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Abstract: The governing coupled pair of nonlinear unsteady-state equations describing the concentration of the pollutant P(x,7) and
the dissolved oxygen concentration X (x,7) in a river are solved numerically in one dimension x. The initial values of both P(x,¢) and
X (x,1) are assumed to be decreasing exponential functions in x. The results are presented and discussed graphically. We have proved
mathematically the fact that the high concentration of pollutant can be reduced by releasing adequate discharges from barrage in a river.
The different effects of parameters controlling the flow on both P(x,7) and X (x,7) are studied along the river at different time 7.
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1 Introduction

Globally, pollution is drastically increasing in water
bodies, negatively influencing the surrounding areas
species and grounds. Hence, mathematical models have
been developed to control and reduce contamination.
Such models originated in 1920s, specifically Streeter and
Phelp’s model [1] which presented the significance of the
quantity of dissolved oxygen in rivers. The dissolved
oxygen concentration is the most essential factor because
it is essential for aquatic life, without it, a river will be an
aquatic desert devoid of fish, plants, and insects. As a
result, the concentration of dissolved oxygen is
investigated in depth in this study. Despite the fact that
the Nile is Egypt’s lifeblood, it is sadly contaminated by a
variety of chemical and biological toxins, as well as
agricultural waste.

In summer 2020 and 2021, a very big quantity of
fresh water came to the Lake Naser and by releasing this
fresh water to the Nile River the high polluted regions
were remediated. Herein lies the significance of this
research; it will help us understand how to predict the size
of a pollutant concentration at a reasonable time, as well
as how to control pollutants by increasing dissolved
oxygen concentration. Huang et al. [2] developed an
analytical model for one-dimensional solute transport in
heterogeneous porous media with scale-dependent

dispersion. They supposed that the dispersion coefficient
is proportional to pore water velocity in a linear form.
Later, Pimpunchat et al. [3] developed a basic
mathematical model for river pollution and investigated
the impact of aeration on pollutant reduction. In reality,
their model is made up of coupled
reaction-diffusion-advection equations for both pollutant
and dissolved oxygen concentrations, with the
steady-state case considered in one spatial dimension for
simplified cases. Kumar et al. [4] studied solute
dispersion in a semi-infinite porous medium with a
source/trough effect. Hussain et al. [5] investigated a
mathematical model that allows for the prediction of
contaminant concentration levels in rivers. The pollutant
and dissolved oxygen concentrations are described by a
pair of coupled reaction diffusion-advection equations.
They looked at the steady-state case in a one-dimensional
space with zero dispersion. Dimian et al. [6] studied the
effect of an additional pollutant along a river on the
pollutant concentration as defined by the one-dimensional
advection diffusion equation, and discovered that the
pollutant concentration increases as time passes at any
cross-section. Svetislav and Alexander [7] investigated a
one-dimensional advection-diffusion equation with
variable coefficients in semi-infinite media, and the
resulting equations were solved numerically using the
explicit finite difference method (EFDM). Dimian et al.
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[8] studied the impact of the El-Rahawy Drain on the
water quality of the Rosetta Branch of the Nile River in
Egypt, determining the best zone from which water can
be taken for drinking or irrigation. Wadi et al. [9]
obtained solution for the one-dimensional
advection-dispersion equation of pollutant concentration
and divided the river into two sections. Ibrahim et al. [10]
studied pollution remediation in a river using unsteady
aeration with arbitrary initial and boundary conditions.
Alexander and Svetislav [11] investigated the explicit
finite-difference solution of two-dimensional solute
transport in homogeneous porous media with periodic
flow, adsorption retardation, periodic seepage velocity
and a dispersion coefficient proportional to this velocity.
Pawarisa and Nopparat [12] studied the numerical
simulation of a one-dimensional water-quality model in a
stream using Saulyev technique with quadratic
interpolation initial-boundary conditions. Yadav and
Kumar [13] investigated analytical solutions for the
two-dimensional advection dispersion equation in a
semi-infinite heterogeneous porous medium with a
uniform nature pulse type input point source for
conservative solute transport. In general form, the
dispersion coefficient and velocity are both spatially and
temporally dependent and the retardation factor is
considered in degenerate form. Hadhouda and
Abdelwahid [14] studied the numerical solution for
contamination in a river and its remediation by
two-dimensional unsteady aeration, assuming that the
initial values of both P and X are zero. Manitchoen and
Pimpunchat [15] obtained analytical and numerical
solutions of pollutant concentration with uniformly and
exponentially increasing forms of sources, they found that
the concentration increases as the rate of pollutant
addition along the river and the arbitrary constant of
exponential pollution source term increase. These models
are used to simulate the spatial and temporal distribution
of various water quality variables in the research field.

