
Information Sciences Letters Information Sciences Letters

Volume 11
Issue 2 Mar. 2022 Article 40

2022

A Software Evolution Process Model: Analysis of Software Failure A Software Evolution Process Model: Analysis of Software Failure

Causes Causes

Mohammad Issam Malkawi
Software Engineering Department, Jordan University of Science and Technology, Irbid, Jordan,
mimalkawi@just.edu.jo

Ehab Mohammad Abidah
Information Technology Department, Shamal International school, Dubai, UAE., mimalkawi@just.edu.jo

Ahmed S. Shatnawi
Software Engineering Department, Jordan University of Science and Technology, Irbid, Jordan,
mimalkawi@just.edu.jo

Follow this and additional works at: https://digitalcommons.aaru.edu.jo/isl

Recommended Citation Recommended Citation
Issam Malkawi, Mohammad; Mohammad Abidah, Ehab; and S. Shatnawi, Ahmed (2022) "A Software
Evolution Process Model: Analysis of Software Failure Causes," Information Sciences Letters: Vol. 11 : Iss.
2 , PP -.
Available at: https://digitalcommons.aaru.edu.jo/isl/vol11/iss2/40

This Article is brought to you for free and open access by Arab Journals Platform. It has been accepted for
inclusion in Information Sciences Letters by an authorized editor. The journal is hosted on Digital Commons, an
Elsevier platform. For more information, please contact rakan@aaru.edu.jo, marah@aaru.edu.jo,
u.murad@aaru.edu.jo.

https://digitalcommons.aaru.edu.jo/isl
https://digitalcommons.aaru.edu.jo/isl/vol11
https://digitalcommons.aaru.edu.jo/isl/vol11/iss2
https://digitalcommons.aaru.edu.jo/isl/vol11/iss2/40
https://digitalcommons.aaru.edu.jo/isl?utm_source=digitalcommons.aaru.edu.jo%2Fisl%2Fvol11%2Fiss2%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.aaru.edu.jo/isl/vol11/iss2/40?utm_source=digitalcommons.aaru.edu.jo%2Fisl%2Fvol11%2Fiss2%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.elsevier.com/solutions/digital-commons
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo
mailto:rakan@aaru.edu.jo,%20marah@aaru.edu.jo,%20u.murad@aaru.edu.jo

*Corresponding author e-mail: mimalkawi@just.edu.jo
© 2022 NSP
Natural Sciences Publishing Cor.

Inf. Sci. Lett. 11, No. 2, 385- 390 (2022) 385
Information Sciences Letters

 An International Journal

http://dx.doi.org/10.18576/isl/110209

A Software Evolution Process Model: Analysis of Software
Failure Causes

Mohammad Issam Malkawi1,*, Ehab Mohammad Abidah2 and Ahmed S. Shatnawi1

1Software Engineering Department, Jordan University of Science and Technology, Irbid, Jordan
2Information Technology Department, Shamal International school, Dubai, UAE.

Received: 21 Dec. 2021, Revised: 22 Jan. 2022, Accepted: 3 Feb. 2022.
Published online:1 Mar. 2022.

Abstract: This paper presents a study on the degree of impact of several components on the evolvability of software
systems. In particular, it focuses on failure rates, testing, and other factors which force the evolution of a software
system. Also, it studies the evolution of software systems in the presence of various failure scenarios. Unlike previous
studies based on the system dynamic (SD) model, this study is modeled on the basis of actor-network theory (ANT) of
software evolution, using the system dynamic environment. The main index used in this study is the destabilization period
after the recovery from any failure scenario. The results show that more testing and quick recovery after failure are keys to
a fast system return to stability.
Keywords: software evolution process, system dynamic (SD), actor-network theory (ANT), agent-based simulation
environment ‘Repast’, ANT model, stability.

