆(𝑥, 𝑡)

𝛿 𝐷%F <
G 𝐷%H <

G𝝍𝝆(𝑥, 𝑡)
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑑\𝑥		(8) 

 
Substituting Eq. (6) into Eq. (7), and using the following  
commutation relation 
 

^
𝛿 𝐷$ %F

& 𝝍𝝆(𝑥, 𝑡) = 𝐷$ %F
& 𝛿𝝍_(𝑥, 𝑡)

𝛿 𝐷%F <
G𝝍𝝆(𝑥, 𝑡) = 𝐷%F <

G𝛿𝝍_(𝑥, 𝑡)
`																														(9) 

 

^
𝛿 𝐷$ %F

& 𝐷$ %H
& 𝝍𝝆(𝑥, 𝑡) = 𝐷$ %F

& 𝐷$ %H
& 𝛿𝝍_(𝑥, 𝑡)

𝛿 𝐷%F <
G 𝐷%H <

G𝝍𝝆(𝑥, 𝑡) = 𝐷%F <
G 𝐷%H <

G𝛿𝝍_(𝑥, 𝑡)
`									(10) 

 
we get, 
 

5

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕ℒ
𝜕𝝍𝝆

𝛿𝝍𝝆 +
𝜕ℒ

𝜕 𝐷$ %F
& 𝝍𝝆(𝑥, 𝑡)

𝛿 𝐷$ %F
& 𝝍𝝆(𝑥, 𝑡)

+
𝜕ℒ

𝜕 𝐷%F <
G𝝍𝝆(𝑥, 𝑡)

𝛿 𝐷%F <
G𝝍𝝆(𝑥, 𝑡)

+
𝜕ℒ

𝜕 𝐷$ %F
& 𝐷$ %H

& 𝝍𝝆(𝑥, 𝑡)
𝛿 𝐷$ %F

& 𝐷$ %H
& 𝝍𝝆(𝑥, 𝑡) +

𝜕ℒ
𝜕 𝐷%F <

G 𝐷%H <
G ∂"𝝍_(𝑥, 𝑡)

𝛿 𝐷%F <
G 𝐷%H <

G𝝍𝝆(𝑥, 𝑡)
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑑Z𝑥

= 0																																																																																									(11) 
 
Integrating by parts the second and the third and the fourth 
and the fifth  terms in Eq. (11) , this lead to Euler – 
Lagrange equations. 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜕ℒ
𝜕𝝍𝝆

− 𝐷$ %F
& 𝜕ℒ
𝜕 𝐷$ %F

& 𝝍𝝆(𝑥, 𝑡)
−

𝐷%F <
G 𝜕ℒ
𝜕 𝐷%F <

G𝝍𝝆(𝑥, 𝑡)

+ 𝐷$ %F
& 𝐷$ %H

& 𝜕ℒ
𝜕 𝐷$ %F

& 𝐷$ %H
& 𝝍𝝆(𝑥, 𝑡)

+

𝐷%F <
G 𝐷%H <

G 𝜕ℒ
𝜕 𝐷%F <

G 𝐷%H <
G𝝍𝝆(𝑥, 𝑡) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0																																															(12) 
As a special case, taking σ,μ= 0,i. the Euler – Lagrange 
reduce to the original relations like: 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜕ℒ
𝜕𝝍𝝆

− 𝐷$ @
& 𝜕ℒ
𝜕 𝐷$ @

&𝝍𝝆(𝑥, 𝑡)

− 𝐷@ <
G 𝜕ℒ
𝜕 𝐷@ <

G𝝍𝝆(𝑥, 𝑡)
− 𝐷$ %c

& 𝜕ℒ
𝜕 𝐷$ %c

&𝝍𝝆(𝑥, 𝑡)
−

𝐷%c <
G 𝜕ℒ
𝜕 𝐷%c <

G𝝍𝝆(𝑥, 𝑡)

+ 𝐷$ @
& 𝐷$ @

& 𝜕ℒ
𝜕 𝐷$ @

& 𝐷$ @
&𝝍𝝆(𝑥, 𝑡)

+

𝐷@ <
G 𝐷@ <

G 𝜕ℒ
𝜕 𝐷@ <

G 𝐷@ <
G𝝍𝝆(𝑥, 𝑡)

