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Abstract: Wave propagation over a beach is considered within a nonlinear theory in shallow water. Lagrangian coordinates are used

to describe the problem. The solution is expanded in double series involving a small parameter and local oscillations. Two cases are

treated: The beach with appreciable inclination on the horizontal (cliff) and the beach of small inclination. We show that finite solutions

are obtained, in contrast to the linear theory which involves a logarithmic singularity at the shoreline. For the cliff, it is shown that local

oscillations do not appear in the first two orders of approximation, and the incident wave is totally reflected without loss of energy at

this order of approximation. The case of an incident wave on the beach is considered. The deformation of this wave is investigated and

explicit formulae are obtained for the reflected wave and for the local oscillations, to shed light on the energy transfer due to interaction

with the beach.

Keywords: Shallow water theory; Lagrange’s coordinates; wave propagation over a beach; local perturbations.

1 Introduction

The propagation of wave motion on beaches has been a
subject of permanent interest since the end of the
nineteenth century. An interdisciplinary overview on the
subject may be found in [1]. Although the real problem in
three-dimensional, it is well-known that under certain
conditions the two-dimensional model yields satisfactory
results.

Early work on the subject was restricted to beaches
with uniform slope within the linearized theory (c.f. Lewy
[2], Friedrichs [3], John [4], Isaacson [5], Roseau [6]).
The problem formulation and solution for waves on
beaches may be found in Stoker [7, Ch. 5], with a
discussion on the validity of the solutions under different
theories. Carrier and Greenspan [8] were the first to use a
nonlinear model to investigate the behaviour of a wave as
it climbs a sloping beach. Explicit solutions of the
equations of the non-linear inviscid shallow-water theory
are obtained for several physically interesting
wave-forms. In particular it is shown that waves can
climb a sloping beach without breaking. Keller [9]
investigates the propagation of surface waves in water
whose depth varies in a general way.

Wehausen and Laitone [10, p.537] give a detailed
description of the problem under the general title of plane
wave motion in unbounded regions with fixed boundaries.
Lehman and Lewy [11] discuss the uniqueness problem

for water waves on sloping beaches and the boundedness
of solutions. Peregrine [12] proposed a Boussinesq-type
model for long waves in shallow waters of varying depth
through nonlinear equations. Shuto [13,14] considers the
run-up of long waves on a sloping beach and produces a
solution to the three-dimensional problem of long wave
propagation for periodic motion using a Lagrangian
description. Experimental studies on wave reflection by a
sloping beach in a tank and the dependence of the
reflection coefficient on wave steepness were carried out
by Taira and Nagata [15].

Kakutani [16] studied the effect of an uneven bottom
on the long gravity waves by using a nonlinear
perturbation method. Germain [17,18] presents a new
expansion of the solution describing wave propagation on
a beach within shallow water in double series involving a
small parameter and local oscillations.

Tuck and Hwang [19] investigate the linear
propagation of long waves on a uniformly sloping beach.
Near-shore large amplitude waves are also investigated
using the nonlinear theory. Suhayda [20] presents
measurements associated with standing waves beaches.
Green and Naghdi [21] make a derivation of a system of
equations for propagation of waves in water of variable
depth. The derivation is effected by means of the
incompressibility condition, the energy equation, the
invariance requirements under superposed rigid-body
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motions, together with a single approximation for the
three-dimensional velocity field.

Sachdev and Seshadri [22] propose an approximate
analytical solution to the problem of motion of a bore on
a sloping beach. Svendsen and Hansen [23] investigate
two-dimensional time-periodic water waves on a gently
sloping bottom in the long-wave limit. They derive
solutions up to the second-order degree of smallness.
Goto [24] derives a nonlinear set of equations of long
waves in the Lagrangian description by a new
perturbation method. Equations are derived by
introducing a new method of perturbation in which the
finite displacement of water particles from their initial
position is allowed. A numerical solution is given to the
problem of wave run-up on a uniform slope connected to
a channel of constant depth. Comparison is carried out
with the analytical solution of the linear theory.

Mahony and Pritchard [25] study wave reflection from
beaches and the dependence on friction at the bottom of
the reflection coefficient. They note that the absorption of
the wave energy is inevitably linked to wave breaking or
viscous effects, and that substantial reflection may
sometimes be attained in the absence of wave breaking.

Peregrine [26] presents an overview of wave breaking
on beaches. Meyer [27,28] investigates the nonlinear
equations governing inviscid water waves close to shore
over beaches of small slope, with a view to develop a
unified theory which describes the whole shoaling
process. Yung-Chao Wu [29] studies small-amplitude
waves generated by an oscillating, inclined paddle-type
wavemaker in a channel of constant depth by a
semi-analytical method using collocation. His results are
compared to those obtained by integral equation method.
Ehrenmark [30] considers the problem of a train of
infinitesimal waves propagating over a uniformly sloping
beach and discusses solutions having singularities of
different orders at the shoreline.

Miles [31] studies wave reflection from a gently
sloping beach within the linear theory. In agreement with
the results of [25], it is shown that the absence of
viscosity implies perfect reflection. Mandal and Kundu
[32] re-investigate the two-dimensional problem of
incoming wave against a cliff by Fourier transform in the
linear theory, no reflection being assumed. They present a
simplified solution which includes a logarithmic
singularity at the shoreline, earlier obtained by Stoker.
Abou-Dina and Helal [33,34] use asymptotic double
expansions proposed in [17,18] to study the effect of
obstacles on wave propagation in shallow water. The
effect of surface tension is considered.

Chakrabarti [35] studies the propagation of waves
against a cliff under the assumptions of linearized theory.
His solution exhibits a source/sink type behavior of the
velocity potential at the shore-line. Gupta [36] proposes
an analytic solution describing the motion of a bore over a
uniformly sloping beach for the supercritical case. McIver
[37] provides an example of non-uniqueness in the
twodimensional linear water wave problem. Ehrenmark

[38] investigates the flow generated by small amplitude
non-breaking gravity waves on a perfect fluid in a wedge
shaped domain using a second-order perturbation
analysis. Streamlines are sketched for some values of the
beach slope. Javam et al. [39] undertake a numerical
study of internal wave reflection from sloping boundaries
within a nonlinear theory. Ehrenmark [40] studies wave
trapping above a plane beach by partially or totally
submerged obstacles within the linear theory. He
underlines a case of non-uniqueness for the water wave
problem on a beach.

