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Abstract
Social scientists generally take United Nations (UN) population projections as the baseline
when considering the potential impact of any changes that could affect fertility, mortality or
migration, and the UN typically does projections using the cohort-component method (CCM).
The CCM technique is computationally simple and familiar to demographers. However, in
order to avoid the exponential expansion of complexity as new dimensions of individual
difference are added to projections, and to understand the sensitivity of projections to specific
conditions, agent-based microsimulations are a better option. CCMs can mask hidden as-
sumptions that are surfaced by the construction of microsimulations, and varying such as-
sumptions can lead to quite different projections. CCM models are naturally the strongest
form of validation for population projection microsimulations but there are many complexities
and difficulties associated with matching microsimulation projections and CCM projections.
Here, we describe our efforts to tackle these challenges as we validated a microsimulation for
Norway by replicating a UN CCM projection. This provides guidance for other simulationists
who seek to use CCMs to validate microsimulations. More importantly, it demonstrates the
value of microsimulations for surfacing assumptions that frequently lie hidden, and thus un-
evaluated, within CCM projections.
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Introduction

Interest in the application of agent-based modeling and microsimulation methodologies in de-
mographic research and projections has grown in recent years (Billari & Prskawetz, 2012;
Hannappel et al., 2012; Jager & Janssen, 2003; Mielczarek & Zabawa, 2021; Silverman, 2018;
Wildman et al., 2021). The research presented here is part of an ongoing project that seeks to
model multiple religious characteristics and behaviors over a long span of time (1900–2100) and
in multiple countries (including Norway) using a simulation model that operates with a nationally
representative population of agents. Given the extended time span and anticipated complexity of
agent characteristics and behaviors in the model, using a top–down microsimulation approach to
determine individual demographic event risk is attractive (van Imhoff & Post, 1998; Zagheni,
2015). In this article, we analyze the process of creating a microsimulation model to generate
population projections, paying particular attention to complexities associated with validating the
microsimulation using population projections generated through the cohort-component method
(CCM). The UN provides high-quality demographic event rates for both the past and future, and
we used this data to inform the microsimulation. Further, the UN’s CCM results are well accepted
and served as a natural source of validation for our microsimulation’s total population output. The
UN’s demographic rates are designed for a CCM, however, and adapting them was challenging
even in a simple microsimulation that considers only fertility, mortality, and migration. This
process surfaced many assumptions latent in CCM projections that need to be explicitly specified
in microsimulation projections. These formerly latent assumptions can be varied when im-
plemented in a microsimulation, creating quite different projections. We learned that a surface-
level understanding of the UN’s data and procedures is insufficient, and several non-intuitive
adjustments must be made when implementing demographic events in a microsimulation. We
conclude that microsimulation is a powerful tool that both enables and requires social scientists to
take responsibility for the assumptions guiding population projections. A key step in validating a
microsimulation using a CCM is to replicateCCMprojections using the microsimulation.Wemay
ultimately prefer sets of assumptions other than those needed to replicate CCM projections, and
the microsimulation method certainly allows us to choose any number of sets of assumptions that
affect population projections other than those needed to match existing CCM projections. But
beginning with CCM replication effectively validates a microsimulation, building confidence in
the microsimulation method against a well-trusted standard (Morrison, 2008). For the sake of
specificity, we report on the steps needed to match the figures produced by the United Nations
(UN) for a single country, Norway, from 1950 to 2100. Importantly, CCMs can vary in design,
such as whether projections advance in one or 5-year intervals, or whether both immigration and
emigration flows are included (Smith & Swanson, 1998; Swanson & Siegel, 2004). We selected
the UN’s projections as the most important source of global demographic data, and the most likely
reference models for validating dynamic microsimulations—that is, models that simulate the
behavior of individuals over time (Li & O’Donoghue, 2013)—in multiple countries. To refine our
understanding of the UN CCM design and underlying assumptions, our team worked with UN
demographers and subject-matter experts for Norway.