+ 𝐷$ %c
& 𝐷$ %c

& 𝜕ℒ
𝜕 𝐷$ %c

& 𝐷$ %c
&𝝍𝝆(𝑥, 𝑡)

+

𝐷%c <
G 𝐷%c <

G 𝜕ℒ
𝜕 𝐷%c <

G 𝐷%c <
G𝝍𝝆(𝑥, 𝑡) ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0																																																									(13) 
Other motion equations are derived from the variables of 
the other fields (𝝓	and	𝑨𝒊	), using the Euler-Lagrange 
theorem, as follows: 

⎣
⎢
⎢
⎢
⎡

𝜕ℒ
𝜕𝝓 − 𝐷$ @

& 𝜕ℒ
𝜕 𝐷$ @

&𝝓
− 𝐷$ %c

& 𝜕ℒ
𝜕 𝐷%F <

G𝝓

+ 𝐷$ @
& 𝐷$ @

& 𝜕ℒ
𝜕 𝐷$ @

& 𝐷$ @
&𝝓

+ 𝐷%c <
G 𝐷%c <

G 𝜕ℒ
𝜕 𝐷%c <

G 𝐷%c <
G𝝓⎦
⎥
⎥
⎥
⎤

		

= 0																																																																																											(14) 

⎣
⎢
⎢
⎢
⎡

𝜕ℒ
𝜕𝑨𝒊

− 𝐷$ @
& 𝜕ℒ
𝜕 𝐷$ @

&𝑨𝒊
− 𝐷$ %c

& 𝜕ℒ
𝜕 𝐷$ %c

&𝑨𝒊

+ 𝐷$ @
& 𝐷$ @

& 𝜕ℒ
𝜕 𝐷$ @

& 𝐷$ @
&𝑨𝒊

+ 𝐷%c <
G 𝐷%c <

G 𝜕ℒ
𝜕 𝐷%c <

G 𝐷%c <
G𝑨𝒊⎦

⎥
⎥
⎥
⎤

= 0																																																																																												(15) 
 
4 New Derivatives with Fractional 
Hamiltonian Formulation Using Podolsky's 
Generalized Equation 
 
The Lagrangian of the classical field containing fractional 
partial derivatives, is in the form 

𝐿

= ℒ

⎣
⎢
⎢
⎡𝝍𝒑, 𝐷$ %F

& 𝝍𝝆(𝑥, 𝑡), 𝐷%F <
G𝝍𝝆(𝑥, 𝑡)

, 𝐷$ %F
& 𝐷$ %H

& 𝝍𝝆(𝑥, 𝑡),

𝐷%F <
G 𝐷%H <

G𝝍𝝆(𝑥, 𝑡) ⎦
⎥
⎥
⎤
																												(16) 

Eq. (16) can be written as follows: (𝜇, 𝜎 = 	0, 𝑖), we get: 
𝐿 =

ℒ o
𝝍𝝆, 𝐷$ @

&𝝍𝝆, 𝐷$ %c
&𝝍𝝆, 𝐷$ @

p&𝝍𝝆,
𝐷$ @
& 𝐷$ @

&𝝍𝝆, 𝐷$ %c
& 𝐷$ @

&𝝍𝝆, 𝐷$ %c
& 𝐷$ %c

&𝝍𝝆,
q 															(17) 

 
We introduce the generalized momenta as [17]: 
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𝝅𝜶𝟏 =
𝜕ℒ

𝜕 𝐷$ @
&𝝍𝝆(𝑥, 𝑡)

− 𝐷$ @
& o

𝜕ℒ
𝜕 𝐷$ @

p&𝝍𝝆(𝑥, 𝑡)
q																			(18) 

 
	𝝅𝜶𝟐

=
𝜕ℒ

𝜕 𝐷$ @
p&𝝍𝝆(𝑥, 𝑡)

,																																																															(19) 

	 
In many cases, we take 𝜋G9 = 0		𝑎𝑛𝑑			𝜋Gp = 0	because we 
define (in the Lagrangian density and the Hamiltonian 
density) the time derivative in the right side as 
𝐷$ @
&𝛙𝛒				and			 𝐷$ @

p&𝝍𝝆	 so that		𝜋&9 =
zℒ

z {| }
~𝝍𝝆(%,@)

−

𝐷$ @
& � zℒ

z {| }
�~𝝍𝝆(%,@)