Liu et al. [41] obtain analytical solutions for forced
long waves on a sloping beach. Comparison is carried out
with previous numerical solutions. Ehrenmark [42] uses a
transformation technique to calculate potentials expressed
in integral form for the wave motion over a uniformly
sloping beach. Bukreev [43] presents experimental results
concerning the reflection of a nonlinear wave from a
vertical wall. The existing literature deals mainly with
uniformly sloping beaches with extension to deep water,
or with vertical barriers and cliffs in water of finite or
infinite depth. Martin and Taskinen [44] consider the
linear water-wave problem in a bounded water-basin with
a shallow beach. Simarro et al. [45] propose a fully
nonlinear model to study wave propagation in deep or in
shallow waters.

Xua and Dias [46] give a numerical evaluation and
perform comparison of four old solutions of standing
waves over a beach of uniform slope. Gallerano et al. [47,
48] use a numerical model to solve the three-dimensional
Navier-Stokes equations by a non-hydrostatic
shock-capturing numerical scheme which is able to
simulate the wave propagation from deep water to the
shoreline, including the surf zone and swash zone. Durán
et al. [49] propose a modification of the governing
equations, which is asymptotically similar to the initial
model for weakly nonlinear waves, while preserving an
additional symmetry of the complete water wave
problem. This improved system is shown to have
well-conditioned dispersive terms in the swash zone,
hence allowing for efficient and stable run-up
computations. Zhou and Wang [50] consider the
wave-breaking phenomenon under a weakly dissipative
shallow water equation. Other recent work on wave
propagation in shallow water may be found in [51,52,53].

The purpose of the present work is to investigate the
propagation of waves on a beach consisting of a
horizontal bed and a uniformly sloping bottom. The work
is performed along the guidelines formulated by Germain
(c.f. [17,18]) which relies on the expansion of the
solution in asymptotic double series combining a small
parameter and local oscillations located at the point of
separation of the horizontal and the variable parts of the
flow bed.

The work is arranged as follows: We first exposed the
literature on wave propagation over a beach in section 1.
Section 2 expands the details about the problem and
material. Subsection 2.1 deals with the problem
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formulation and the basic equations, while, subsection 2.2
is devoted to the method of solution of the problem under
investigation. In subsection 2.3 we address three cases:
Subsection 2.3.1 treats the case of a beach of appreciable
inclination on the horizontal, and the case of a cliff;
subsection 2.3.2 considers the case of a sloping beach of
small inclination on the horizontal; subsection 2.3.3 uses
the results of the previous two subsections to treat the
case of an incident wave over a beach consisting of a
horizontal bed and a uniformly sloping bottom. Explicit
formulae are obtained for the reflected wave and for the
local oscillations. In section 3, the results are presented
through a numerical application. A brief discussion of
tsunami modeling in section 4. Finally, section 5 collects
the main results and conclusions of the present work.

2 Materials and Methods

2.1 Problem formulation and basic equations

In what follows, we shall investigate the problem of wave
propagation over a beach of a heavy ideal fluid of
constant mass density within the shallow theory. The
wave progresses in a fluid of finite constant depth before
reaching the uniformly inclined beach. A reflected wave
will be generated. The phenomenon of wave breaking is
not taken in consideration. Impermeability and isobarity
conditions are satisfied on the a priori unknown flow free
surface. Impermeability holds on the flow bed as well.
Radiation conditions will be defined later on. The
geometry of the problem is illustrated on Fig. 1. It is
worth here noting the difference with previous work in
which the inclined beach extends indefinitely.

The conditions for shallow water are usually
formulated in terms of two ratios (c.f. [49,54]): The ratio
of characteristic wave amplitude to characteristic depth,
and the ratio of characteristic depth to characteristic wave
length. Both of these ratios must be sufficiently small.
The ratio of these two ratios may lead to different shallow
water theories. Clearly, these ratios may vary by different
orders of magnitude, depending on the problem under
consideration. Characteristic depths may vary from a few
meters on beaches and rivers, to a few kilometers in deep
waters. Similarly, wavelengh may vary from a few meters
to tens of kilometers, while wave amplitude can vary
from a few centimeters to a few meters.

A material description will be used to solve the
problem. While an overwhelming proportion of the
research carried out in this field use an Eulerian
description, there is very few work done in the
Lagrangian framework. Among those we cite Shuto [13,
14] who treats a three-dimensional problem of wave
propagation over a beach, and Goto [24] who describes
the propagation of long waves over a beach. Advantages
and merits of the Lagrangian description may be found in
[13].

Fig. 1: Geometry of the problem.

The considered problem is two-dimensional. It is
believed that such a formulation is useful in many
situations of practical interest, especially under laboratory
conditions.

The present formulation involves a small parameter
representing at the same time the condition of shallow
water and the wave steepness:

ν =
water depth above the horizontal bottom

horizontal flow extent
=

wave amplitude

wavelength
.

2.2 Basic equations in two dimensions

Let Oxy be a system of orthogonal Cartesian coordinates
with x-axis horizontal and taken along the mean position
of the free surface, the y-axis is pointing downward
passing by the foot of the beach. Let h be the depth of the
fluid above the horizontal part. The beach is given by the
function

y = H(x) =⇒ x = f (y), (1)

while the flat bottom lies in the region with negative
abcissae. The equation of the flow bed is:

y = G(x) =

{

h, −∞ ≤ x ≤ 0

H(x), 0 ≤ x ≤ f (0).
(2)

A fluid particle at the location M with coordinates (x,y) at
time moment t occupied the location M0 with coordinates
(X ,Y ) at time t = t0. At this initial time, the free surface
had equation Y = η(X).

If P(X ,Y, t) is the pressure at the particle at location M

at time t, then the unknowns of the problem are:

x(X ,Y, t), y(X ,Y, t), P(X ,Y, t).