However, the objective of this study is to develop a
general applicable solution of the coupled partial
differential equations describing the flow of the pollutant.
The initial values of both P*(x*,*) and X* (x*,*) are
assumed to be decreasing exponential functions in x*.
These equations which represent the diffusion of both the
pollutant concentration P*(x*,7*) and dissolved oxygen
concentration X* (x*,7*) are solved by using explicit
finite- difference method. Our results generalize the
earlier solutions obtained by Manitcharoen and
Pimpunchat [15] and lbrahim et al. [10], which form a
subset of our solutions for the limited case when t* — oo
and the half-saturated oxygen demand concentration for
pollutant decay k* = 0. Where the superscript (*) means
that the physical quantity is in the dimensional form.

2 Mathematical formulation of the problem

We assume the mathematical model for unsteady flow in
the river as being one dimensional characterized by a
single distance x*(m) measured from the origin x* = 0.
We consider the diffusion is accompanied by forced
convection and so the pollutant concentration P* (x*,¢*)
and dissolved oxygen concentration X*(x*,¢*) satisfy
diffusion-advection equations. The governing coupled
pair of nonlinear partial differential equations are given
by [15], [16] and [17].

d (A*P*) D 92 (A*P*) 9 (vA*P¥)
* =Yp %2 - %
at (zx ox (1
—k; AP +q*, (0<x*<L*1 >0),
o +q*, (0<x* <Lt >0),
d(A*X*) *82(A*X*)78(V*A*X*)7k* X pr
ore X ox2 ox* 2X* 4kt 2
+OC*(S*—X*), (ng*SL*7t*ZO)7

where A* is the cross-section area (mz), D}, is the
dispersion coefficient of pollutant in the x*-direction
(m*day™"), v* is the water velocity in the x*-direction
(m day"), k} is the degradation rate coefficient for
pollutant (day’l), q* is the added pollutant rate along
the river (kgm 'day™'), L* is the length of
river(m), Dy is the dispersion coefficient of dissolved
oxygen in the x*-direction (m®day~'), kj is the
de-aeration rate coefficient for dissolved oxygen
(day’l) ,a" is the mass transfer of oxygen from air to
water (m2 day’l) and S* is the saturated oxygen

concentration (kg m’3). The last term in equation (1),
represents the addition of pollutant at a rate ¢*, while the
third term, in the right hand side, represents its removal
by aeration. The rate of depletion of pollutant
concentration P*, due to the biochemical reaction with
dissolved oxygen concentration X* has been described
using “Michaelis Menten” term k}2-4-P* [17]. Two
different case studies are taken into account, where:

First case: P*(x*,0) # 0, X*(x*,0) # 0, P*(0,¢*) #
0, X*(0,r*) #0.

Second case: P*(x*,0) # 0 and X*(x*,0) = 0, while
P*(0,) =0and X* (0,7*) # 0.

3 Case study one

The initial and boundary conditions associated with
equations (1) and (2), for this case are:

—x*

Pr(x*,0)=Piel , 0<x*<L*

3)

—x*

X*(x*,0) :X;le’lf ,

0<x*<L*
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P*(0,t")=Pf, >0,

“4)
X*(0,r*) =X/, t*>0,
IP*(L*,1*) %
—— =0, >0,

)]
OX*(L*, 1) _ 07 > 07

ax*
where P; and X;, are the initial pollutant and dissolved
oxygen concentrations respectively. A; and A} are the
initial pollutant and dissolved oxygen concentrations
decay length respectively. P/ and X| are the pollutant and
dissolved oxygen concentrations at the origin, which are
taken constants.
The following non-dimensional variables are used in
the governing equations, initial and boundary conditions.