While CCMs have been in general use by demographers for many decades, the CCM technique
is ill-suited to handling multiple dimensions of individual difference and clarifying the extent to
which projections are sensitive to specific conditions (Spielauer, 2011; van Imhoff & Post, 1998;
Zagheni, 2015). To illustrate, UN CCM projections take account of the age group (in 5-year
cohorts) and period (also in 5-year intervals) as well as gender. They then apply fertility and
mortality rates, as well as migration, specified by age, period, and gender. Each new consideration
creates a geometric explosion of complexity. For example, the Pew Research Center added to UN
projections the consideration of religious affiliation, which is a major factor in fertility differences
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(Stonawski et al., 2015). This required a monumental effort to specify fertility and migration by
age, period, gender, and religion (mortality differences by religion were not included in the
modeled scenarios). Adding yet another consideration, such as ethnicity, which impacts fertility,
mortality, and migration, would make the projections incredibly difficult to implement. For every
additional population category (e.g., marital status, region), the CCM must consider all possible
combinations and how the aggregate number in each cross-category will change over time. Each
cross-category may have its own fertility, mortality, and migration rates and the modeler makes
explicit assumptions about whether those rates will change or hold steady into the future. Altering
the assumptions allows for testing multiple scenarios, but even a single scenario becomes un-
wieldy to execute as its state space expands exponentially with each population characteristic.

Microsimulations mitigate these problems by specifying and adjusting the probability for
individuals, instead of aggregates, to experience demographic events based on their assigned
characteristics. Rates for all possible combinations of characteristics still need to be specified, or
calculated through combining rates, but the calculations and output are tractable. This advantage
of microsimulations has routinely been noted but CCMs are still in wide use because demog-
raphers are often only concerned with fertility, mortality, and migration by age (or birth cohort),
period, and gender. CCMs are still tractable at that level of geometrically expanding complexity,
so the alternative method of microsimulation is rarely considered in those cases (van Imhoff &
Post, 1998).

The suggestion that microsimulations are only recommended for highly complex scenarios,
gives the impression that notable discrepancies in population outputs between simulations and
CCMs is due to the added complexity. We demonstrate here that, even when the only population
characteristics being considered are age and sex, replicating the results of a CCM with a mi-
crosimulation approach requires the specification of numerous underlying assumptions. Many of
these assumptions are latent within CCMs; they cannot be varied within the specified scenario and
are rarely named or examined among non-experts or outside of technical documentation. Mi-
crosimulations, by contrast, have far greater implementation flexibility. They enable us to ar-
ticulate and consider a full range of assumptions that condition population projections, and to take
responsibility for whatever assumptions we make. CCMs all too easily mask this technical and
ethical complexity; replication in a microsimulation brings attention to the hidden complexity of
the CCM’s demographic inputs and procedures, which are taken for granted as being mathe-
matically simple (Burch, 2018). Doing so has relevance for simulation design decisions and
validation, particularly in instances where a top-down approach for demographic events is ap-
propriate and a CCM is readily available as a source of validation.

Methods

What is the Cohort-Component Method?

The cohort-component method uses the fundamental demographic components of births, deaths,
and migration to estimate and project population size from an initial population distribution by age
and sex. It is based on the simple equation describing population change: the population at time
t+1 is the population at time t, minus deaths that have occurred in the interval, plus births and net
migration (i.e., immigration minus emigration). This approach can be refined by focusing on
individual cohorts (age groups).

Poptþ1 ¼ Popt � Deathst þ Birthst þ Net Migratinont (1)

Demographers produce estimates of deaths and births, using sex- and age-specific mortality
and fertility rates. Hence, to project the population size at a particular point, we calculate the
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probability of dying by age and sex during the preceding period and deduct those deaths. We
calculate the number of births that took place during the period using the age-specific fertility rates
for women of reproductive age (15–49 years old). Finally, we add immigrants and subtract
emigrants, again by age and sex. At the end of the period, the survivors move into the next age
category (typically defined in 5-year groups) and the process starts again. Projections are usually
made in 5-year intervals. Levels of mortality, fertility and migration can change from one period to
the next.

What are CCMs Used for?

The CCM is the most widely-used method for projecting the size and age/sex composition of a
population (Swanson & Siegel, 2004; van Imhoff & Post, 1998). The UN has prepared national-
level population estimates and projections using a CCM approach since the 1950s. (“Estimates”
refer to past and present populations, based on existing data; “projections” refer to future
populations, based on assumptions about levels and trends.) By varying assumptions about trends
in fertility, mortality and migration, demographers can produce models for different scenarios. For
example, the recent releases from the UN have scenarios based on low, medium, and high fertility
or zero migration up through the year 2100 (United Nations, 2019). These kinds of projections are
frequently used by governments and policymakers to anticipate the future needs of their pop-
ulations and inform decision-making about social services and programs (Swanson & Siegel,
2004).

How can we Validate a Population Projection Microsimulation?