For the determination of these three unknown functions,
the following field equations in the bulk and boundary
conditions are available:

1.The kinematical condition, or equation of continuity,
for the ideal fluid of constant density:

∂x

∂X

∂y

∂Y
−

∂x

∂Y

∂y

∂X
= 1. (3)
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2.The dynamical condition, or condition of circulation
preserving motion for the considered fluid:

(

∂x

∂X

∂ 2x

∂Y ∂ t
−

∂x

∂Y

∂ 2x

∂X∂ t

)

+

(

∂y

∂X

∂ 2y

∂Y ∂ t
−

∂y

∂Y

∂ 2y

∂X∂ t

)

= F (X ,Y ) , (4)

where F is the double initial vorticity. In what
follows, we make the hypothesis that the vorticity was
zero initially. The method of solution developed
hereafter, however, remains valid in the case F 6= 0.

3.The equations of motion involving the unknowns x, y

and the pressure gradient. These are used to find the
pressure inside the fluid, once the other unknowns x

and y have been determined.

∂ 2x

∂ t2
=−

1

ρ

(

∂ p

∂X

∂y

∂Y
−

∂ p

∂Y

∂y

∂X

)

, (5)

∂ 2y

∂ t2
=−

1

ρ

(

∂ p

∂Y

∂x

∂X
−

∂ p

∂X

∂x

∂Y

)

+ g. (6)

4.The condition on the free surface expressing the
isobarity of this surface:

∂ p

∂X
= 0 at Y = 0 (7)

This condition may be formulated in an equivalent
form using the equations of motion (5) and (6) to
yield:

∂ 2x

∂ t2

∂x

∂X
+

∂ 2y

∂ t2

∂y

∂X
= g

∂y

∂X
at Y = 0. (8)

5.The condition of impermeability of the free surface.
This is automatically satisfied.

6.The condition of impermeability of the flow bed:


















y(X ,h, t) = 0

on the horizontal part of the flow bed

x( f (Y ),Y, t)+X = f (Y + y( f (Y ),Y, t))

on the inclined part of the flow bed.

(9)

In addition to these relations, one still needs to impose
some limitations on the extent of the flow domain and
some radiation conditions, to be explicitly stated later on.

The basic equations are now cast into a more
convenient form for later work by considering the
displacements (x−X ,y−Y) instead of the locations
(x,y). Without change in notations, the new kinematical
and dynamical conditions now read:

∂x

∂X
+

∂y

∂Y
+

∂x

∂X

∂y

∂Y
−

∂x

∂Y

∂y

∂X
= 0, (10)

(

1+
∂x

∂X

)

∂ 2x

∂Y ∂ t
−

∂x

∂Y

∂ 2x

∂X∂ t
+

∂y

∂X

∂ 2y

∂Y∂ t
−

(

1+
∂y

∂Y

)

∂ 2y

∂X∂ t
= 0, (11)

the equations of motion become:

∂ 2x

∂ t2
=−

1

ρ

[

∂ p

∂X

(

1+
∂y

∂Y

)

−
∂ p

∂Y

∂y

∂X

]

, (12)

∂ 2y

∂ t2
=−

1

ρ

[

∂ p

∂Y

(

1+
∂x

∂X

)

−
∂ p

∂X

∂x

∂Y

]

− g, (13)

while the isobarity at the free surface yields:

∂ 2x

∂ t2

(

1+
∂x

∂X

)

+
∂ 2y

∂ t2

∂y

∂X
= g

∂y

∂X
at Y = 0. (14)

We shall assume in what follows that all the functions
appearing in the problem formulation, together with their
various derivatives, are bounded in the domain occupied
by the fluid, unless otherwise specified.

2.3 Method of solution

The method of solution to be used in the sequel was
proven to be a powerful tool for solving nonlinear
problems of shallow water theory. It was introduced by
Germain [17,18] as an extention of the classical theory in
order to solve problems of wave generation in a
semi-infinite channel of constant depth. Few researches
have applied this same method [55].

The method relies on the introduction of a distortion ε
in the independent variables:

ξ = εX , ζ = Y, τ = ε
√

ght. (15)

The small parameter ε is related to the physical parameters
of the motion, it will not be precised for the time being. In
terms of the new variables, the basic equations take the
form:

The kinematical condition:

∂y

∂ζ
+ ε

(

∂x

∂ξ
+

∂x

∂ξ

∂y

∂ζ
−

∂x

∂ζ

∂y

∂ξ

)

= 0, (16)

The dynamical condition:

∂ 2x

∂ζ∂τ
+

ε

(

∂x

∂ξ

∂ 2x

∂ζ∂τ
−

∂x

∂ζ

∂ 2x

∂ξ∂τ
+

∂y

∂ξ

∂ 2y

∂ζ∂τ
−

(

1+
∂y

∂ζ

)

∂ 2y

∂ξ∂τ

)

= 0,

(17)

The free surface condition:

∂y

∂ξ
= εh

∂ 2x

∂τ2
+ ε2h

(

∂x

∂ξ

∂ 2x

∂τ2
+

∂y

∂ξ

∂ 2y

∂τ2

)

at ζ = 0.

(18)
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The flow bed condition:


















y(ξ ,h,τ) = 0

on the horizontal part of the bottom

εx(ε f (ζ ),ζ ,τ) + ξ = ε f (ζ + y(ε f (ζ ),ζ ,τ))

on the inclined part of the bottom ξ = ε f (ζ )

(19)

The condition on the bottom for ξ ≥ 0 is re-formulated
in a more convenient way for later use as:

[

x− y f ′(ζ )−
1

2!
y2 f ′′(ζ )−·· ·

]

+ ε f (ζ )

[

∂

∂ξ
{x− y f ′(ζ )−

1

2!
y2 f ′′(ζ )−·· ·}

]

+
1

2!
ε2 f (ζ )2

[

∂ 2

∂ξ 2
{x− y f ′(ζ )−

1

2!
y2 f ′′(ζ )−·· ·}

]

= 0 at ξ = 0.

so that the application of this boundary condition at any
approximation order takes place on the vertical flow cross-
section ξ = 0.

In what follows, we shall consider two cases, for which
the beach inclination is either of order zero, or of order 1
in the small parameter ε .

