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Abstract: Upper bounds are derived for the finite-sample risk Rm for distributions having unbounded support, for which we found

upper bounds on the expected nearest neighbor distance. We look at real-valued observations and remarks on the multidimensional

case. The upper bounds of some distributions are set as typical.
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1 Introduction

In statistical pattern recognition, we suppose that an
independent identically distributed (i.i.d.) training

sequence
(

X (1),θ (1)
)

,
(

X (2),θ (2)
)

, · · · ,
(

X (m),θ (m)
)

taking values in Rd ×{1,2, ...,C} is at our disposal. Given
a new random variable (X ,θ ), such that X ∈ Rd is an
observation, our goal is to predict its corresponding
unobservable class θ , this class takes values in a finite set
{1,2, ...,C}. Let δ be a function (classifier) from Rd to
{1,2, ...,C}, the probability of misclassification is
P(δ (X) 6= θ ).

If the joint distribution of (X ,θ ) is known, we get the
Bayes classifier δ ∗ (The minimal probability of error)
which is the best classifier (see Devroye et al. [1], Györfi
et al. [2]). Mostly, the joint distribution of (X ,θ ) will be
unknown, and based on the training sequence

Dm =
((

X (1),θ (1)
)

,
(

X (2),θ (2)
)

, · · · ,
(

X (m),θ (m)
))

,

which consists of n i.i.d. random pairs with the same
distribution as (X ,θ ). The object is to minimize the
finite-sample risk Rm (unconditional probability of error).

The supervised pattern recognition model is
considered the core of many contributions to the
statistical literature in recent years, the nearest neighbor
rule is a popular and simple method to classify patterns in
non-parametric situations; it was first originally suggested

and studied by Fix and Hodges [3],[4], and several results
in different directions are available, e.g., Dasarathy [5],
Devroye et al. [1], Györfi et al. [2], Biau and Devroye [6],
and Zhao and Lai [7].

In addition, there is a wealth of studies for the error
estimation of the nearest neighbor rules, e.g., Cover and
Hart [8], Cover [9], Fukunaga and Hummels [10], Psaltis
et al., [11], Snapp and Venkatesh [12], Irle and Rizk [13].
Moreover, there exists a rather large amount of literature
on nearest neighbor distances, e.g., Kulkarni and Posner
[14], Evans et al. [15], and Liitiäinen et al. [16].

In this paper, we study the classification of a random
variable θ taking values in {0,1} given a sample X in Rd

with metric ρ , which we denote the pair as (Rd ,ρ). The
object is to find upper bounds on the expected nearest
neighbor distance for the distributions that have
unbounded support, and derive bounds for the
finite-sample risk Rm in terms of the expected nearest
neighbor distance, we then estimate upper bounds for
some distributions. We look at real-valued observations
and study the multidimensional case.

2 Nearest Neighbor Classification

Given any i.i.d. training sequence Dm and (X ,θ ) another
independent sample of the same distribution, such that X

∗ Corresponding author e-mail: mhm96@yahoo.com
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is an observed pattern and our goal is to guess its
corresponding θ . By using suitable tie-breaking, the

nearest neighbor rule assigns X to a class θ (i) with the

property

∥

∥

∥
X −X (i)

∥

∥

∥
≤
∥

∥

∥
X −X ( j)

∥

∥

∥
for all i 6= j.

In the following, let the class-conditional distributions
Fl be absolutely continuous with corresponding densities
fl for each l ∈ {1,2}, let f = p1 f1 + p2 f2 denote the
mixture density and let S be its support in Rd . By
B(ε,x) =

{

x′ ∈ Rd : ‖x− x′‖ ≤ ε
}

we will denote the
closed ball of radius ε at x.
Assume that the conditional mean of θ given X = x is
defined as

m(x) = P(θ = 1|X = x) = E(θ |X = x),

and the conditional variance as

σ2(x) = P(θ = 1|X = x)− [P(θ = 1|X = x)]2

= m(x)− (m(x))2.

The finite-sample risk Rm can be written in integral form
as following, compare [13] and [14]:

Let X ′ denote the nearest neighbor feature vector in
the training sequence Dm, and let θ ′ be the class label
associated with X ′. Assume Rm (X ,X ′) refers to the
conditional probability of error for the nearest neighbor
rule which is defined as the probability of
misclassification θ by θ ′ given X and its nearest neighbor
X ′, then

Rm

(

X ,X ′)= P
(

θ 6= θ ′|X ,X ′)

= P
(

θ = 1,θ ′ = 0|X ,X ′)+P
(

θ = 0,θ ′ = 1|X ,X ′)

= P(θ = 1|X)P
(

θ ′ = 0|X ′)+P(θ = 0|X)P
(

θ ′ = 1|X ′)

(1)

The m-sample conditional average probability of error
Rm (X) is given by averaging P(θ 6= θ ′|X ,X ′) with
respect to X ′, thus
Rm (X) = P(θ 6= θ ′|X) =