X = L*,t—k*t* =
X (©)
X=X P = anax, =%,

m m m

where x,t,P,X,P; and X; are the dimensionless distance,
time, pollutant and dissolved oxygen concentrations, the
pollutant and dissolved oxygen concentrations at the origin
respectively. Equation (6), transforms equations (1-5) into
the non-dimensional form:

oP _, 9P P
at o Paxz vax (7)
X
_— <x< >
X+kP+q, (0<x<1,t>0),
XXXk,
o X2 T oy T Xtk ®)
+a(S—X), (0<x<1,t>0),
P(x,O):e%lx, X(x,O):e;T;, 0<x<I, 9)
P(0,1) =P, X(0,t)=X;, t>0, (10)
8P(1,t): 7 8X(l,t):O, >0, (1
ox ox

where Dp,v.k,q,Dx k3, ,S,A; and A, are dimensionless
parameters which are given by:

DP V* o k*
Dp = L*zk* ) L*kT ) k= X_::’ )
. f]* D* k*P*
q= m 5 DX L*2k* 5 k k*X* 5 (]2)
ok *
o= A*k* S= }‘?* s k[ * and/'ig —.

4 Case study two

Assume that the river’s water is polluted and the aeration
is removed at the initial time (r = 0) along the river.
Assume also that at the origin (x = 0), at any time (¢ > 0),
the source of pollution is removed while the source of
aeration exists. Then the initial and boundary conditions
associated with equations (7 and 8) in the dimensionless
form are:

P(x,0)=P,, X(x,00=0, 0<x<I, (13)

P0,1)=0, X(0,)=X>, >0, (14)
IP(LY) o XULD o sy, (15)
ox dx

where P, is the value of initial pollution concentration and
X, is the value of dissolved oxygen concentration at the
origin.

5 Numerical solution

The explicit finite-difference method (EFDM) is applied to
solve equations (7) and (8) associated with the initial and
boundary conditions (9-11). The central difference scheme

2 2 .
was used for ‘3 it ‘?9 92X ‘3’; and ax . The forward difference

scheme was used for 2 5 L and %)f With these substitutions,
equations (7)and (8) can be written as:

P, (ri+rm)P 1 j+(1-2 g Al P,
;g r & — 41 — [
,j+1 = \I' 2)Fi—1,5 1 Xj,j‘i‘k 1] (16)

+(r1 —r2) Pip1,j+ Atg,

Xijr1=(r3+r)Xi_1

+<12r3k3 At (XAI)Xi,j (I7)

i
Xij+k
+(r3 —r2) Xip1,j+ a S At,

where i and j refer to the discrete step lengths Ax and At
for the coordinate x and time ¢, respectively, and

_ Dy At _ VAt _ Dy At
n=gre =t B Gap . The initial and

boundary conditions (9-11) can be written in the finite
difference form as:

P(,0)=eT, X(i,0)=eR, (18)
P(0,j) =P, X(0,j) =X, (19)
P(Na.]):P(Nilv.])a X:LIZO,
(20)
X(N,j) :X(N—l,j), x=1,t>0,
where t[j] = jAt, x[i] = iAx and N = Aix is the grid

dimension in the x direction and 1 is the distance in the
direction x at which P —0 and —> 0.
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6 Results and discussions

The coupled equations (16) and (17), with the initial and
the boundary conditions (18-20) are solved numerically
by using EFDM. We take in our model the domain of
dimensionless longitudinal distance in the region
0 < x <1 and the dimensionless time 0 < ¢ < 1.5. In the
numerical calculations, the step length Ax = 0.1 and the
step of time At = 0.002 have been used to achieve the
stability of the finite difference scheme. P; and X; are
taken equal to 0.2 and 1.9, respectively, Pimpunchat et al.
[3]. We have presented the variations of P and X along the
river for several values of the time ¢ and the parameters
Dy, v,k,q,Dy,k3, 00 and S. The parameters D, v,k,q and
D, are taken to be equal 1,k3 =0.5,4; =1, = 1.02,a
and S are taken to be equal 2 and t = 0.5, Pimpunchat et
al. [3]. Figures (1-8) illustrate the variations of P and X
with one of the parameters of the flow keeping the other
parameters constants.