Unlike the classical theory of shallow water for which
the solutions are expanded in Poincaré small parameter,
the present method allows for an extension of this
classical theory by introducing expansions that include
local perturbations in the form initially proposed by
Germain and later on generalized by Badawi (c.f.
Germain [17,18] and Badawi [56]):

x± =
∞

∑
m=0

∞

∑
n=1

εn x±m,n (ξ ,ζ ,τ)emλ±(ξ )/ε (20)

y± =
∞

∑
m=0

∞

∑
n=1

εn y±m,n (ξ ,ζ ,τ)emλ±(ξ )/ε , (21)

where ± denote the regions ξ > 0 and ξ < 0 respectively,
λ±(ξ ) are functions to be determined in the process of the
solution. Without loss of generality, one may take λ±(0)=
0. Clearly, this function must satisfy:

{

λ+′
(ξ )< 0 ξ > 0,

λ−′
(ξ )> 0 ξ < 0.

(22)

The double summation over m,n does not include the
term with m = n = 0 as the corresponding solution is
verified to vanish identically for the considered
application. However, there are cases when this term is
essential and must be included in the solution, for
example problems involving uniform flow (c.f. Ghaleb
and Hefni [55]). As noted by Germain [17,18], the series
in the expressions for the solution have an asymptotic
nature.

In what follows, all considerations will be restricted to
beaches with uniform slope.

2.3.1 Beach of steep inclination

It is required to solve equations (16), (17), (18), (20)
under the condition of initial rest of the fluid and
appropriate disturbance reaching the beach near the time
t = 0.

Next, we write down the basic equations and boundary
conditions in the first few orders of approximation (m,n)
and provide the corresponding solutions.

1.Approximation (0,1)
The condition at the free surface is identically satisfied.
The equations in the mass yield:

∂y0,1

∂ζ
= 0, (23)

∂ 2x0,1

∂ζ∂τ
= 0, (24)

and the condition on the bottom is:

y0,1(ξ ,h,τ) = 0. (25)

One gets:

x0,1(ξ ,ζ ,τ) = x0,1(ξ ,τ), y0,1(ξ ,ζ ,τ) = 0, (26)

where a function of (ξ ,ζ ) has been omitted in the
expression for x0,1 without loss of generality, as it can
be added as a term of order ε to the above
transformation of coordinates.

2.Approximation (0,2)
The equations in the bulk:

∂y0,2

∂ζ
+

∂x0,1

∂ξ
= 0, (27)

∂ 2x0,2

∂ζ∂τ
= 0, (28)

equation (27) gives x0,2 = x0,2(ξ ,τ). Condition at the
bottom:

y0,2(ξ ,h,τ) = 0. (29)

Condition at the free surface:

h
∂ 2x0,1

∂τ2
=

∂y0,2

∂ξ
. (30)

Integrate (27) and use the second condition at the
bottom to get:

y0,2(ξ ,ζ ,τ) =−(ζ − h)
∂x0,1

∂ξ
. (31)

This same expression is taken for all values of ξ .
Combining this result with the condition at the free
surface, one is finally left with:

∂ 2x0,1

∂ξ 2
−

∂ 2x0,1

∂τ2
= 0. (32)
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Integrating:

x0,1(ξ ,τ) =Ui(ξ − τ)+Ur(ξ + τ), (33)

the indices (i) and (r) referring to “incident” and
“reflected” waves respectively. One gets:

y0,2(ξ ,ζ ,τ) =−(ζ − h)
[

U ′
i (ξ − τ)+U ′

r(ξ + τ)
]

,
(34)

where the dash refers to the derivative of the function
with respect to its argument.
Again, equation (28) gives x0,2 = x0,2(ξ ,τ) and the
condition on the beach yields:

x0,2 = x0,2(ξ ,τ)

=C (τ)+ f1hξ
[

U ′′
i (ξ − τ)+U ′′

r (ξ + τ)
]

, (35)

where C (τ) is an arbitrary constant.
3.Approximation (1,1)

Using the rest initial condition, it is easy to verify that:

∂y1,1

∂ζ
+λ ′(ξ )x1,1 = 0, (36)

∂x1,1

∂ζ
−λ ′(ξ )y1,1 = 0, (37)

the solution of which yields:

x1,1 =−K1,1(τ)cos
[

|λ ′(ξ )|ζ
]

,

y1,1 = K1,1(τ)sin
[

|λ ′(ξ )|ζ
]

, (38)

where K1,1(τ) is a bounded function of time and,
moreover, tends to zero as t → 0. This function is the
only arbitrary function at this order of approximation.
Note that this solution satisfies the free surface
condition. It remains now to satisfy the condition at
the bottom. When ξ < 0 it is sufficient to choose

λ−(ξ ) = πξ
h

.
4.Approximation (m,1),m > 1

It is worth noting that the solution at the approximation
(m,1), m > 1 follows exactly the same pattern as for
the order (1,1). For this reason we shall not work it
out but quote the results directly. Finally, the first-order
approximation in ε in the region ξ < 0 can be written
as:

x = x0,1(ξ ,τ)−
∞

∑
m=1

Km,1(τ)emπξ/εh cos
(

m
π

h
ζ
)

,(39)

y =
∞

∑
m=1

Km,1(τ)emπξ/εh sin
(

m
π

h
ζ
)

. (40)

The function

F(µ + iζ ) = x+ iy, µ =
ξ

ε

can now be viewed as being holomorphic in the
semi-infinite strip (−∞ < µ < 0, 0 < ζ < 1), its

imaginary part assuming zero values at the upper and
the lower edges. At the end µ = 0, the real and
imaginary parts of this function are related by eq.(26).
By Schwarz Reflection Principle, this function may be
extended to its complex conjugate in the strip
(−∞ < µ < 0,−1 < ζ < 0).
The boundary condition at ξ = 0 is written as:

{

x(0,τ) =−y(0,τ) f1, −h ≤ ζ < 0

x(0,τ) = y(0,τ) f1, 0 < ζ ≤ h
(41)

or



















































∞

∑
m=0

Km,1(τ)cos
(

m
π

h
ζ
)

−∑∞
m=1 f1Km,1(τ)sin

(

m π
h

ζ
)

=Ui(−τ), −h ≤ ζ < 0
∞

∑
m=0

Km,1(τ)cos
(

m
π

h
ζ
)

+∑∞
m=1 f1Km,1(τ)sin

(

m π
h

ζ
)

=Ui(−τ), 0 < ζ ≤ h

(42)

with K0,1(τ) = −Ur(τ) and f1 is the constant value of
the derivative of function f (ζ ). These two dual series
equations have an obvious solution:

K0,1(τ) =Ui(−τ), Km,1(τ) = 0, m = 1,2, · · · .
(43)

Thus there are no local oscillations at this order of
approximation, a result similar to those obtained in
[33,34].
Before proceeding further, let us take a look at the
functions Ui(−τ) and Ur(τ) in equations (42).
Consider the space of the coordinates (ξ ,τ). Fig. 2
shows two pairs of characteristic straight lines for the
propagating incident and reflected waves emanating
from a general point (ξ ,τ) and from the point (0,τ).