1 Introduction

Contrary to software aging, software evolution addresses the
ability of software to evolve in a manner to sustain its
effectiveness and improve its overall cost benefits
characteristics [1]. SW evolution highlights the sequence of
changes that happen to a software system during its
lifetime, involving both system development and
maintenance [2]. The software evolution process is a very
important issue in software-based systems. This topic has
received high attention in the last decade. In particular the
growth of using such systems in human life, e.g.,
healthcare, emergency, and safety has made it an important
topic for researchers in software engineering and the
research community in general. However, researchers have
attempted to understand the reasons behind the process of
software evolution in order to manage and control the
factors that influence this process [3]. Software evolution
takes several shapes, one of the commonly known as the
development of new versions of the software. A new version
is a natural evolution of the previous version. It has been
observed [4] that major software systems such as operating
systems experience longer stabilization periods in
subsequent versions. A stabilization period is defined as
the time required for fault rate drops below a certain level.
Typically, a newly developed version is expected to

have relatively large fault rates due to software faults,
errors, and failures [4]. It is also expected that new releases
of the software to take less time for the fault rates to drop to
a reasonable level, where the system can be considered
stable. The authors in [4] show that in real large software
systems, where the stability period in subsequent releases is
larger than the previous ones. In this paper, we will study
the impact of several factors on the stability of a system
so that developers and project managers can improve the
evolution experience, in a manner where subsequent
releases continue to have a better stability period [5]. In
essence, it is aimed at making the evolution of software
systems a method for improving the software systems over
time, in defiance with the software aging phenomenon.

Liguo Yu1 and Alok Mishra described the base of the
global software process as a set of humans and events that
control the evolution of software-based systems. They
presented the process as being driven by feedback, which
demonstrated the 8th law in software evolution [6]. They
note that “E-type evolution processes constitute multi-
level, multi-loop, multi-agent feedback systems” [7].
Based on the previous researchers, [8] [9]

developed many simulation models in software evolution,
they aimed to understand and explain the factors that
influence the software evolution process.

386 M. I. Malkawi et al. : A Software Evolution Process …

© 2022 NSP
Natural Sciences Publishing Cor.

2 Actor Network Model (ANT)

Wernick (2008) suggested applying ANT theory to the
global software process in order to understand the reasons
behind software system evolution and to observe software
system behavior such as software system size growth over
time.
The model described in Table 1 is structured as 16
entities, including 13 actors and 3 mediators.

Table 1: ANT entities based on Latour perspective.

Model
participan

ts
Description Role ANT Model

Actors

Mostly people
and they can be
technological
elements

Act but
constrained
to make
choices by
their
situations.

13 Actors

Mediators

Law,
science,
religion
and
econom
ies

Receive
and
transmit
messages

Mutable
tools.
Immutable
tools.

System Change IP
Queue

Intermediari
es

Receive
Messages
without
changing the
message
content

none

3 Related Work

Wernick and a team of experts in software engineering
[10] have developed many System Dynamics (SD)
simulation models in the field of software evolution
processes including models based on Actor-Network
Theory (ANT) [11], which aimed to characterize the global
software processes through SD environment.

in a realistic form that considers actual software evolution
environments.
The model participants‘ actors and mediators were given
as equations to provide the ability to quantify each
participant changing support degree to the evolution
process. The equation shown below is for the participants in
the model, where Ht denotes the Health of the system
evolution process, Ho denotes the health own weight; D
denotes the Developers, Imt denotes the Immutable tools, Mt
denotes the Mutable tools, Pm denotes the Project
manager, Sc denotes the System change input queue, Sd
denotes the System design, A denotes the Architecture, So
denotes the System development owners, and Ho denotes
the Health own weight.

The equation for the participants in the model shown in
the Health of software evolution process (HSE) equation
as follows:

HSE =

(𝐻𝑡	 × 	𝐻𝑜) 	+ 𝐷 + 𝐼𝑚𝑡 +𝑀𝑡 + 	𝑃𝑚 + 	𝑆𝑐 + (𝑆𝑑/𝐴) 	+ 	𝑆𝑜
7 ∗ (1 − 𝐻𝑜)

Wernick and his team [10] utilized a typical, abstract, global
large-scale software process evolving a bespoke
commercial software system to build ANT based model.

However, the challenge with this model is that it needs
modifications to reflect other operational environments
settings or process differences in a specific environment.
For example, it may need modifications to incubate open-
source software evolution processes or package software
products evolution. The model structure and its participants
and their connections are built based on Lehman and co-
workers [7,9, 12] . This model is
structured as 16 entities, including 13 actors and 3
mediators, as shown in Figure 1.

Fig. 1: General purpose ANT based model structure.