∫

S P(θ 6= θ ′|X ,X ′) fm (x′|x)dx′,
hence, averaging P(θ 6= θ ′|X) with respect to X to get the
unconditional probability of error (the finite-sample risk
Rm), then

Rm = P
(

θ 6= θ ′)=
∫

S
P
(

θ 6= θ ′|X
)

f (x)dx,

=

∫

S

∫

S
P
(

θ 6= θ ′|X ,X ′) fm

(

x′|x
)

f (x)dx′dx

= m

∫

S

∫

S
P
(

θ 6= θ ′|X ,X ′)×
(

P
(

|X − x|> |x′− x|
))m−1

f (x′) f (x)dx′dx,

where fm (x′|x) refers to the conditional density of X ′ given
X = x, and taken the form:

fm

(

x′|x
)

= m
(

1−P
(

X ∈ B
(

|x′− x|,x
)))m−1

f (x′)

= m
(

P
(

|X − x|> |x′− x|
))m−1

f (x′).

In the following, by define dm = ρ(X ,X ′) as the
nearest distance at time m, we derive an upper bound on

Rm in terms of dm. Firstly, we provide an upper bound on
Rm (X ,X ′).

Lemma 2.1.

Rm

(

X ,X ′)= σ2(X)+σ2
(

X ′)+
(

m(X)−m(X ′)
)2
.

Proof. From (1), we have

Rm

(

X ,X ′) = P(θ = 1|X)P
(

θ ′ = 0|X ′)

+ P(θ = 0|X)P
(

θ ′ = 1|X ′)

= m(X)
(

1−m(X ′)
)

+m
(

X ′) (1−m(X))

= m(X)+m
(

X ′)− 2m(X)m
(

X ′)

=
[

m(X)−m(X)2
]

+
[

m(X ′)−m(X ′)2
]

+ m(X)
[

m(X)−m(X ′)
]

− m
(

X ′)[m(X)−m(X ′)
]

= σ2(X)+σ2
(

X ′)+
(

m(X)−m(X ′)
)2
.

Assumption 1. For some λ1 > 0 and α > 0, we have
|m(x)−m(x′) | ≤ λ1ρ (x,x′)α

for all x,x′ ∈ Rd .

Corollary 2.2. For some appropriate ρ = max{λ1,λ
2
1 }

independent of m and under assumption (1), we have

Rm

(

X ,X ′)≤ 2σ2(X)+λ
(

dα
m + d2α

m

)

. (2)

Proof. From lemma 2.1, we have

Rm

(

X ,X ′) = 2σ2(X)+
[

σ2
(

X ′)−σ2(X)
]

+
(

m(X)−m(X ′)
)2
.

Since
∣

∣σ2
(

X ′)−σ2(X)
∣

∣

=
∣

∣m
(

X ′)(1−m(X ′)
)

+m(X)(1−m(X))
∣

∣

≤ |m
(

X ′)−m(X)|.
Thus

Rm

(

X ,X ′)

≤ 2σ2(X)+ |m
(

X ′)−m(X)|+
(

m(X)−m(X ′)
)2

≤ 2σ2(X)+λ1ρ
(

x,x′
)α

+λ 2
1 ρ
(

x,x′
)2α

≤ 2σ2(X)+λ
(

dα
m + d2α

m

)

.

Lemma 2.3. Suppose that assumption 1 with α ≤ 1 holds,
then we have

Rm ≤ R∞ +λ
[

(Edm)
α +(Ed2

m)
α
)

], (3)

where R∞ denotes infinite-sample risk.
Proof. By taking expected values on (2), we obtain

Rm ≤ R∞ +λ
[

(Edm)
α +(Ed2

m)
α
)

],

where R∞ = 2E[σ2(X)].
Since h(t) = tα is concave for 0 < α ≤ 1, thus
by using Jensen’s inequality, we obtain

Rm ≤ R∞ +λ
[

(Edm)
α +(Ed2

m)
α
)

].
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3 Upper bounds for nearest neighbor

distances

In this section, we find upper bounds on the expected
nearest neighbor distance Edm, therefore, we can be
derive bounds for the finite-sample risk Rm in terms of
Edm and Ed2

m for x ∈ Rd , and estimate upper bounds for
some distributions.

Assumption 2. (a) Suppose that ‖X − x‖ has a finite

moment generating function ψ(t,x) = Eet‖X−x‖ for
x ∈ Rd and 0 < t < 1.
(b) There exists c > 0 such that for all x in the support of
X and for all ε > 0, we have

H(x,ε)≥ cεd f (x), (4)

where H(x,ε) =− logP(‖X − x‖> ε).

Now we derive upper bounds of Edm and Ed2
m for

x ∈ Rd and d = 1. The following Corollary provides a
sufficient condition for the validity of the inequality (4)
for d = 1.