� = 0, 𝑎𝑛𝑑	𝜋&p =
zℒ

z {| }
�~𝝍𝝆(%,@)

=

0,Therefore take 𝜋G9 = 0		𝑎𝑛𝑑	𝜋Gp = 0	.Thus, the 
Hamiltonian reads as : 
	𝐻 = 	𝜋&9 𝐷$ @

&𝝍𝝆(𝑥, 𝑡) + 𝜋&p 𝐷$ @
p&𝝍𝝆(𝑥, 𝑡)

− 𝐿 �
𝝍𝝆, 𝐷$ @

&𝝍𝝆, 𝐷$ %c
&𝝍𝝆, 𝐷$ @

p&𝝍𝝆,
𝐷$ @
& 𝐷$ @

&𝝍𝝆,
𝐷$ @
& 𝐷$ @

&𝝍𝝆, 𝐷$ %c
& 𝐷$ %c

&𝝍𝝆

�																											(20) 

 
When we calculate the Hamiltonian's total differential, we 
get 
𝑑𝐻

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 	𝑑	𝜋&9 𝐷$ @

&𝝍𝝆 + 		𝝅𝜶𝟏𝑑 𝐷$ @
&𝝍𝝆 +

𝑑𝜋&p 𝐷$ @
& 𝐷$ @

&𝝍𝝆 + 𝝅𝜶𝟐𝑑 𝐷$ @
& 𝐷$ @

&𝜓_

+𝑑𝝅𝜶𝟑 𝐷$ @
& 𝐷$ @

& 𝐷$ @
&𝝍𝝆 −

𝜕ℒ
𝜕𝝍𝝆

𝑑𝝍𝝆 −

𝜕ℒ
𝜕 𝐷$ @

&𝜓_
𝑑 𝐷$ @

&𝝍𝝆

−
𝜕ℒ

𝜕 𝐷$ %c
&𝝍𝝆

𝑑 𝐷$ %c
&𝝍𝝆 −

𝜕ℒ
𝜕 𝐷$ @

& 𝐷$ @
&𝜓_

𝑑 𝐷$ @
& 𝐷$ @

&𝜓_

−
𝜕ℒ

𝜕 𝐷$ @
& 𝐷$ %�

& 𝝍𝝆
𝑑 𝐷$ @

& 𝐷$ %c
&𝝍𝝆 −

𝜕ℒ
𝜕 𝐷$ %c

& 𝐷$ @
&𝝍𝝆

𝑑 𝐷$ %c
& 𝐷$ @

&𝝍𝝆 −

𝜕ℒ
𝜕 𝐷$ %c

& 𝐷$ %c
&𝝍𝝆

𝑑 𝐷$ %c
& 𝐷$ %c

&𝝍𝝆
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

																	(21) 

By substituting the conjugate momenta values, we get 

𝑑𝐻

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝐷$ @

&𝝍𝝆	𝑑	𝝅&9 + 𝐷$ @
& 𝐷$ @

&𝝍𝝆𝑑𝝅𝜶𝟐 −
𝜕ℒ
𝜕𝝍𝝆

𝑑𝝍𝝆

−
𝜕ℒ

𝜕 𝐷$ %c
&𝝍𝝆

𝑑 𝐷$ %c
&𝝍𝝆 −

𝜕ℒ
𝜕 𝐷$ %c

& 𝐷$ %�
& 𝝍𝝆

𝑑 𝐷$ %c
& 𝐷$ %c

&𝝍𝝆

−
𝜕ℒ

𝜕 𝐷$ %c
& 𝐷$ @

&𝝍𝝆
𝑑 𝐷$ %c

& 𝐷$ @
&𝝍𝝆 −

𝜕ℒ
𝜕 𝐷$ %c

& 𝐷$ %c
&𝝍𝝆

𝑑 𝐷$ %c
& 𝐷$ %c

&𝝍𝝆 −
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

			(22) 

This means that, the Hamiltonian is a function of the form 
ℋ=

ℋo
𝝅𝜶𝟏, 𝝅𝜶𝟐,𝝍𝝆, 𝐷$ %c

&𝝍𝝆, 𝐷$ @
& 𝐷$ %�

& 𝝍𝝆,
𝐷$ %c
& 𝐷$ @

&𝝍𝝆, 𝐷$ %c
& 𝐷$ %c

&𝝍𝝆,
q																										(23) 