This model contains participants which are arranged in a
hierarchy (a typical, abstract, global large-scale software
process evolving a bespoke commercial software system).
However, each one of these participants has behaviors and
interactions with the other participants in the model. The
interactions between these participants create social and
technical situations over time which is reflected in system
health. This study aims to refine and modify the structure
This equation shows how the actor re-computes its value
at each time step based on the average of the values of those
factors which influence it, weighted against its own value
from the immediate past. Participants’ own health
weighting represents the impact of participants on system
health.
The output from the model equation is a value, which
represents the expected evolutionary trend of this participant
over time. All participants in the model are given a value
of 1, which represents the participant’s behavior whereas
no positive or negative impact on the system evolution

Inf. Sci. Lett. 11, No. 2, 385- 390 (2022) /http://www.naturalspublishing.com/Journals.asp 387

© 2022 NSP
Natural Sciences Publishing Cor.

process. Any changes to participant’s value above or
below 1 are reflected on system health evolution process
value because of changing support degree of actors on the
network. This means that a value

¿1 represents the actor’s positive attitude toward the
system health and its evolution process and growing

trend, and a value of ¡1 shows a negative attitude toward the
system and the process of software evolution. The output
most commonly observed in software evolution processes,
and therefore the most easily calibrated against and related to
real-world software evolution, is the change in current
physical system size over time.
In order to calibrate model inputs and parameters to
numerical values, for each participant, ‘nominal’ (default)
behavior is represented by a value of 1 as is the case for the
‘Health of the system evolution processes’. This value
represents the behavior of each participant in the SD
simulation model that has no positive or negative effect on
the system evolution process. Moreover, the inputs of the
computation of each participant were given an equal
weighting percentage, 50% (a value of 0.5 for all the
participants), as a deliberate simplification to enable the
model outputs to be computed in advance of actual values
being available. The own health weighting for each
participant in the simulation model (Repast) [13] refers to the
percentage of these participants’ effect on the health of
system evolution.

4 Modifying and Based Model Structure

This model is considered an atypical, abstract, global large-
scale software process evolving a bespoke commercial
software system with clustering methodology [14,15]. This
model would require changes to reflect the differences in
processes for other environments such as the evolution of
package software products or for open-source software
evolution processes. Therefore, additional improvements to
the structure of the current ANT model are added in this
study. This is an essential step towards evolving the model
into a realistic representation of actual software evolution
environments which include new two agents (Testing and
Failure Rate) to an actor-network formed of participants in
the evolution of an abstracted large-scale long-term
commercial software evolution process as represented in
Figure 2.

Fig. 2: ANT model with new participants (Faults rate,
Testing).

5 Implementation

The implementation of the new agent-based model
[16, 17, 18, 19, 20] of system evolution process is
considered depending on the specifications of the existing
SD model and the available researches and descriptions
for it by Wernick and his team [10]. The model is
structured as 16 participants, including 13 actors and 3
mediators with connections links between these
participants. The new model implemented by using Repast
Symphony [13] simulation by using Relogo with the new
participants (testing , failure rate) [21]. So it consisted of 18
participants.

6 Experiments, Results and Analysis

6.1 First Experiment

The first experiment is conducted by setting model
participants’ default value to 1 and equal weighting value
(0.5 to all the participants). This test has no positive or
negative impact on the system evolution process.
However, the result of this test refers to a stable behavior
of the system health evolution process

6.2 Second Experiment

The second experiment took into account the impact of
the reduction in Failure Rate value and associated support
level to the following values (0.1 to 1.0) in tick time 50
while keeping all participants’ own health weighting to
0.5. This experiment aimed to cover all project failure
possibilities that may happen in order to observe system
health and its behavior in the evolution process when it is
impacted by negative support from one participant
(failure rate in this case). The results are shown in Table
2.

Table 2: Failure rate attitude to (0.1 – 1.0)

These results show that the health of the system evolution
process is reduced gradually by the negative impact from
failure rate beginning from 0.1 to 1.0 as shown in table
2. It also shows that the time to return to stability increases
as the recovery from failure rate is reduced.

6.3 Third Experiment

The third experiment is conducted by fixing the testing
support degree value from 0.1 to 1 (10% - 100%), and fix
own weighting value to three possible values which are:

Failure Rate
negative
support
degree

Minimum Health
of system

evolution
process

In tick time

Period
needed
to return
to
stability

0.1 0.998 53 145
0.2 0.987 53 150
0.3 0.986 53 155
0.4 0.985 53 160
0.5 0.984 53 165
0.6 0.983 53 170
0.7 0.982 53 175
0.8 0.981 53 180
0.9 0.980 53 185
1.0 0.979 53 190

388 M. I. Malkawi et al. : A Software Evolution Process …

© 2022 NSP
Natural Sciences Publishing Cor.