Fig. 2: Characteristics for the incident and the reflected waves.

One easily sees that

Ui(−τ) =Ui(0,τ), Ur(τ) =Ur(0,τ).

Finally, one has

Ur(0,τ) =−Ui(0,τ)
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so that the incident wave is completely reflected at this
order of approximation.

5.Approximation (m,2),m > 0
The kinematical and the kinetic conditions give,
respectively:

∂ym,2

∂ζ
+

mπ

h
xm,2 =−

∂Km,1

∂ξ
cos

mπ

h
(ζ − h)

+
m−1

∑
i=1

Ri cos(2i−m)
π

h
(ζ − h) (44)

∂ 2xm,2

∂ζ∂τ
−

mπ

h
ym,2 =−

∂ 2Km,1

∂ξ ∂τ
sin

mπ

h
(ζ − h)

−
m−1

∑
i=1

Si sin(2i−m)
π

h
(ζ − h), (45)

where

Ri = i(m− i)
π2

h2
Ki,1(ξ ,τ)Km−i,1(ξ ,τ),

Si = i(m− i)
π2

h2

[

Ki,1(ξ ,τ)
∂Km−i,1

∂τ
−Km−i,1(ξ ,τ)

∂Ki,1

∂τ

]

,

i = 1,2, · · · ,m− 1. (46)

Coefficients on the r.h.s. of (44) and (45) all vanish,
hence these equations simplify to:

∂ym,2

∂ζ
+

mπ

h
xm,2 = 0 (47)

∂ 2xm,2

∂ζ∂τ
−

mπ

h
ym,2 = 0, (48)

with general solution satisfying the condition at the
bottom:

xm,2(ξ ,ζ ,τ) =−Km,2(τ)cos
mπ

h
ζ ,

ym,2(ξ ,ζ ,τ) = Km,2(τ)sin
mπ

h
ζ . (49)

The second-order approximation in ε in the region ξ <
0 is:

x =C (τ)+ f1hξ
[

U ′′
i (ξ − τ)+U ′′

r (ξ + τ)
]

−
∞

∑
m=1

Km,2(τ)emπξ/εh cosm
π

h
ζ ,

y =−(ζ − h)
[

U ′
i (ξ − τ)+U ′

r(ξ + τ)
]

+
∞

∑
m=1

Km,2(τ)emπξ/εh sinm
π

h
ζ . (50)

The boundary condition at ξ = 0 gives:

∞

∑
m=1

mKm,2(τ)cosm
π

h
ζ + f1

∞

∑
m=1

mKm,2(τ)sin m
π

h
ζ = 0,

0 < ζ ≤ h. (51)

As before, we make an extension of the analytic
function x + iy to the interval −h ≤ ζ < 0 using
Schwarz Reflection Principle to get:

∞

∑
m=1

mKm,2(τ) cosm
π

h
ζ

− f1

∞

∑
m=1

mKm,2(τ) sinm
π

h
ζ = 0,

− h ≤ ζ < 0. (52)

Now let

∞

∑
m=1

mKm,2(τ)cosm
π

h
ζ + f1

∞

∑
m=1

Km,2(τ)sin m
π

h
ζ

=

{

Q(ζ ,τ), −h ≤ ζ < 0

0, 0 < ζ ≤ h,
(53)

where Q(ζ ,τ) is a function to be determined.
Expressions for the coefficients in this last relation
can be written down at once as:

Km,2(τ)=
1

hm

∫ 0

−h
Q(ζ ′,τ)cosm

π

h
ζ ′ dζ ′, m= 1,2, · · · .

(54)
Substitution of expressions (43) into the first of
eqs.(52) yields the following integral equation for the
function Q(ζ ):

1

h

∫ 0

−h
K(ζ ′,ζ )Q(ζ ′,τ)dζ ′ = 0, −h ≤ ζ < 0

(55)
with kernel

K(ζ ′,ζ ) =
∞

∑
m=1

cosm
π

h
ζ ′ cosm

π

h
ζ

−
∞

∑
m=1

f1 cosm
π

h
ζ ′ sinm

π

h
ζ

=
1

2

∞

∑
m=1

[

cosm
π

h
(ζ ′+ ζ )+ cosm

π

h
(ζ ′− ζ )

]

−
1

2
f1

∞

∑
m=1

[

sinm
π

h
(ζ ′+ ζ )− sinm

π

h
(ζ ′− ζ )

]

=−
1

2
+

1

2
π

∞

∑
k=−∞

δ
(π

h
(ζ ′+ ζ )− 2πk

)

+
1

2
π

∞

∑
k=−∞

δ
(π

h
(ζ ′− ζ )− 2πk

)

−
1

4
f1

[

cot
π

2h
(ζ ′+ ζ )− cot

π

2h
(ζ ′− ζ )

]

(56)
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The only term that gives non-trivial contribution is for
k = 0 in the second summation. Thus:

K(ζ ′,ζ ) =−
1

2
+

1

2
π δ

(π

h
(ζ ′− ζ )

)

−
1

4
f1

[

cot
π

2h
(ζ ′+ ζ )− cot

π

2h
(ζ ′− ζ )

]

(57)

or

K(ζ ′,ζ ) =−
1

2
+

1

2
δ

(

ζ ′− ζ

h

)

−
1

4
f1

[

cot
π

2h
(ζ ′+ ζ )− cot

π

2h
(ζ ′− ζ )

]

(58)

One is finally left with the following Fredholm integral
equation of the second kind for the function Q(ζ ,τ):

Q(ζ ,τ)−
1

2

1

h
∫ 0

−h

[

2+ f1 cot
π

2h
(ζ ′+ ζ )− cot

π

2h
(ζ ′− ζ )

]

Q(ζ ′,τ)dζ ′

= 0, −h ≤ ζ < 0 (59)

and upon simplification:

Q(ζ ,τ)−
1

2

1

h
∫ 0

−h

[

2− f1

sin
πζ
h

sin π
2h
(ζ ′+ ζ )sin π

2h
(ζ ′− ζ )

]

Q(ζ ′,τ)dζ ′

= 0, −h ≤ ζ < 0 (60)

This last equation clearly shows that Q(ζ ,τ) does not
depend on time, and is in fact identically equal to zero
as no source terms are present in this equation. Thus,
there are no local oscillations at this order of
approximation.