The total differential of the Hamiltonian, therefore, takes 
the form of 
𝑑ℋ 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

zℋ
z𝝅𝜶𝟏

𝑑𝝅𝜶𝟏 +
zℋ
z�~�

𝑑𝝅𝜶𝟐 +
zℋ
z𝝍𝝆

𝑑𝝍𝝆 +
zℋ

z {| �c
~ 𝝍𝝆

𝑑 𝐷$ %c
&𝝍𝝆 +

zℋ
z {| �c

~ {| }
~𝝍𝝆

𝑑 𝐷$ %c
& 𝐷$ @

&𝝍𝝆

+ zℋ
z {| }

~ {| �c
~ 𝝍𝝆

𝑑 𝐷$ @
& 𝐷$ %c

&𝝍𝝆 +

zℋ
z {| �c

~ {| �c
~ 𝝍𝝆

𝑑 𝐷$ %c
& 𝐷$ %c

&𝝍𝝆 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

							(24) 

We get the Hamilton equations of motion by comparing 
(22) and (24), 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝜕ℋ
𝜕𝝍𝝆

= −
𝜕ℒ
𝜕𝝍𝝆

𝜕ℋ
𝜕𝜋&9

= 𝐷$ @
&𝝍𝝆

𝜕ℋ
𝜕𝝅𝜶𝟐

= 𝐷$ @
p&𝝍𝝆

																																																																(25) 

The equation (25) is rewritable with the Euler Lagrange and 
this is the form of the equation. 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
𝜕ℋ
𝜕𝝍𝝆

= −𝜋&9 + 𝝅𝜶𝟐 −																																																																										

𝐷$ %c
& o

𝜕ℒ
𝜕� 𝐷$ %c

&𝝍𝝆�
q + 𝐷$ %c

p& o
𝜕ℒ

𝜕� 𝐷$ %c
&𝝍𝝆�

q																																					

𝜕ℋ
𝜕 𝐷$ %c

& 𝐷$ @
&𝝍𝝆

= −
𝜕ℒ

𝜕 𝐷$ %c
& 𝐷$ @

&𝝍𝝆
																											(	26)		

𝜕ℋ
𝜕 𝐷$ @

& 𝐷$ %c
&𝝍𝝆

= −
𝜕ℒ

𝜕 𝐷$ @
& 𝐷$ %c

&𝝍𝝆
																																															

𝜕ℋ
𝜕 𝐷$ %c

& 𝐷$ %c
&𝝍𝝆

= −
𝜕ℒ

𝜕 𝐷$ %c
& 𝐷$ %c

&𝝍𝝆
																																												

 

We can re-write Eq(26) using the field variables (𝑨𝟎, 𝑨𝒊)so 
that we get 
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⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧
∂ℋ
∂𝐀𝟎

= − D� �
�π99 + D� �

p�𝛑𝟐𝟏 −																																																																				

D� ��
� o

∂ℒ
∂� D� ��

� 𝐀𝟎�
q + D� ��

p� o
∂ℒ

∂� D� ��
� 𝐀𝟎�

q																																				

∂ℋ
∂𝐀𝐢

= − D� �
�π9p + D� �

p�𝛑𝟐𝟐 −																																																																					

D� ��
� o

∂ℒ
∂� D� ��

� 𝐀𝐢�
q + D� ��

p� o
∂ℒ

∂� D� ��
� 𝐀𝐢�

q										(27)				

𝜕ℋ
𝜕𝜋99

= 𝐷$ @
&𝑨𝟎																																																																																																

𝜕ℋ
𝜕𝜋9p

= 𝐷$ @
&𝑨𝒊																																																																																																	

𝜕ℋ
𝜕𝜋p9

= 𝐷$ @
p&𝑨𝟎																																																																																																	

𝜕ℋ
𝜕𝝅𝟐𝟐

= 𝐷$ @
p&𝑨𝒊																																																																																																	

 

Expand 𝜋&9, 𝝅𝜶𝟐, with the equation taking the form 
of	�𝜋99, 𝝅𝟏𝟐, 𝜋p9, 𝝅𝟐𝟐�	 respectively, we get: 
 