0.1, 0.5, and 0.9. This experiment demonstrates the health of
system evolution process negative impact from testing and
then check model behavior. The results in Table 3 shows
that the health of the system evolution process is reduced
gradually by the negative impact from testing beginning
from 0.1 to 1.0. It also shows that testing own weighting
affects the health of the system whereas the higher degree
of own weighting creates a higher effect on the health of the
system.

Table 3: Testing attitude to (0.1 – 1.0)
Testing
Support
Degree

Testing
Own

Weighti
ng

Minimu
m
Health
Value

In
tick
Tim
e

Period
Needed

to
return

to stability

3*0.1 0.1 0.969 51 3*200 +
0.5 0.937 51
1 0646 56

3*0.2 0.1 0.976 52 3*200 +
0.5 0.919 52
1 0.464 275+

3*0.3 0.1 3*160
0.5 0.914 52
1

3*0.4 0.1 3*160
0.5 0.908 52
1

3*0.5 0.1 3*160
0.5 0.903 52
1

3*0.6 0.1 3*160
0.5 0.897 52
1

3*0.7 0.1 3*200 +
0.5 0.892 52
1

3*0.8 0.1 3*200 +
0.5 0.886 52
1

3*0.9 0.1 3*200 +
0.5 0.880 52
1

3*1.0 0.1 3*200 +
0.5 0.875 52
1

6.4 Forth Experiment

The fourth experiment is conducted by considering the
median value from failure rate (support degree) which is
0.5 in order to give the health of the system evolution
process a positive impact from testing. Default testing
(support degree) value is 1. Therefore, any percentage
above 1 can be considered a positive support degree and
can be measured as the following: 1.1 = 10% , 1.2=20%,
and so on as shown in Table 4.

Table 4: Testing positive attitude to (0.1 – 1.0).

Testing
support
degree

Highest
Health
Value

In tick
time

Minimum
Health
Value

In tick
time

Period needed
to return

to stability
1.1 1.004 51 0.988 54 160
1.2 1.004 51 0.992 54,55 160
1.3 1.009 51 0.996 55 56 160
1.4 1.015 51 0.999 56 to 70 160
1.5 1.020 51 1 72 160 +
1.6 1.026 51 1 142 160 +
1.7 1.032 51 1 180 160 +
1.8 1.038 51 1 180 160 +
1.9 1.043 51 1 180 200 +
2.0 1.049 51 1 180 200 +

6.5 Fifth Experiments

Due to the lack of available real-world data, experimental
and hypothetical data are used to investigate whether the
model is able to reflect real-world software evolution process
or not based on software system professional viewpoints
[22]. Table 4 below shows the results after running the repast
model for 100 time ticks when the Sponsor’s attitude is
reduced by 40% for one-time tick in tick 45, and reset the
own health weighting for the participant (sponsor owner)
beginning from 0.1 and ending with 0.99 instead of the
proposed arbitrary value 0.5 (default percentage of 50%) in
order to check and measure the behavior of the simulation
model by measuring the health of the system evolution when
it is affected by varying degrees of effect by sponsor owner
on the health of the system evolution as shown in Table 5.

Table 5: Sponsor owner impact on the health of the system
evolution.

[H]
Own health

weighting

percentage

(Sponsor owner)

Minimum

health of

system

evolution

In

tick

time

Period needed

to

return

to

stability

0.1 0.9950 47 63
0.2 0.9887 47 87
0.3 0.9815 47 211
0.4 0.9735 47 230
0.5 0.9635 48 280
0.6 0.9570 48 296
0.7 0.9338 49 320
0.8 0.9080 50 325
0.9 0.8555 53/54 345

0.99 0.6280 76/77 1173
1 0.47345 145 Get stable to

infinity but in

0.47345

The result shows that the health of the evolution process
continues to decline until tick 48 when the health of
evolution is equal to 0.963. According to the result, after
tick 48 the evolution health starts to increase again to
become 0.965 at tick 49 and 0.967 at tick 50. System
evolution health continues to increase to 0.969 at tick 51
and to 0.970 at tick 52. However, software evolution health

Inf. Sci. Lett. 11, No. 2, 385- 390 (2022) /http://www.naturalspublishing.com/Journals.asp 389