2.3.2 Beach of small inclination

Let the equation of the beach be:

y = h+ µ̄x, (61)

where h and |µ̄ | ≪ 1 are constants.

The fluid initially at rest occupies the region:

0 ≤ X ≤−
h

µ̄
, 0 ≤ Y ≤ h+ µ̄X .

Using the distortion (X ,Y ) → (ξ ,ζ ) previously
introduced in (15), and assuming, moreover, that µ̄ is a
small parameter of order ε:

µ̄ = εµ , µ = O(1),

the basic equations describing the problem (16) - (18)
remain the same, only the condition on the flow bed is
changed to become:

y = µεx on the beach with equation ζ = h+ µξ . (62)

We shall require that the velocity field be finite. The form
of the solution is as before. The solutions to the different
orders of approximation will be exposed without details.

1.Approximation (0,1)
It is easy to show that

x0,1(ξ ,ζ ,τ) = x0,1(ξ ,τ), y0,1(ξ ,ζ ,τ) = 0. (63)

2.Approximation (m,1),m > 0
The solutions satisfying the equations in the bulk and
the bottom boundary condition are:

xm,1(ξ ,ζ ,τ) = Lm,1(ξ ,τ)cos
[

mλ ′(ξ )(ζ −h−µξ )
]

,(64)

ym,1(ξ ,ζ ,τ) = Lm,1(ξ ,τ)sin
[

mλ ′(ξ )(ζ −h−µξ )
]

.(65)

Function Lm,1(ξ ,τ) may be interpreted as the
horizontal component of displacement on the bottom
at this order of approximation. The condition on the
free surface yields:

λ ′(ξ ) =
π

h+ µξ
. (66)

This, together with the condition λ (0) = 0, gives the
following expression for λ :

λ (ξ ) =
π

µ
ln

h+ µξ

h
= ln

(

h+ µξ

h

) π
µ

. (67)

Therefore:

xm,1(ξ ,ζ ,τ) = (−1)m Lm,1(ξ ,τ)cos
mπζ

h+ µξ
, (68)

ym,1(ξ ,ζ ,τ) = (−1)m Lm,1(ξ ,τ)sin
mπζ

h+ µξ
. (69)

Summing up, the solution at order 1 may be written as:

x1(ξ ,ζ ,τ) = x0,1(ξ ,τ)

+
∞

∑
k=1

(−1)m Lm,1(ξ ,τ)cos
mπζ

h+ µξ

(

h+ µξ

h

)−mπ/µε

,

(70)

y1(ξ ,ζ ,τ) =

∞

∑
k=1

(−1)m Lm,1(ξ ,τ)sin
mπζ

h+ µξ

(

h+ µξ

h

)−mπ/µε

.

(71)
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3.Approximation (0,2)
It is straightforward to find out that the solution x0,1 at
this order of approximation satisfies the wave
equation:

∂ 2x0,1

∂γ2
−

∂ 2x0,1

∂τ2
+

3

γ

∂x0,1

∂γ
= 0, (72)

where the following transformation of independent
variables ξ → γ was introduced:

γ =−
2h

µ

√

1+
µξ

h
. (73)

Again,

y0,2(ξ ,ζ ,τ) = µx0,1(ξ ,τ)+(h+µξ −ζ )
∂x0,1

∂ξ
. (74)

The equation for v becomes:

∂ 2v

∂γ2
−

∂ 2v

∂τ2
−

3

4

1

γ2
v = 0. (75)

Use separation of variables to finally get:

x0,1 =
1

γ
J1(β γ)(Acosβ τ +Bsinβ τ) . (76)

4.Approximation (m,2),m > 0 Straightforward
calculations lead to a particular solution of the form:

xm,2 = Lm,2(ξ ,τ)cosmλ ′(ξ )ζ

−
µλ ′(ξ )2

π2
ζ Lm,1(ξ ,τ)sin mλ ′(ξ )ζ

−
mµλ ′(ξ )3

2π2
ζ 2 Lm,1(ξ ,τ)cosmλ ′(ξ )ζ ,

ym,2 = Lm,2(ξ ,τ)sin mλ ′(ξ )ζ

+
µλ ′(ξ )2

π2
ζ Lm,1(ξ ,τ)cosmλ ′(ξ )ζ

−
mµλ ′(ξ )3

2π2
ζ 2 Lm,1(ξ ,τ)sinmλ ′(ξ )ζ , (77)

so that the solution to order 2 is:

x2(ξ ,ζ ,τ) = x0,2(ξ ,τ)

+
∞

∑
m=1

xm,2(ξ ,τ)

(

h+ µξ

h

)mπ/µε

,

y2(ξ ,ζ ,τ) = y0,2(ξ ,ζ ,τ)

+
∞

∑
m=1

ym,2(ξ ,τ)

(

h+ µξ

h

)mπ/µε

.

(78)

2.3.3 Wave propagation over a beach

We begin by writing down the expressions for the
solution to the first two orders of approximation in the
small parameter ε in the flow regions:

x−1 (ξ ,ζ ,τ) =Ui(ξ − τ)+Ur(ξ + τ)

+
∞

∑
m=1

K−
m,1(τ) cosm

π

h
(ζ − h) emπξ/εh, (79)

y−1 (ξ ,ζ ,τ)=−
∞

∑
m=1

K−
m,1(τ) sin m

π

h
(ζ −h) emπξ/εh (80)

x−2 (ξ ,ζ ,τ)=
∞

∑
m=1

K−
m,2(τ) cosm

π

h
(ζ −h)emπξ/εh, (81)

y−2 (ξ ,ζ ,τ) =−(ζ − h)
[

U ′
i (ξ − τ)+U ′

r(ξ + τ)
]

−
∞

∑
m=1

K−
m,2(τ) sinm

π

h
(ζ − h)emπξ/εh. (82)

and

x+1 (ξ ,ζ ,τ) = F(ξ ,τ)