 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧

�ℋ
�𝐀𝟎

= − D� �
�π99 + D� �

p�𝛑𝟐𝟏																																																																								

− D� ��
� o �ℒ

�� ��  �
¡ 𝐀𝟎¢

q + D� ��
p� o �ℒ

�� ��  �
¡ 𝐀𝟎¢

q																																																

�ℋ
�𝐀𝐢

= − D� �
�π9p + D� �

p�𝛑𝟐𝟐																																																																									

− D� ��
� o �ℒ

�� ��  �
¡ 𝐀𝐢¢

q + D� ��
p� o �ℒ

�� ��  �
¡ 𝐀𝐢¢

q																						(28)														

zℋ
z�££

= 𝐷$ @
&𝑨𝟎																																																																																																	.

zℋ
z�£�

= 𝐷$ @
&𝑨𝒊																																																																																																	

zℋ
z��£

= 𝐷$ @
p&𝑨𝟎																																																																																																	

zℋ
z𝝅𝟐

𝟐 = 𝐷$ @
p&𝑨𝒊																																																																																																	

The above equations describe the form of Hamiltonian 
equations, with regard to field variables(𝑨𝟎, 𝑨𝒊) and 
fractional derivatives of Lagrangian. Equations (29) is the 
Hamiltonian equation using the fractionary derivatives of 
Riemann-Liouville. 𝜶 →1  is taken, we obtain the classical 
integer case equations[32]. 
 
5 Illustrative Examples 
 
Podolsky's Generalized Electrodynamics in fractional 
form 
The most general form of Lagrangian density for a four-
vector field is given by the so-called Podolsky Lagrangian 
density [33] 

ℒ¥¦ =	−	
1
4𝐹"¨𝐹

"¨ −	𝑎p𝜕©𝐹&©𝜕&𝐹_&																											(29) 
Where 

 𝐹"¨ = 𝜕"𝐴« −
𝜕«𝐴"																																																																																			(30) 
and an is 𝑎  variable-length argument. The Greek indices 
run from 0 to 3, and we use the Minkowski metric (+, −, −, 
−).This is a simple Lagrangian, with just the second-order 
derivative term proportional to the parameter serving as a 
roundabout. In reality, because Podolsky's term is entirely 
reliant on 𝐴" through the combination 𝐹"¨, the model 
exhibits the same gauge invariance as ordinary 
electrodynamics. That is, Eq.(29) remains constant during 
the transition. 
𝛿𝐴" = 𝐷$ %¬

& 𝛬                           (31)                                                                                                         
when it comes to a particular function (x). Cuzinatto and de 
Melo [33] demonstrated that if one requires invariance 
under Eq. (31) and allows for a second order derivatives 
Lagrangian with suitable assumptions, then Eq.(31) may be 
obtained by following Utiyama's program [34]. 
So, we can write the Lagrangian (29) as: 
ℒ = −	9

p
𝐹®¯𝐹®¯ −	𝑎p[(𝜕¯𝐹®¯)p − (𝜕®𝐹®¯)p]																				(32)                                                         

In Riemann - Liouville fractional form we use these 
relations for rewriting the Podolsky Lagrangian density : 

o
𝐹"¨ = 𝐷$ %F

& 𝐴« − 𝐷$ %¬
& 𝐴"

𝐹"¨ = 𝐷$ %F
& 𝐴« − 𝐷$ %¬

& 𝐴"
q																																															(33) 

J
𝜕& = 𝐷$ %F

& = � 𝐷$ @
&, 𝐷$ %c

& �

𝜕& = 𝐷$ %F
& = � 𝐷$ @

&, − 𝐷$ %c
& �
K																																									(34) 

𝐹"¨𝐹"¨

= 2 ² 𝐷$ %F
& 𝐴« 𝐷$ %F

& 𝐴«

− 𝐷$ %F
& 𝐴« 𝐷$ %¬

& 𝐴"³																																																														(35) 

o
A� = �ϕ, A¶¶⃗ �
A� = �ϕ,−A¶¶⃗ �

q																																																																				(36) 

using definition of left Riemann – Liouville fractional 
derivative, the fractional electromagnetic lagrangian density 
formulation takes the form : 
ℒ

= −	
1
2 J
� 𝐷$ @

&𝐴¯�
p
− 2 𝐷$ @

&𝐴¯ 𝐷$ %c
&𝜙

+� 𝐷$ %c
&𝜙�

p K 					

− 𝑎p J
¹ 𝐷$ %c

& 𝐷$ @
&𝐴¯ − 𝐷$ @

& 𝐷$ %c
&𝜙º

p

−¹ 𝐷$ @
& 𝐷$ %c

& 𝐴¯ − 𝐷$ %c
& 𝐷$ @

&𝜙º
pK																														(37) 