© 2022 NSP
Natural Sciences Publishing Cor.

does not return to its stable health at the value of 1, even at
tick 100. To indicate the tick step in which the health of
the software evolution process returns to its previous
stability at a value of 1 before applying the pulse, the
model is re-run for 200 ticks. The numerical result shows
that the software evolution process will not return to its
stable health ‘0.999 1’until tick 152 as shown in Table 5.
many tests are conducted to check and measure the
behavior of the simulation model by measuring the health of
the system evolution when it is affected by a change in
support of each sponsor owner. These tests are conducted by
reducing the degree of support of the sponsor owner by an
arbitrary 40%, while the other participants in the model
retain their initial degree of support at a value of 1. In the
real world, such temporary reductions in an individual’s
support could be due to causes such as financial or political
pressures [10]. Furthermore, the results of these ten tests
measure the degree of the decrease in the health of system
evolution. This represents the probability of the software
project to fail eventually. Therefore, building these criteria
are conducted based on the effect proportion of the negative
attitude of Sponsors owner to cause a failure of a software
project in the real world. As the results show in Table 5,
the criteria for investigating the behavior of the Repast
model show that the health of the software evolution
process is affected most by the negative support of the
Sponsor owner project management team when the own
health weighting is equal to 0.99 and the minimum health
of system evolution was 0.6280 at tick time 76/77 , and the
lowest degree of effect on the health of system evolution
when it was 0.1 with minimum health of system evolution
of 0.9950 at tick time 47. However, a stranger behavior has
noticed in the repast model when the won health

Fig. 3: Health of system evolution process with negative
support when the won health weighting reset to 1).

weighting reset to 1 as shown in Figure 3, the minimum
health of system evolution has decreased to 0.47345 in
tick time 145 and health of system evolution remained
stable on this value for infinity and it does not return to its
normal health of value of 1 where (no positive or negative
effect on the expected evolutionary trend). This kind of
behavior could cause a failure of a software project in the
real world. Furthermore, other participants in the repast
model are affected badly by resetting the percentage of
the own health weighting of sponsor owner to 1, whereas,

no participant of them has returned to its normal behavior,
on the contrary, they remained stable on several values of
less than 1 for infinity, and some decreased to values less
than zero. The ability to expect or to predict when a
software system could fail is available through tracing one
agent’s behavior in a particular situation in the real world.

7 Discussions and Conclusions

Although project management methodologies and software
have improved, project failures remain high. In real-world
SW project testing play an essential role to protect a
project from failure [23]. According to several published
studies on project failure, various types of failure were
collected and categorized. In [18], 26,595 served
participants confirmed that 84% of projects fail due to
incorrect assumptions in the schedule and budget or
resource issues. Figure 4 shows a breakdown of the
impact of various factors on project’ failures.
In industries in the real world, factors of both project and
sponsor are explicit that the most dominant factors in
project failure are the Project Manager and the Sponsor
[24, 25]. By calibrating the results of the ten tests
conducted in this stud against real-world factors on project
failures in industry, it was concluded that these results
are compatible with the real-world criteria of software
evolution. This compatibility shows that the Repast
simulation model of software evolution is able to reflect
real-world software evolution if an accurate own
weighting for the participants ‘actors and mediators are

Fig. 4: Distribution of software system project failure
causes.

set. This behavior of the Repast model supports and can
be considered as an advanced work that Werneck and
colleagues [7, 8, 10, 26, 27, 28] were intending to
undertake. Another important conclusion of this study is
the ability of the simulation model to test and measure the
stabilization period of a system given a certain failure
rate. Further studies are required to study the impact of
certain common failure modes on the overall system
stability.

390 M. I. Malkawi et al. : A Software Evolution Process …

© 2022 NSP
Natural Sciences Publishing Cor.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this article.

References

[1] Mohammad Isam Malkawi. The art of software systems

development: Reliability, availability, maintainability,
performance (ramp). Human-Centric Computing and
Information Sciences., 3(1),1–17, 2013.

[2] Stephen Cook, He Ji, and Rachel Harrison. Software evolution
and software evolvability. University of Reading, UK., 1–12,
2000.

[3] Bruno Latour. On actor-network theory: A few clarifications.
Soziale welt., 369–381, 1996.

[4] Mohammad Malkawi. Empirical data and analysis of defects in
operating systems kernels. In Proceedings of the 24th IBIMA
conference. Milan, Italy., 6–7, 2014.