Figure (1) shows the variation of both P and X with
t along the river for + = 0.1,0.2,0.5 and 1. From figure
(1) it is clear that: (i) For any fixed value of x, the values
of P decrease and the values of X increase as the time ¢
increases. (ii) At any time, the decrease of the values of X
is associated with the increase of the values of P along the
river. (iii) The numerical study shows that the steady state
case, i. e. the state for which t — oo achieved at r ~ 1.2.
For values of r > 1.2, the increase in the values of t has
no effect on both P and X. This result agrees with that
obtained by pimpunchat et al. [3].

Figure (2) shows the variation of P and X with D,
along the river for Dp = 0.1,0.5, 1 and 2 . From figure (2)
it is clear that: for any fixed value of x, as D), increases,
the values of P decrease and the values of X increase. As
expected, the effect of Dp on P is dominant, while the
effect of D), on X is very small. Numerical studies show
that, at t < 0.04, as Dp increases the values of P increase
and as D, increases the values of X increase.

Figure (3) shows the variation of both P and X with v
along the river for v =0.1,1,5 and 10. From figure (3) it
is clear that: (i) At any constant value of x, as v increases
P decreases, while X increases, this result agrees with that
obtained by Guoyuan, [18]. (ii) Numerical studies show
that for small values of 7(# < 0.04),v has an opposite effect
only on P, i.e., as v increases P increases.

Figure (4) shows the variation of P and X with k along
the river for k = 0.01,0.5,1 and 2 . From figure (4) it is
clear that: (i) As x increases P increases and X decreases,
for a fixed value of k. (ii) At any fixed value of x, as k
increases P and X increase. In general, the effect of k on
P is dominant while its effect on X is small. Our results
agree with that obtained by Pimpunchat et al. [3].

Figure (5) shows the variation of P and X with ¢
along the river for ¢ = 0.01,0.5,1 and 1.5. From figure
(5) it is clear that: (i) At any fixed value of x along the
river, as ¢ increases the values of P increase and the
values of X decrease, our results agree with that obtained
by Maitchoen and Pimpunchat [15] and Ibrahim et

al.[10]. As expected the effect of ¢ on P is dominant,
while its effect of X is very small.

Figure (6) shows the variation of P and X with k3 along
the river for k3 = 0.1,1,5 and 10 . From figure (6) it is
clear that: (i) As k3 increases the value of X decreases and
the values of P increase along the river. (ii) In general, the
effect of k3 on X is dominant while the effect on P is very
small.

Figure (7) shows the variation of P and X with « along
the river for o« = 0.01,0.5,1 and 2 . From figure (7) it is
clear that: as « increases the values of X increase while
the values of P rarely decrease. Our results agree with that
obtained by Wadi et al. [9].

Figure (8) shows the variation of P with dissolved
oxygen concentration at the origin X; along the river, for
X; =0.1,2 and 10 .From figure (8) it is clear that, at a
fixed value of x, as X increases the values of P decrease.

Equations (7) and (8), associated with the initial and
boundary conditions (13-15) are solved numerically and
illustrated in figure (9) and table (1) for the common input
data t+ = 0.5,P, = 02,X, = 19,Dp = 1,k = 1,9 =
1,Dx = 1,k3 =0.5,¢ =2 and § = 2. Let the cross section
area of the river at x* = 0 be A*, then the flux of the water
(the volume of water crossing A* every day) will be
Q* = A™v*. By using equation (12), the flux of water in
the dimensionless form is given by:

0= % = f%fkl* = v. Consequently, increasing the
values of O means increasing the values of v. Figure (9)
shows the variation of P with flow velocity for the values
0.1 <v < 15. From figure (9), it is clear that: as v
increases the value of P decreases along the river, hence
figure (9) emphasize the fact that the zone of clean water
measured form x = 0 in the direction of the flow increases
as the quantity of the clean water Q entering the cross
section A increases.