Corollary 3.1. A sufficient condition for
H(x,ε)≥ cε f (x) is given by P(|X − x| ≤ ε)≥ cε f (x),
where H(x,ε) =− logP(|X − x|> ε).
Proof. Since

− logP(|X − x|> ε) =− logP(1−|X − x| ≤ ε),

and, for all 0 ≤ y ≤ 1 we have − logP(1− y)≥ y. Hence

− logP(|X − x|> ε)≥ P(|X − x| ≤ ε).

Consequently, a sufficient condition for H(x,ε) ≥ cε f (x)
is given by P(|X − x| ≤ ε)≥ cε f (x).

Note that, by letting ε tend to ∞, the second condition
is violated for unbounded support. Moreover, we have:
1- P(|X − x| ≤ ε) ≥ ε f (x) if [x,x + ε] ([x− ε,x]) is
included in the support of X and f is increasing
(decreasing) on [x,x+ ε] ([x− ε,x]), respectively.
2- P(|X − x| ≤ ε) ≥ 2ε f (x) if [x− ε,x+ ε] is included in
the support of X and f is convex on [x− ε,x+ ε].
3- P(|X − x| ≤ ε) ≥ 2ε f (x) if S = (0,∞) and the
probability density function f (x) has a completely
monotonic function, we provide a proof of this statement
in Appendix A.

Lemma 3.2. By assumption 2 for d = 1, and a constant
τ ≥ 1, we have

Edm ≤ τ

∫ K1

−∞
ψ

(

1

τm
,x

)m

PX(dx)

+ τ

∫ ∞

K2

ψ

(

1

τm
,x

)m

PX(dx)+
(K2 −K1)

cm
. (5)

where K1 = K1(m), K2 = K2(m) are constants depending
on m such that −∞ < K1 ≤ 0 ≤ K2 < ∞.

Proof. We divide the integral form of Edm into three parts
as follows:

Edm =

∫ ∞

−∞

∫ ∞

0
P(|X − x|> ε)mdεPX(dx)

=

∫ K1

−∞

∫ ∞

0
P(|X − x|> ε)mdεPX(dx)

+
∫ ∞

K2

∫ ∞

0
P(|X − x|> ε)mdεPX(dx)

+

∫ K2

K1

∫ ∞

0
P(|X − x|> ε)mdεPX(dx)

= S1(m)+ S2(m)+ S3(m),say. (6)

Firstly we find upper bounds for S1(m) and S2(m):
For any 0 < t < 1, use Markov’s inequality and
assumption 2 (a) such that |X − x| has a finite moment

generating function ψ(t,x) = Eet|X−x| , x ∈ R. Then
∫ ∞

0
P(|X − x|> ε)mdε =

∫ ∞

0
P
(

et|X−x| > etε
)m

dε

≤
∫ ∞

0
ψ(t,x)me−mtε dε

=
1

mt
ψ(t,x)m,

thus for t = 1
τm

, τ ≥ 1 we have

∫ ∞

0
P(|X − x|> ε)mdε ≤ τψ

(

1

τm
,x

)m

.

Therefore

S1(m)≤ τ

∫ K1

−∞
ψ

(

1

τm
,x

)m

PX(dx), (7)

S2(m)≤ τ

∫ ∞

K2

ψ

(

1

τm
,x

)m

PX (dx). (8)

For bounding S3(m), suppose that X has a density f (x),
then

S3(m) =
∫ K2

K1

∫ ∞

0
P(|X − x|> ε)mdεPX(dx)

=

∫ K2

K1

∫ ∞

0
e−mH(x,ε) f (x)dεdx,

where H(x,ε) =− logP(|X − x|> ε).
Using assumption 2 (b) for d = 1 we obtain

S3(m) ≤
∫ K2

K1

∫ ∞

0
e−mcε f (x) f (x)dεdx

=

∫ K2

K1

1

cm
dx =

(K2 −K1)

cm
(9)

Hence, substituting (7)-(9) in (6) we obtain (5).

Example 1: Suppose X has a density function e−x,x > 0.
So, we take K1 = 0 and S1(m) vanishes. We have

ψ(t,x) =Eet|X−x| ≤EetX+tx = etx

∫ ∞

0
etye−ydy= etx 1

1− t
,

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1940 M. M. Rizk: Some contributions to the risk of the nearest neighbor rules

thus for t = 1
2m

we obtain

ψ
(

1
2m

,x
)m ≤ e

x
2

(

1

1− 1
2m

)m

= e
x
2

(

1+ 1
2m−1

)m

Consequently, using (8)

S2(m) ≤ 2

∫ ∞

K2

e
−x
2

(

1+
1

2m− 1

)m

dx

= 4

(

1+
1

2m− 1

)m

e
−K2

2 .

For K2 = 2logm, it follows

S2(m)≤ 4

m

(

1+
1

2m− 1

)m

= O

(

1

m

)

, (10)

since
(

1+ 1
2m−1

)m → e
1
2 (m → ∞).