[5] E Death March et al. The complete software developer’s guide
to surviving “mission impossible” project [m]. 1999.

[6] Liguo Yu and Alok Mishra. An empirical study of lehman’s law
on software quality evolution. 2013.

[7] Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E
Perry, and Wladyslaw M Turski. Metrics and laws of
software evolution-the nineties view. In Proceedings Fourth
International Software Metrics Symposium., 20–32. IEEE,
1997.

[8] Paul Wernick and Meir M Lehman. Software process white box
modelling for feast/1. Journal of Systems and Software.,
46(2-3),193–201, 1999.

[9] Goel Kahen, Meir M Lehman, Juan F Ramil, and Paul Wernick.
System dynamics modelling of software evolution processes
for policy investigation: Approach and example. Journal of
Systems and Software., 59(3), 271–281, 2001.

[10] Paul Wernick, Tracy Hall, and Chrystopher L Nehaniv.
Software evolutionary dynamics modelled as the activity of
an actor-network. IET software., 2(4), 321–336, 2008.

[11] Bruno Latour et al. Reassembling the social: An introduction
to actor-network-theory. Oxford university press, 2005.

[12] G Kahen, MM Lehman, and JF Ramil. Empirical studies of the
global software process-the impact of feedback. In Proc.
Workshop on Empirical Studies of Software Maintenance
(WESS’99), 3–4. Citeseer, 1999.

[13] Nick Collier. Repast: An extensible framework for agent
simulation. The University of Chicago’s Social Science
Research, 36:2003, 2003.

[14] Mark Shtern and Vassilios Tzerpos. Clustering methodologies
for software engineering. Advances in Software Engineering,
2012, 2012.

[15] Chung-Horng Lung, Marzia Zaman, and Amit Nandi.
Applications of clustering techniques to software
partitioning, recovery and restructuring. Journal of Systems
and Software., 73(2), 227–244, 2004.

[16] Nigel Gilbert. Agent-based models, volume 153. Sage
Publications, 2019.

[17] Steven F Railsback, Steven L Lytinen, and Stephen K Jackson.
Agent-based simulation platforms: Review and development
recommendations. Simulation., 82(9), 609–623, 2006.

[18] Charles M Macal and Michael J North. Agent-based modeling
and simulation. In Proceedings of the 2009 Winter Simulation
Conference (WSC)., 86–98. IEEE, 2009.

[19] Robert John Allan et al. Survey of agent based modelling and
simulation tools. Science & Technology Facilities Council
New York, 2010.

[20] Dirk Helbing. Agent-based modeling. In Social self-
organization., 25–70. Springer, 2012.

[21] Nuno Fachada, Vitor V Lopes, Rui C Martins, and Agostinho
C Rosa. Towards a standard model for research in agent-
based modeling and simulation. PeerJ Computer Science,
1:e36, 2015.

[22] Mohammed N Alenezi, Haneen Alabdulrazzaq, Abdullah A
Alshaher, and Mubarak M Alkharang. Evolution of malware
threats and techniques: A review. International Journal of
Communication Networks and Information Security., 12(3),
326–337, 2020.

[23] May NIST. The economic impacts of inadequate
infrastructure for software testing. Technical report,
Technical Report., 2002.

[24] Robert N Charette. Why software fails [software failure].

 IEEE spectrum., 42(9), 42–49, 2005.

[25] CHAOS Manifesto. Think big, act small. The Standish Group
International Inc., 176, 2013.

[26] Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E
Perry, and Wladyslaw M Turski. Metrics and laws of
software evolution-the nineties view. In Proceedings Fourth
International Software Metrics Symposium., 20–32. IEEE,
1997.

[27] Nabeel Tawalbeh, Mohammad Malkawi, Hanan Abusamaha,
Sahban Alnaser, Demand Based Cost Optimization of
Electric Bills for Household Users, International Journal of
Communication Networks and Information Security
13(3):276-281, 2021

[28] Mohammad Malkawi, A. Shatnawi, K. Al-Zoubi L. Alawneh,
Improving Network Entry Procedure in Broadband Wi-Fi
Networks, International Journal on Communications
Antenna and Propagation (IRECAP) 11(5):354, 2021, DOI:
10.15866/irecap.v11i5.20996

	A Software Evolution Process Model: Analysis of Software Failure Causes
	Recommended Citation

	Microsoft Word - 110209.docx