Table 1: The variations of both P(x,7) and X (x,7) with Q at the
middle of the river (x =0.5).

Q | P(x,t) | X(x,1)
0.1 | 0.2666 | 1.7653
1 0.2155 | 1.8292
5 0.0917 | 1.9129
7 | 0.0683 | 1.9115
10 | 0.0488 | 1.9088
12 | 0.0409 | 1.9075
15 | 0.0328 | 1.9061
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P(xtand X (x1)

Fig. 1: The variation of both P and X with ¢ along the river
forDp=1v=1,k=1,q=1,Dx =1,k3=05a=2,S=2
and t =0.1,0.2,0.5 and 1.

P(xfand X (x

00 02 04 06 08 10

Fig. 2: The variation of P and X with Dp along the river for t =
05v=1k=1,g=1,Dx =1k3 =05, =2,5=2 and Dp =
0.1,0.5,1 and 2.

v=01Vv=1v=5v=10
r]

Pixtand X (xb)

0.0
0.0 02 04 0.6 0.8 1.0

Fig. 3: The variation of both P and X with v along the river for
t=05Dp=1k=1,gq=1, Dx=1k3=050=2,S=2
and v=0.1,1,5 and 10.

7 Conclusions

We have presented a mathematical model for river
pollution and investigated the effect of aeration on the
degradation of pollution for all the parameters controlling
the flow. We consider the flow one-dimensional along the
river. The governing coupled pair of nonlinear

T

oL k=2 k=1 k=05 k=001
sl \\\\

0.0

P(xt) and X (x1)

x

Fig. 4: The variation of P and X with k along the river for
t=05Dp=1v=1,9g=1,Dx =1k =05 o=2,5=2
and £k =0.01,0.5, 1 and 2.

1]/

g=001 ¢=05 g=1 g7l

=] 15
10
» »

S

Pxtand X (xt)

Fig. 5: The variation of P and X with q along the river for t =
0.5,Dp=1,v=1,k=1,Dx=1,k3=05a¢=2,S=2 and g =
0.01,0.5,1 and L.5.

Lop k=01 ky=1 k;=5 k=10
»

P(xtand X (x1)

05+

0.0

Fig. 6: The variation of both P and X with k3 along the river
fort =05Dp=1v=1k=19g=1,Dx =100 =2,S=2
and k3 =0.1,1,5 and 10.

unsteady-state equations for river pollutant and dissolved
oxygen concentrations are non-dimensionalized by using
appropriate transformations. The resulting equations are
solved numerically by using explicit finite difference
method (EFDM) and the results are plotted. It is found
that, as t increases P decreases and X increases. At any
constant value of x as k increases values of P increase. As
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P(xtyand X (x)

0.0

0.0 02 04 06 08 1.0

Fig. 7: The variation of both P and X with o along the river
fort =05Dp=1v=1k=1,g=1,Dx =1,k3=0.5,S=2
and @ =0.01,0.5,1 and 2.

P(x)

00 02 04 06 08 10

Fig. 8: The variation of P with X along the river forr =0.5,Dp =

lv=1k=1,g=1, Dy=1,k3=050=2,5=2 and X; =
0.1,2 and 10.
20
= iy
-
E 0 v=15v=10 y=5 v=01
)
A s
00

00 02 04 06 08 10

Fig. 9: The variation of P and X with v along the river for
t=05Dp=1k=1,g=1, Dx=1kz=050=2S=2
and v=10.1,5,10 and 15.

v increases, values of P decrease and values of X increase.
It is also observed that, as o increases values of X
increase. Our results generalize the earlier solutions
obtained by Manitcharoen and Pimpunchat [15] and
Ibrahim et al. [10].
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