For c = 2, K1 = 0 and using K2 = 2logm in (9), hence

S3(m)≤
(

logm

m

)

. (11)

Substituting (10) and (11) in (5), we obtain

Edm ≤
(

logm

m

)

+O

(

1

m

)

. (12)

The validity (4) for d = 1 is provided for exponential
distribution in Appendix B.

Example 2: Suppose X has a density function

ϕ(x) = 1√
2π

e
−x2

2 , x ∈ R, and we take −K1 = K2 > 0.

For x ∈ R, t > 0, we obtain

ψ(t,x) = Eet|X−x| ≤ Ee|tx|+|tX | = e|tx|Ee|tX |

thus, by using Jensen’s inequality for t = 1
m

, we obtain

ψ

(

1

m
,x

)m

≤ e|x|
(

Ee
|X |
m

)m

≤ e|x|E
(

e
|X |
m

)m

= e|x|Ee|X | = 2e|x|
∫ ∞

0

1√
2π

eye
−y2

2 dy

= 2e|x|e
1
2

∫ ∞

0

1√
2π

e
−(y−1)2

2 dy ≤ 2e|x|e
1
2 .

Consequently, for K2 > 1

S1(m)+ S2(m) ≤ 4e
1
2

∫ ∞

K2

exφ(x)dx

= 4e

∫ ∞

K2

1√
2π

e
−(x−1)2

2 dx

= 4eP(X + 1 ≥ K2)≤
4e

(K2 − 1)
e
−(K2−1)2

2 .

Assume K2 =
√

2logm+ 1, it follows

S1(m)+ S2(m)≤ o

(

1

m

)

. (13)

For a constant c∗ > 0 (see Appendix C), and using −K1 =
K2 =

√
2logm+ 1 in (9), hence

S3(m)≤ c∗
√

2logm+ 1

m
. (14)

Substituting (13) and (14) in (5), we obtain

Edm ≤ c∗
√

2logm+ 1

m
+ o

(

1

m

)

. (15)

The validity (4) for d = 1 is provided for normal
distribution in Appendix C.

So if −K1,K2 have logarithmic growth as in examples

1, 2, we obtain S3(m) = O
(

1

mβ

)

for all β < 1.

Note that, from (12) and (15) there is an additional
logarithmic term over the rates for compact support for
exponentially decaying tails (e.g., exponential and normal
distributions), compare [14]. Indeed, it can show that
these upper bounds are fairly tight and examples 1, 2
illustrate that the expected nearest neighbor distance
depends on the tails of the distributions.

Lemma 3.3. By assumption 2 for d = 1, a constant τ ≥ 1
and c1,c2 > 0, we have

Ed2
m ≤ 2τ2

∫ K1

−∞
ψ

(

1

τm
,x

)m

PX(dx)

+ 2τ2

∫ ∞

K2

ψ

(

1

τm
,x

)m

PX(dx)+
2c(K2 −K1)

c2m2
. (16)

where K1 = K1(m), K2 = K2(m) are constants depending
on m such that −∞ < K1 ≤ 0 ≤ K2 < ∞.
Proof. Similarly as in the proof of lemma 3.2, we derive
upper bounds for Ed2

m by dividing it into three parts

Ed2
m =

∫ ∞

−∞

∫ ∞

0
2εP(|X − x|> ε)mdεPX (dx)

=

∫ K1

−∞

∫ ∞

0
2εP(|X − x|> ε)mdεPX (dx)

+

∫ ∞

K2

∫ ∞

0
2εP(|X − x|> ε)mdεPX(dx)

+
∫ K2

K1

∫ ∞

0
2εP(|X − x|> ε)mdεPX (dx)

= S′1(m)+ S′2(m)+ S′3(m),say. (17)

For bounding S′1(m) and S′2(m), using assumption 2 (a)
such that |X − x| has a finite moment generating function

ψ(t,x) = Eet|X−x| for x ∈ R,0 < t < 1.
By Markov’s inequality for any 0 < t < 1
∫ ∞

0
2εP(|X − x|> ε)mdε = 2

∫ ∞

0
εP

(

et|X−x| > etε
)m

dε

≤ 2ψ(t,x)m

∫ ∞

0
εe−mtε dε

=
2

m2t2
ψ(t,x)m,

c© 2022 NSP
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hence for t = 1
τm

, τ ≥ 1, we have

∫ ∞

0
2εP(|X − x|> ε)mdε ≤ 2τ2ψ

(

1

τm
,x

)m

.