 
Equations of motion, using Euler- Lagrange Eq.(14), by 
taking the derivative with respect to		𝜙 , we get: 
 
²1 + 2𝑎p� 𝐷$ %c

& �
p
³ 𝐷$ %c

& ¹ 𝐷$ %c
& 𝐷$ @

&𝐴¯ − 𝐷$ @
& 𝐷$ %c

&𝜙º
= 0																																																																																															(38) 

Now use the general formula (15) for the other field 
variable 𝐴¯. to get other motion equations. 
	²1 + 2𝑎p� 𝐷$ @

&�
p
³ 𝐷$ @

&¹ 𝐷$ %c
& 𝐷$ @

&𝐴¯
− 𝐷$ @

& 𝐷$ %c
&𝜙º 															= 0																	(39) 
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Adding equations (35) and (36) to get 
 

				J
1 + 2𝑎p �� 𝐷$ @

&�
p
− � 𝐷$ %c

& �
p
¢

¹ 𝐷$ @
& + 𝐷$ %c

& º¹ 𝐷$ %c
&𝜙 − 𝐷$ @

&𝐴¯º
K 	= 0													(40) 

 
This is the second non-homogeneous fractional equation. 
If 𝛼	goes to 1,then Eq. (38) and (39) become: 

[1 + 2𝑎p(∂®p − ∂¯p)][𝜕® + 𝜕¯]𝐹®
= 0																																					(41) 

or equivalently 
¹1 + 𝑎p𝜕"𝜕"º𝜕"𝐹"¨ = 0																																												(42) 
 
The sign 𝜕"𝜕" represents the D'Alembertian operator, 
which is û in  this case. It's worth noting that the equations 
of motion are invariant under a variety of circumstances 
Eq.(31). Podolsky's expanded version of Maxwell 
equations, incorporating Gauss' rule for v = 0 and the 
Maxwell-Ampere equation for spatial values of the index, 
may be thought of as Eq.(42). Because the Maxwell 
equations are definitional rather than kinematic equations, 
the second half of the equations remains the same Eq.(30). 
As can be shown, the duality symmetry between electric 
and magnetic forces is violated for Eq.(42). As indicated in 
Section 1, a detailed account is available. The subject is 
covered in [35]. 
The model (29) clearly represents a well-defined generic 
situation. In the limit a⇢ 0, electrodynamics reproduces 
conventional Maxwell's theory. As a result, the gauge field 
obtains a new 1/a mass in a gauge invariant fashion, in 
addition to the normal massless mode, as can be shown 
from the equations of motion. However, we point out that 
the limit a ⇢ 0,  is not continuous in terms of the model's 
degrees of freedom because it involves an abrupt shift in 
the theory's constraint structure. We are obliged to deal 
with a vector particle with two potential mass excitations 
corresponding to the zero and 1/a poles of the propagator if 
we fix a gauge and directly quantize model (29). An 
alternate view, which will be presented in the next section, 
is to think of these two enormous models as belonging to 
two different fields. 
Now we want to derive Eq.(32) using the Hamiltonian 
density equations of motion. First we determine 𝜋99, 
𝜋9p, 𝜋9\	and 𝜋p9 using Eqs.(28): 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝜋99 = 	

𝜕𝐿
𝜕( 𝐷$ @

&𝜙)	
−
𝑑
𝑑𝑡 o

𝜕𝐿
𝜕( 𝐷$ @

p&𝜙)	
q = 0																																																		

𝜋9p = 	
𝜕𝐿

𝜕( 𝐷$ @
&𝐴¯)	

−
𝑑
𝑑𝑡 o

𝜕𝐿
𝜕( 𝐷$ @

p&𝐴¯)	
q																																																							

	= 𝐷$ @
&𝐴¯ − 𝐷$ @

&𝐴®																																																																											

𝜋p9 = 	
𝜕𝐿

𝜕( 𝐷$ @
p&𝜙)	

= 0																																															(42)														

𝜋pp = 	
𝜕𝐿

𝜕( 𝐷$ @
p&𝐴¯)	