+
∞

∑
k=1

K+
m,1(τ)

h+ µξ
cos

mπ(ζ − h− µξ )

h+ µξ

(

h+ µξ

h

)−mπ/µε

,

(83)

y+1 (ξ ,ζ ,τ)

=
∞

∑
k=1

K+
m,1(τ)

h+ µξ
sin

mπ(ζ − h− µξ )

h+ µξ

(

h+ µξ

h

)−mπ/µε

,

(84)

x+2 (ξ ,ζ ,τ)

=
∞

∑
k=1

K+
m,2(τ)

h+ µξ
cos

mπ(ζ − h− µξ )

h+ µξ

(

h+ µξ

h

)−mπ/µε

,

(85)

y+2 (ξ ,ζ ,τ) = µF +(h+ µξ − ζ )
∂F

∂ξ

+
∞

∑
k=1

K+
m,2(τ)

h+ µξ
sin

mπ(ζ − h− µξ )

h+ µξ

(

h+ µξ

h

)−mπ/µε

,

(86)

where

F(ξ ,τ)

=
∫ ∞

0
[A(σ)cos(στ)+B(σ)sin(στ)]

J1

(

− 2h
µ

√

1+ µξ
h σ

)

−2h
µ

√

1+ µξ
h

dσ .

(87)
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One has

∂F

∂ξ

=

∫ ∞

0
[A(σ)cos(στ)+B(σ)sin(στ)]









µσ

2h

J0

(

− 2h
µ

√

1+ µξ
h

σ

)

1+ µξ
h

+
µ2

2h2

J1

(

− 2h
µ

√

1+ µξ
h

σ

)

(

1+ µξ
h

)3/2









dσ .

(88)

The function Ui is given, while the unknowns to be
determined in the above equations from the continuity of
the solution at ξ = 0 are Ur,K

±
m,1,K

±
m,2,A,B.

It is easy to show that continuity of the solution at ξ =
0 at the first order of approximation yields the results:

K−
m,1 = K+

m,1 = 0, m = 1,2, · · · (89)

and
Ur(τ) = F(0,τ)−Ui(−τ). (90)

This last relation determines the reflected wave, once
function F has been obtained. Differentiation of (90)
w.r.to t gives:

U ′
r(τ) =

∫ ∞

0
[−σA(σ)sin(στ)+σB(σ)cos(στ)]

J1

(

−2hσ
µ

)

−2h
µ

dσ +U ′
i (−τ).

(91)

Continuity at the second order of approximation gives:

K−
m,2(τ) =

1

h
K+

m,2(τ) (92)

and

− (ζ − h)
[

U ′
i (−τ)+U ′

r(τ)
]

−
∞

∑
m=1

K−
m,2(τ) sin m

π

h
(ζ − h) =

µF(0,τ)+(h−ζ )
∂F

∂ξ

∣

∣

∣

∣

ξ=0

+
∞

∑
k=1

K+
m,2(τ)

h
sin

mπ(ζ − h)

h
.

Now use the expansion

ζ =−
∞

∑
m=1

2h

mπ
sinm

π

h
(ζ − h) (93)

and the orthogonality property of trigonometric functions
to get:

µF(0,τ)+ h
∂F

∂ξ

∣

∣

∣

∣

ξ=0

= G(τ), (94)

K−
m,2(τ) =

K+
m,2(τ)

h
=

1

mπ
G(τ)−

h

mπ

∂F

∂ξ

∣

∣

∣

∣

ξ=0

,

m = 1,2, · · · , (95)

where

G(τ) = h
[

U ′
i (−τ)+U ′

r(τ)
]

=

h



2U ′
i (−τ)+

∫ ∞

0
[−σA(σ)sin(στ)+σB(σ)cos(στ)]

J1

(

− 2hσ
µ

)

−2h
µ

dσ





(96)

Now

F(0,τ) =
∫ ∞

0
[A(σ)cos(στ)+B(σ)sin(στ)]

J1

(

− 2hσ
µ

)

−2h
µ

dσ

∂F

∂ξ

∣

∣

∣

∣

ξ=0

=

∫ ∞

0
[A(σ)cos(στ)+B(σ)sin(στ)]

[

µσ

2h
J0

(

−2hσ

µ

)

+
µ2

2h2
J1

(

−2hσ

µ

)]

dσ .

Extend the definition of function U ′
i to all real values

of times and let:

G1(τ) =
1

2

[

U ′
i (τ)+U ′

i (−τ)
]

, G2(τ) =
1

2

[

U ′
i (τ)−U ′

i (−τ)
]

.

(97)
Equation (94) will be satisfied if one chooses:

∫ ∞

0

µσ

4h

[

A(σ)J0

(

−2hσ

µ

)

+B(σ)J1

(

−2hσ

µ

)]

cos(στ)dσ

= G1(τ), (98)

∫ ∞

0

µσ

4h

[

B(σ)J0

(

−2hσ

µ

)

−A(σ)J1

(

−2hσ

µ

)]

sin(στ)dσ

= G2(τ), (99)

from which one obtains by inversion of Fourier sine and
cosine transforms:

A(σ)J0

(

−2hσ

µ

)

+B(σ)J1

(

−2hσ

µ

)

=
8h

πµσ

∫ ∞

0
G1(τ)cos(στ)dτ , (100)

B(σ)J0

(

−2hσ

µ

)

−A(σ)J1

(

−2hσ

µ

)

=
8h

πµσ

∫ ∞

0
G2(τ)sin(στ)dτ . (101)

The solution of this system of linear algebraic equations
yields the values of A(σ),B(σ):

A(σ) =
8h

πµσ

1

∆(σ)

[

J1

(

−2hσ

µ

)

∫ ∞

0
G1(τ)cos(στ)dτ+

J0

(

−2hσ

µ

)

∫ ∞

0
G2(τ)cos(στ)dτ

]

, (102)

B(σ) =
8h

πµσ

1

∆(σ)

[

J0

(

2hσ

µ

)

∫ ∞

0
G1(τ)cos(στ)dτ−

J1

(

2hσ

µ

)

∫ ∞

0
G2(τ)cos(στ)dτ

]

, (103)
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where

∆(σ) =

[

J0

(

−2hσ

µ

)]2

+

[

J1

(

−2hσ

µ

)]2

. (104)