It follows

S′1(m)≤ 2τ2
∫ K1

−∞
ψ

(

1

τm
,x

)m

PX(dx), (18)

S′2(m)≤ 2τ2

∫ ∞

K2

ψ

(

1

τm
,x

)m

PX(dx). (19)

For bounding S′3(m), suppose that X has a density
f (x) > 0, then

S′3(m) =

∫ K2

K1

∫ ∞

0
2εP(|X − x|> ε)mdεPX(dx)

=

∫ ∞

0
2ε

(

∫ K2

K1

P(|X − x|> ε)mPX(dx)

)

dε

=

∫ ∞

0
2ε

∫ K2

K1

e−mH(x,ε) f (x)dxdε,

where H(x,ε) =− logP(|X − x|> ε).
Using assumption 2 (b) for d = 1, we obtain

S′3(m) ≤
∫ ∞

0
2ε

∫ K2

K1

e−cmε f (x) f (x)dxdε

≤
∫ ∞

0
2ε

∫ K2

K1

c1e−c2mε dxdε

= 2c1(K2 −K1)

∫ ∞

0
εe−c2mε dε

= 2c1(K2 −K1)
Γ (2)

c2
2m2

=
2c1 (K2 −K1)

c2
2m2

, (20)

where
∫

f (x)e−α f (x)dx ≤ γ1e−αγ2 holds for α > 1, γ1,γ2

are positive constants, any probability density functions
have bounded support and f (x)> 0.
Hence, by substituting (18)-(20) in (17) we obtain (16).

Note that, if
∫ K2

K1
f (x)−1dx < ∞, we show that (see

appendix D).

S′3(m)≤ 2

c2m2

∫ K2

K1

f (x)−1dx. (21)

We can use (21) for exponential and normal distributions
by taking suitable values from K1,K2 in examples 1, 2.

Theorem 3.4. Let the conditions of lemmas 2.3, 3.2 and
3.3 be satisfied. Then

Rm ≤ R∞ +λ τ(1+ 2τ)

∫ K1

−∞
ψ

(

1

τm
,x

)m

PX (dx)

+ λ τ(1+ 2τ)
∫ ∞

K2

ψ

(

1

τm
,x

)m

PX (dx)

+
λ (K2 −K1)

m

(

1

c
+

2c1

c2
2m

)

. (22)

Proof. This is immediate from the previous results, by
taking α = 1 in lemma 2.3 and after substituting (5) and
(16) in (3), we obtain (22).

The finite-sample risk Rm in one-dimensional is
estimated for each exponential and normal distributions,
respectively, as follows: By the results in examples 1, 2
and theorem 3.4, we obtain

Rm ≤ R∞ +
20λ

m

(

1+
1

2m− 1

)m

+
λ logm

m

(

1+
4c1

c2
2m

)

= R∞ +O

(

1

m

)

+
λ logm

m

(

1+
4c1

c2
2m

)

,

and

Rm ≤ R∞ +
12eλ

m
√

2logm
+

λ c∗
√

2logm+ 1

m

(

1+
2c1

c2
2m

)

= R∞ + o

(

1

m

)

+
λ c∗

√
2logm+ 1

m

(

1+
2c1

c2
2m

)

,

where λ ,c1,c2,c
∗ are positive constants.

Now we find upper bounds on Edm and Ed2
m for x ∈ Rd

and d ≥ 2, and derive bounds for the finite-sample risk
Rm.

Lemma 3.5. By assumption 2 for d ≥ 2 and a constant
τ ≥ 1 and, we have

Edm ≤ τ

∫ K11

−∞
ψ

(

1

τm
,x

)m

PX (dx)

+τ

∫ ∞

K22

ψ

(

1

τm
,x

)m

PX(dx)

+
Γ (1/d)

d(mc)(1/d)

∫ K22

K11

f (x)1−(1/d)dx, (23)

where K11 = K11(m),K22 = K22(m) are constants
depending on m such that −∞ < K11 ≤ 0 ≤ K22 < ∞.
Proof. Similarly as the proof of lemma 3.2, we derive
upper bounds of Edm as follows:

Edm =

∫ ∞

−∞

∫ ∞

0
P(‖X − x‖> ε)mdεPX(dx)

=
∫ K11

−∞

∫ ∞

0
P(‖X − x‖> ε)mdεPX(dx)

+

∫ ∞

K22

∫ ∞

0
P(‖X − x‖> ε)mdεPX (dx)

+

∫ K22

K11

∫ ∞

0
P(‖X − x‖> ε)mdεPX(dx)

= S11(m)+ S22(m)+ S33(m),say. (24)

For bounding S11(m) and S22(m), an analogous upper
bounds also hold for d ≥ 2 as the proof of lemma 3.2.
Hence, by assumption 2 (a) and for t = 1

τm
, τ ≥ 1, we

have

S11(m) =
∫ K11

−∞

∫ ∞

0
P(‖X − x‖> ε)mdεPX (dx)

≤ τ

∫ K11

−∞
ψ

(

1

τm
,x

)m

PX(dx), (25)
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S22(m) =

∫ ∞

K22

∫ ∞

0
P(‖X − x‖> ε)mdεPX (dx)

≤ τ

∫ ∞

K22

ψ

(

1

τm
,x

)m

PX(dx). (26)