= −2𝑎p 𝐷$ @
&𝐹®																																																							

= −2𝑎p¹ 𝐷$ @
p&𝐴¯ − 𝐷$ @

& 𝐷$ %c
& 𝐴®º																																													

	 

The primary constraints are: 
𝜋99 = 	0																																																																																						(43) 
𝜋p9 = 	0																																																																																						(44) 
Then, using Eq.(20), the Hamiltonian density can be written 
as: 
𝐻

=

⎣
⎢
⎢
⎢
⎢
⎡ (𝜋9p)p + 𝜋9p	 𝐷$ %c

& 𝐴® +
1
4𝑎p

(𝜋pp)p

−𝑎p¹ 𝐷$ %c
& 𝜋9p 𝐷$ %¼

& 𝜋9p − 𝐷$ %c
& 	𝐹¯½ 𝐷$ %¼

& 	𝐹½¾º

+
𝜋pp

2 ¹2 𝐷$ %c
& 𝐷$ @

&𝜙 + 𝐷$ %¼
& 	𝐹½¾ − 𝐷$ %c

& 	𝐹¯¾º⎦
⎥
⎥
⎥
⎥
⎤

+
1
4	𝐹½𝐹¯½																																																																													(45) 

By taking the derivative with respect to(𝜋9p, 𝜋pp, 𝐀𝟎, 𝐀𝐢), 
using the Hamiltonian Eq. (28), we get: 
 

𝐷$ @
&𝐴® =

𝜕ℋ
𝜕𝜋9p

= 𝜋9p

+ 𝐷$ %c
& 	𝐴®																																														(46) 

𝐷$ @
p&𝐴¯ =

𝜕ℋ
𝜕𝝅𝟐𝟐

=
1
2𝑎p

(𝜋pp)p

+	 𝐷$ @
& 𝐷$ %c

&𝜙																																							(47) 
       
∂ℋ
∂𝐀𝟎

= − D� �
�π99 + D� �

p�𝛑𝟐𝟏 − D� ��
� o

∂ℒ
∂� D� ��

� 𝐀𝟎�
q + 

D� ��
p� o

∂ℒ
∂� D� ��

� 𝐀𝟎�
q 	= 𝐷$ %c

& 𝐹® + 2𝑎p D� ��
\�𝐹®

= 0																																																									(48) 
							 

∂ℋ
∂𝐀𝐢

= − D� �
�π9p + D� �

p�𝛑𝟐𝟐 − D� ��
� o

∂ℒ
∂� D� ��

� 𝐀𝐢�
q

+ D� ��
p� o

∂ℒ
∂� D� ��

� 𝐀𝐢�
q																																																								(49) 

 
= − D� �

�¹ D� ��
� 𝐀𝟎 − D� �

�𝐀𝐢º
− 2𝑎p D� �

\�¹ D� ��
� 𝐀𝟎 − D� �

�𝐀𝐢º
= 0																																																																																										(50) 
If α = 1, then Eq. (48) and Eq. (50) respectively give: 
[1 + 2𝑎p ∂¯p]𝜕¯𝐹® = 0	
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[1 + 2𝑎p ∂®p]𝜕®𝐹® = 0	
Or  
²1 + 2𝑎p �� 𝐷$ @

&�
p
− � 𝐷$ %c

& �
p
¢³ ¹ 𝐷$ @

& + 𝐷$ %c
& º 

¹ 𝐷$ %c
&𝜙 − 𝐷$ @

&𝐴¯º
= 0																																																																																									(51) 
The equation above is exactly the same as the equation 
obtained in fractional form by Eq. (51). By considering α = 
1 , we get: 
 
¹1 + 𝑎p𝜕"𝜕"º𝜕"𝐹"¨ = 0																																																				(52) 
 
The fourth-order motion equations are as follows. The 
result in Eq.(52) is identical to the result in[32, 33]. 
 