This completes the solution of the problem.
To find the flow free surface, we set ζ = 0 in the above

equations to get:

x−1 (ξ ,0,τ) =Ui(ξ − τ)+Ur(ξ + τ), (105)

y−1 (ξ ,0,τ) = 0 (106)

x−2 (ξ ,0,τ) =
∞

∑
m=1

K−
m,2(τ)(−1)m emπξ/εh, (107)

y−2 (ξ ,0,τ) = h
[

U ′
i (ξ − τ)+U ′

r(ξ + τ)
]

(108)

and

x+1 (ξ ,0,τ) = F(ξ ,τ), (109)

y+1 (ξ ,0,τ) = 0, (110)

x+2 (ξ ,0,τ) =
∞

∑
k=1

K+
m,2(τ)

h+ µξ
(−1)m

(

h+ µξ

h

)−mπ/µε

,(111)

y+2 (ξ ,0,τ) = µF +(h+ µξ )
∂F

∂ξ
. (112)

3 Results

In this section, we show the numerical results of the free
surface of the propagating waves over the beach. For the
numerical application, we have taken

h = 1m, µ =−10,−11,−12

and

Ui(ξ ,τ) = 1− tanh
3

4
(ξ − τ) . (113)

For this case G2(τ) = 0.

Fig. 3: The incident wave Ui(ξ ,τ).

The incident wave is described in the space by Fig.
3. We observe the location ξ = 0 for different times as

Fig. 4: The incident wave Ui(0,τ).

illustrated on Fig. 4. Its amplitude increases from zero to a
saturation level of value 2.

We have represented on Fig. 5 the reflected wave as
observed from the location ξ = 0. It is noticed that the
amplitude at τ = 0 is less than 2, which means that part of
the incident wave energy has been transfered to the fluid
to produce the local oscillations. The energy loss of the
incident wave is lower as the beach is steeper.
Calculations have shown that there is a value for |µ | ≃ 8
below which unphysical results are obtained as the energy
of the reflected wave becomes larger than that of the
incident wave.

Fig. 5: The reflected wave at ξ = 0 for: µ = −0.7 (large dots),

µ =−0.5 (medium dots), µ =−0.3 (small dots).

Because the problem reduces at each order of
approximation to a set of linear problems, we would like
here to examine the shape of the free surface due to the
propagating incident wave only. One has:

x =
ξ

ε
+ εUi(ξ − τ) =

ξ

ε
+ ε

[

1− tanh
3

4
(ξ − τ)

]

, (114)

y = 1 (115)

Fig. 6 illustrates the shape of the free surface over the
inclined beach at consecutive time moments
τ = {−5,−4,−3,−2,−1,0,1,2,3}. Fig. 7 shows the
shapes of the free surface at three locations
ξ = {0.3,0.9,1.5} on the inclined part of the beach as
functions of time.
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τ =−5

τ =−4

τ =−3

τ =−2

τ =−1

τ = 0

τ = 1

τ = 2

τ = 3

Fig. 6: Free surface elevation over the inclined part of the beach

for successive time moments
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ξ = 0.3

ξ = 0.9

ξ = 1.5

Fig. 7: Free surface elevation at three locations at the inclined

part of the beach as functions of time.

4 Discussion

This last section is devoted to a brief discussion on
modeling tsunamis. The tsunami wave differs from the
surface wave because at some stage it looks like a wall
that attacks the beach. Away from the shore, however,
tsunamis may have long wavelengths, reaching hundreds
of kilometers, while water depth is much smaller, a few
kilometers at most. Much smaller are the wave
amplitudes, a few meters at most. Thus, the horizontal

Wind wave

Tsunami near a beach

Fig. 8: Wind waves vs. Tsunamis near a beach.

length scale is much larger than the vertical one, the usual
conditions for shallow water are satisfied in this case.

In the final phases of a tsunami, i.e. close to the shore,
more complicated phenomena must be taken into account,
as illustrated on Fig. 8.

It is now widely recognized that the propagation of
tsunamis has to be described mathematically by nonlinear
equations, which is compatible with the shallow water
approximation (C.f. [57]). For long time, there was a
strong conviction among physicists and mathematicians
that tsunamis can be described by the KdV equation. But
the data of Sumatra’s tsunami of 2004 did not match with
the outcomes of the KdV equation. Since that time,
researchers could not decide on a concrete model that
describes tsunamis. The Green-Naghdi equations and
different types of Boussinecq equations are now being put
forward as the most convincing models for tackling the
problem of propagation of tsunamis [45,49,54,58]. It is
thought that more work still needs to be done in this field,
especially in what concerns the nonlinear aspects of
tsunami propagation.

Accordingly, the modeling of tsunamis far away from
the beach can be performed through the approach
presented above. The use of shallow water theory in
conjunction with the Lagrangian description of the
motion brings in nonlinear ingredients needed for an
efficient modeling.

5 Conclusions

In this work we have investigated the propagation of
waves on a beach consisting of a horizontal bed and a
uniformly sloping bottom within a Lagrangian description
performed along the guidelines formulated by Germain
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(c.f. [17,18]). The model relies on the expansion of the
solution in asymptotic double series combining a small
parameter and local oscillations localized at the vertical
line separating the horizontal and the variable-depth parts
of the flow bed. The nonlinearity of the free-surface
condition is fully retained.

The case of a beach of appreciable inclination to the
horizontal has shown that the incident wave is fully
reflected and no local oscillations are formed. For a
uniformly sloping beach of small inclination to the
horizontal, local oscillations are created and therefore the
energy of the reflected wave is less than that of the
incoming wave. Explicit formulae are obtained for the
reflected wave amplitude and for the local oscillations.
The numerical application concerns the deformation of a
solitary wave approaching a beach. The given figures
show the dependence of the reflected wave characteristics
on the beach slope, and the deformation of the free
surface over the beach. The free surface height as
observed at three locations on the beach are also given. A
brief discussion of tsunami modeling is included in a final
section, showing that the proposed approach can be used
for tsunami modeling far away from the beach.
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A Useful summations

The following summations should be understood in a
generalized sense.

∞

∑
m=1

sinmx =
1

2
cot

x

2
, (A.1)

∞

∑
m=1

cosmx = π
∞

∑
k=−∞

δ (x− 2πk)−
1

2
(A.2)
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