For bounding S33(m), suppose X with a density f (x) > 0

S33(m) =

∫ K22

K11

∫ ∞

0
P(‖X − x‖> ε)mdεPX (dx)

=
∫ K22

K11

∫ ∞

0
e−mH(x,ε) f (x)dεdx,

where H(x,ε) =− logP(‖X − x‖> ε).
Using assumption 2 (b) for d ≥ 2, we obtain

S33(m) ≤
∫ K22

K11

∫ ∞

0
e−mcεd f (x) f (x)dεdx

=

∫ K22

K11

f (x)1−(1/d)

d(mc)(1/d)

(

∫ ∞

0
e−tt(1/d)−1dt

)

dx,
(

mcεd f (x) = t ⇒ ε =
t(1/d)

(mc f (x))(1/d)

)

=
Γ (1/d)

d(mc)(1/d)

∫ K22

K11

f (x)1−(1/d)dx, (27)

Hence, by substituting (25)-(27) in (24), we obtain (23).

Lemma 3.6. By assumption 2 for d ≥ 2, a constant τ ≥ 1
and c3,c4 > 0, we have

Ed2
m ≤ 2τ2

∫ K11

−∞
ψ

(

1

τm
,x

)m

PX(dx)

+2τ2
∫ ∞

K22

ψ

(

1

τm
,x

)m

PX(dx)

+
2c3 (K22 −K11)

c2
4m2

, (28)

where K11 = K11(m),K22 = K22(m) are constants
depending on m such that −∞ < K11 ≤ 0 ≤ K22 < ∞.
Proof. Similarly as the proof of lemma 3.3, we derive
upper bounds of Ed2

m as follows:

Edm =
∫ ∞

−∞

∫ ∞

0
2εP(‖X − x‖> ε)mdεPX(dx)

=

∫ K11

−∞

∫ ∞

0
2εP(‖X − x‖> ε)mdεPX(dx)

+
∫ ∞

K22

∫ ∞

0
2εP(‖X − x‖> ε)mdεPX (dx)

+

∫ K22

K11

∫ ∞

0
2εP(‖X − x‖> ε)mdεPX (dx)

= S′11(m)+ S′22(m)+ S′33(m),say. (29)

For bounding S′11(m) and S′22(m), an analogous upper
bounds also hold for d ≥ 2 as the proof of lemma 3.3.
Hence, by assumption 2 (a) and for t = 1

τm
, τ ≥ 1, we

have

S′11(m) =
∫ K11

−∞

∫ ∞

0
2εP(‖X − x‖> ε)mdεPX (dx)

≤ 2τ2
∫ K11

−∞
ψ

(

1

τm
,x

)m

PX(dx), (30)

S′22(m) =

∫ ∞

K22

∫ ∞

0
2εP(‖X − x‖> ε)mdεPX(dx)

≤ 2τ2

∫ ∞

K22

ψ

(

1

τm
,x

)m

PX(dx). (31)

For bounding S′33(m), suppose X with a density f (x) > 0

S′33(m) =

∫ K22

K11

∫ ∞

0
2εP(‖X − x‖> ε)mdεPX(dx)

=

∫ ∞

0
2ε

(

∫ K22

K11

P(‖X − x‖> ε)mPX (dx)

)

dε

≤
∫ ∞

0
2ε

∫ K22

K11

e−mH(x,ε) f (x)dxdε,

where H(x,ε) =− logP(‖X − x‖> ε).
Using assumption 2 (b) for d ≥ 2, we obtain

S′33(m) ≤
∫ K22

K11

∫ ∞

0
2εe−mcεd f (x) f (x)dεdx

= 2

∫ K22

K11

f (x)1−(2/d)

d(mc)(2/d)

(

∫ ∞

0
e−tt(2/d)−1dt

)

dx,
(

mcεd f (x) = t ⇒ ε =
t(1/d)

(mc f (x))2/d

)

=
2Γ (2/d)

d(mc)(2/d)

∫ K22

K11

f (x)1−(2/d)dx, (32)

Hence, by substituting (30)-(32) in (29), we obtain (28).
Theorem 3.7. Let the conditions of lemmas 2.3, 3.5 and
3.6 be satisfied. Then

Rm ≤ R∞ +λ τ(1+ 2τ)

∫ K11

−∞
ψ

(

1

τm
,x

)m

PX(dx)

+ λ τ(1+ 2τ)

∫ ∞

K22

ψ

(

1

τm
,x

)m

PX(dx)

+
λΓ (1/d)

d(mc)(1/d)

∫ K22

K11

f (x)1−(1/d)dx

+
2λΓ (2/d)

d(mc)(2/d)

∫ K22

K11

f (x)1−(2/d)dx. (33)

Proof. This is immediate from the previous results, by
taking α = 1 in lemma 2.3 and after substituting (23) and
(28) in (3), we obtain (33).