7 Reduced-Orders Fractional Podolsk Model 
 
To investigate the model's temporal evolution and continue 
quantization, we must first write down the appropriate 
Hamiltonian in phase space. The Lagrangian Eq.(29) is 
unique due to gauge invariance, resulting in a restricted 
Hamiltonian system. A rudimentary constraint structure 
analysis was conducted in [36], and it was revisited in [38], 
which needed canonical momenta conjugated to both 𝐴" 
and its time derivative 𝐷$ @

&𝐴". We offer an alternate 
method of lowering the derivatives order of Eq.(29) first by 
adding an auxiliary vector field 𝐵", which avoids the 
requirement to consider 𝐴"  and 𝐷$ @

&𝐴" as independent 
fields. we write down the Lagrangian density 
ℒ

= �
−	
1
4 ¹

𝐷$ %F
& 𝐴« 𝐷$ %F

& 𝐴« − 𝐷$ %F
& 𝐴« 𝐷$ %¬

& 𝐴"º −

	
𝑎p

2 ¹𝐵"𝐵
"º + 𝑎p ² 𝐷$ %F

& 𝐵« 𝐷$ %F
& 𝐴« − 𝐷$ %¬

& 𝐴"³
�			(53) 

 
Consider the reduced-order action ∫𝑑Z𝑥	ℒ that corresponds 
to it. The reduced action is gauge invariant in the same way 
that (7) is. 
 
𝜹𝐴" = 𝐷$ %¬

& 𝛬																							𝛿𝐵" = 0																										(54)									   
                     	
The modification of this reduced-order action with regard  
to the fields	𝐴" and	𝐵" gives rise to the coupled equations 
of motion. 

𝟎 =
𝜹𝑺
𝜹𝐴"

= 

² 𝐷$ %F
& 𝐷$ %F

& 𝜂"« − 𝐷$ %F
& 𝐷$ %¬

& ³ [𝐴«
− 𝑎p𝐵«]																																												(55) 

And 

𝟎 =
𝜹𝑺
𝜹𝐵"

= 

𝑎p¹ 𝐷$ %¬
& � 𝐷$ %F

& 𝐴« − 𝐷$ %¬
& 𝐴"�

− 𝐵"º																																																	(56) 

This is an analogous system of eight second-order linear 
partial differential equations on fields 𝐴" and 𝐵" to the four 
fourth-order ones Eq.(6) on the field 𝐴".  If we replace the 
relation 𝐵" = 𝐷$ %¬

& � 𝐷$ %F
& 𝐴« − 𝐷$ %¬

& 𝐴"� from the second 
set above into the first set (9) to reconstruct the basic 
system, we can see this immediately. 
Another straight forward way of looking at it is as follows: 
Begin by defining the auxiliary field ² 𝐷$ %F

& 𝐷$ %F
& 𝜂"« −

𝐷$ %F
& 𝐷$ %¬

& ³ 𝐴«. Eq.(52). On the one hand, the fourth-order 
set (6) is clearly analogous to the second-order set. 
²1 +

𝑎p 𝐷$ %F
& 𝐷$ %F

& ³𝐵"=0																																																									(57) 
And 
−𝐵" = ² 𝐷$ %F

& 𝐷$ %F
& 𝜂"«

− 𝐷$ %F
& 𝐷$ %¬

& ³ 𝐴«																											(58) 
On the other hand, Eq. (58) is nothing more than Eq.(56) 
when Eq.(57) is subtracted from Eq.(57) and 𝐷$ %F

&  𝐵"= 0 is 
assumed Eq.(55). 
As a result, the two partial differential equations systems 
are equal. Furthermore, we see that the auxiliary field B is 
divergenceless and obeys the Klein-Gordon equation 
Eq.(57) with mass 1/a from a physical standpoint. While 
the 1/a mass vector excitations have been transferred to the 
B field, we can confidently assert that the A field remains 
massless. It's worth noting that a duality relationship 
between the Podolsky and Proca models including changes 
in the mass term sign was recently discovered in [37]. 
 

8 Conclusions 
 

Finding new formalisms in the realm of restricted systems 
allows us to evaluate an issue using a variety of approaches 
and select the most suited one. After reducing the order of 
the derivatives in Podolsky's generalized electrodynamics, 
we quantized the resulting model. The dynamical evolution 
was shown to occur in a phase space with two first-class 
and two second-class constraints, similar to a higher-order 
model. 
We investigated the Podolsky electrodynamics system for 
continuous systems with second order derivatives in depth 
using the innovative formalism presented in form 
fractional. We used fractional derivatives from Riemann-
Liouville and we presented Hamilton's equations to 
construct Lagrangian and Hamiltonic formulations for 
second order continuous systems. An essential example is 
given to illustrate the new formula. The results of the Euler-
Lagrange formula are similar. For n ⟶ 1, our results would 
be similar to those obtained in [20, 32, 36]. 
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