We now estimate the finite-sample risk Rm for
exponential and normal distributions, respectively, for

x ∈ Rd , d = 2 as follows:
Example 3: Let X be an exponential distribution with a

density function e−(x+y),x,y > 0. Taking τ = 2,K11 = 0
and K22 = 2logm in (33), we obtain

Rm ≤ R∞ +
40λ

m2

(

1+
1

2m−1

)2m

+
2λ√
mc

[

√
π

(

1− 1

m

)2

+
2(logm)2

√
mc

]

= R∞ +O

(

1

m2

)

+
2λ√
mc

[

√
π

(

1− 1

m

)2

+
2(logm)2

√
mc

]
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where
∫ ∞

K22
ψ
(

1
τm

,x
)m

PX (dx) ≤ 4
m2

(

1+ 1
2m−1

)2m
= O

(

1
m2

)

,

since
(

1+ 1
2m−1

)2m → e (m → ∞),
∫ K22

K11

f (x)1−(1/d)dx =

∫ 2 logm

0
f (x)1/2dx

=
∫ 2 logm

0

∫ 2 logm

0
e
−(u+v)

2 dudv = 4

(

1− 1

m

)2

,

and
∫ K22

K11

f (x)1−(2/d)dx =

∫ 2 logm

0

∫ 2 logm

0
dudv = 4(logm)2.

Example 4: Let X be a normal distribution with a density

function 1
2π e−(x2+y2)/2,−∞ < x,y < ∞. Taking τ = 1 and

−K11 = K22 =
√

2logm in (33), we obtain

Rm ≤ R∞ +
1.2833λ

πm2 logm
+

λ√
mc

[√
2π +

8logm√
mc

]

,

where
∫ ∞

K22
ψ
(

1
τm

,x
)m

PX (x)≤ 1.2833
πm2 logm

,

such that, for t = 1
m

and using Jensen’s inequality, we
have:
ψ
(

1
τm

,x
)m

=
(

Eet‖X−x‖)m ≤ E
(

e‖X−x‖)= E
(

eZ
)

,
where

Z = ‖X − x‖ =
√

(X1 − x1)2 +(X2 − x2)2 =
√

X ′
1

2 +X ′
2

2
,

and X ′
1 = X1 − x1,X

′
2 = X2 − x2.

Hence Z has a Rayleigh distribution, that is,

fZ(z) = ze−z2/2,z > 0, see [17].

E(eZ) =
∫ ∞

0
ezze−z2/2dz = e

1
2

∫ ∞

0
ze−(z−1)2/2dz

=−e
1
2

[

∫ ∞

0
−(z− 1)e−(z−1)2/2dz−

∫ ∞

0
e−(z−1)2/2dz

]

≤ 1+
√

2πe
1
2 ∼= 5.133,

∫ ∞

K22

ψ

(

1

τm
,x

)m

PX(dx)

≤ 5.133

2π

∫ ∞

K22

∫ ∞

K22

e−(u2+v2)/2dudv

≤ 5.133

2π(K22)2
e−(K22)

2

=
5.133e−(2 logm)

2π(2logm)
∼= 1.2833

πm2logm
,

since
∫ ∞

K22
e−x2 ≤ 1

K22
e−(K22)

2
,

∫ K22

K11

f (x)1−(1/d)dx = 4

∫

√
2 logm

0
f (x)1/2dx

= 4

∫

√
2 logm

0

∫

√
2 logm

0

1√
2π

e−(u2+v2)/4dudv ≤ 2
√

2π,

such that

∫

√
2 logm

0
1√
2π

e−u2/4du ≤
√

2
∫ ∞

0
1

2
√

2π
e−u2/4du ≤

√
2

2
,

and
∫ K22

K11
f (x)1−(2/d)dx = 4

∫

√
2 logm

0

∫

√
2 logm

0 dudv = 8log8.

Conclusion. We have found upper bounds on the
expected nearest neighbor distance for the distributions
that have unbounded support and estimated bounds for
the finite-sample risk Rm in terms of the expected nearest
neighbor distance. We provided rate of convergence for
expected nearest neighbor distance Edm in the
one-dimensional unbounded support which we showed

that Edm converges at rate of o
(

1

mβ

)

for all β < 1, and it

depends on the tails of the distributions for which there is
an additional logarithmic term compared with the rates
for compact support for exponentially decaying tails. We
looked at real-valued observations and given some
contributions for x ∈ Rd and d ≥ 2. We found upper
bounds for the exponential and normal distributions as
typical.
Appendix.
A. Proof the sufficient condition P(|X − x| ≤ ε) ≥ 2ε f (x)

of the inequality H(x,ε) ≥ cε f (x) when S = (0,∞) and
the probability density function f (x) has a completely
monotonic function.
Recall that, a function (probability density function) f (x)
with domain (0,∞) is said to be completely monotone
function if all derivatives of the f exist and

(−1)n f (n)(x)≥ 0 for all x > 0 and n > 0, see Feller [18].
By corollary 3.1 we have

H(x,ε) = − logP(|X − x|> ε)
≥ P(|X − x| ≤ ε)
= F(X + ε)−F(X − ε). (34)

Therefore, we can get a good asymptotic estimates for
F(X + ε)−F(X − ε), by using the Taylor expansion for
the functions F(X + ε) and F(X − ε) as ε → 0,
respectably, we have

F(X + ε) = F(X) +
f (x)ε

1!
+

f ′(x)ε2

2!
+

f ′′(x)ε3

3!

+
f ′′′(x)ε4

4!
+

f (4)(x)ε5

5!
+ · · · (35)

F(X − ε) = F(X) − f (x)ε

1!
+

f ′(x)ε2

2!
− f ′′(x)ε3

3!

+
f ′′′(x)ε4

4!
− f (4)(x)ε5

5!
+ · · · (36)

Substituting (35) and (36) in (34) yields.

H(x,ε) ≥ F(X + ε)−F(X − ε)

=
2 f (x)ε

1!
+

2 f ′′(x)ε3

3!
+

2 f (4)(x)ε5

5!
+ · · ·

≥ 2ε f (x)> 0, (37)

where, f (n)(x)≥ 0 for n = 0,2,4, · · · .
Then, the inequality H(x,ε) ≥ cε f (x) holds with c = 2 if
a probability density function f (x) is a completely
monotone (e.g., the densities proportional to the functions

(1 + x)−k,x−2ex−1
,x(α−1)e−x and e−xα

(0 < α ≤ 1) are
satisfying this criterion).
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B. Proof the validity of the inequality (4) for d = 1 for
exponential distribution.
Since the probability density function of the exponential
distribution is a completely monotone, so the inequality

(4) for d = 1 validity with c = 2. Then S3(m) ≤ logm
m

and
we used it.
Or, applying a different way: If [x−ε,x+ε]⊆ [0,∞), then
by convexity P(|X − x| ≤ ε)≥ 2ε f (x).
If (x− ε)≤ 0, then

− logP(|X − x|> ε) = − logP(X > x+ ε)

= − loge−(x+ε) = x+ ε ≥ ε f (x).

This shows validity with c = 1. Substituting by K1 = 0

and K2 = 2logm in (8) we obtain S3(m)≤ 2 logm
m

.

C. Proof the validity of the inequality (4) for d = 1 for
normal distribution Due to symmetry it is enough to treat
x > 0. Let ε > 0.
(a) If x+ ε ≥−x, then

P(|X − x| ≤ ε)≥ P(X − x ≤ X ≤ x)≥ εϕ(x).

(b) So assume x− ε <−x, i.e. ε > 2x. We can show

− logP(|X − x|> ε)
=− log(P(X <−(ε − x))+P(X > x+ ε))
≥− log2P(X <−(ε − x)) =− log2− logP(X > ε − x)

≥− log2− log

(

1

ε − x

1√
2π

e
−(ε−x)2

2

)

= log
(√

2π/2
)

+ log(ε − x)+ (ε − x)2.

(c) For x > 1, then log(ε − x) ≥ 0 and from ε > 2x we

have (ε − x)2 ≥ ε2

4
≥ 1

2
εϕ(x).

And, for x < 1 if ε ≥ 2, then log(ε − x) ≥ 0 and we
proceed as above, and if ε < 2 we have
P(|X − x| ≤ ε) ≥ cε , where c = inf|y|<3 ϕ(y), hence

P(|X − x| ≤ ε)≥ cεϕ(x).
Therefore, we can find a constant c∗ > 0 such that
− logP(|X − x|> ε)≥ c∗εϕ(x), for all x,ε > 0.

D. Proof (21)

S′3(m) =

∫ K2

K1

∫ ∞

0
P
(

|X − x|>
√

ε
)m

dεPX(dx)

=

∫ K2

K1

∫ ∞

0
e−mH(x,

√
ε) f (x)dεdx

≤
∫ K2

K1

∫ ∞

0
e−cm

√
ε f (x) f (x)dεdx

(

cm
√

ε f (x) = t ⇒ dε =
2tdt

c2m2 f (x)2

)

=

∫ K2

K1

2 f (x)

c2m2 f (x)2

(

∫ ∞

0
te−tdt

)

dx

=
2

c2m2

∫ K2

K1

f (x)−1dx.
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[18] M. Döring, L. Györfi, and H. Walk, Rate of convergence

of k-nearest-neighbor classification rule, journal of machine

learning research, 18, 1-16 (2018).

[19] P. Zhao and L. Lai, Analysis of KNN information estimators

for smooth distributions, IEEE Trans. Inform. Theory, 66 (6),

3798-3826 (2019).

[20] N. G. De Bruijn, Asymptotic methods in analysis, Wiley,

New York (1958).

c© 2022 NSP

Natural Sciences Publishing Cor.


	Some Contributions to the Risk of the Nearest Neighbor Rulesv
	Recommended Citation

	Introduction
	Nearest Neighbor Classification
	Upper bounds for nearest neighbor distances