Population projections based on CCMs, like those produced by the UN, are frequently used to
validate dynamic microsimulations and agent-based models, to ensure that population parameters
are similar to a well-trusted standard and the simulation accurately shows the impacts of death,
birth, and migration on populations (Garcı́a et al., 2018; Lomax & Smith, 2017; Morrison, 2008;
Zaidi & Rake, 2001). As sensible and apparently straightforward as this validation procedure
appears, it turns out to be challenging to execute in practice. This paper documents some of those
challenges by means of a case study in which we validate microsimulation-derived population
projections for Norway by replicating UN CCM projections. In the process, we document some of
the many latent assumptions in the UN’s medium variant CCM, which need to be made explicit
and specified in the microsimulation to achieve a close match. The specific implementation of the
assumptions might seem arbitrary to simulationists, and definitely optional. However, social
scientists should maintain awareness of the assumptions that go into population projections, and
be ready to justify them. Using the microsimulation method requires an interdisciplinary dis-
cussion of projection assumptions.

UN Population Estimates And Projections

The UN provides two types of data: estimates of the past population and projections for the future
population. The year 2020 is the end-year of the estimates and the base-year for the projections
(United Nations, 2019).

The UN provides population estimates for the years 1950–2020 at 5-year intervals. These
estimates are typically based on government-provided census data and vital statistics (births,
deaths), which are used to construct population counts by sex and age as well as the fertility rates
and life tables for each 5-year interval. (In countries where official statistics are less available or
reliable, the UN uses other sources and methods.) Migration is estimated indirectly, by calculating
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the residual after accounting for natural increase (births and deaths) using the CCM. This residual
method does not reflect the reality that some people (emigrants) leave and others (immigrants)
arrive during the same period, but it is a well-accepted method when good data on migration flows
are unavailable (Smith & Swanson, 1998). All rates and counts in the estimates are adjusted so that
they reflect empirical observation of past time periods, and operate harmoniously within a global
system of country-level projections.

From 2020 to 2100, the UN projects the population forward using a CCM approach based on
different assumptions about how fertility, mortality, and migration will change into the future. The
medium variant of these projections assumes that people live longer, have fewer children, and
migration remains stable. For future birth and death rates, the UN applies Bayesian adjustments to
the 2020 rates according to expectations of increasing life span and lower fertility, and both
components converge to a global median.Migration is assumed to continue at the level estimated for
the 2015–2020 period. The population is then projected forward at 5-year intervals using sex- and
age-specific inputs on survival ratios, birth rates, and migration counts (United Nations, 2019).

Demographic Data

We used the data provided by the UN Department of Economic and Social Affairs (United
Nations, 2019). As previously mentioned, the data give population estimates for past periods
starting in 1950 and projections for the future years to 2100. Population counts are provided for
males and females in 5-year age groups (5–9, 10–14, 15–19, etc.), except for the youngest and
oldest ages. The youngest group is divided between infants (the first year of life) and children aged
1–4. The highest age category includes everyone 100 and above.

The UN provides detailed tables on mortality in these age groups for males and females
separately (they are known as abridged life tables, by contrast with complete life tables that
describe mortality by single years of age). It also provides the annual number of births per 1000
women (known as age-specific fertility rates) for women of reproductive age, i.e., in the age
groups between 15 and 49.

In its published output, the UN provides the net migration count (the number of immigrants less
emigrants) for each 5-year period. We needed a breakdown by age and sex, which the UN kindly
provided. Table 1 shows the values for Norway for a few selected periods as examples. Note that
the medium-variant projections we are replicating for the periods from 2020 assume that migration
will remain at the level estimated for 2015–2020. The age of net migrants is capped at 80 or older,
where all migrants aged “80+” are assigned to the 80–84 age group.

Microsimulation Model

Themicrosimulation was written in AnyLogic University Edition v8.7.4 (documentation and code
can be found in https://github.com/centerformindandculture/adapting-cohort-component-methods-
to-a-microsimulation). Norway’s population in 1950 was 3,265,274. We did not have the com-
putational power needed to run a simulation with three million individuals, so we initialized the
model with a population of 32,653, a 1% sample. Simulating with a 1% baseline population as
opposed to 100% of the Norway population balances computational efficiency with the needs of the
project. Simulating a small proportion is a relatively common design decision for microsimulations
of large populations, such as the CORSIM (based on a 0.1% sample of the U.S. census) and
APPSIM (1% sample of Australian census) national simulations (Li & O’Donoghue, 2013). It is
certainly possible to use the entire Norwegian population, but doing so is unnecessary when the
sample is representative of the true population in terms of age, sex, and assignment of demographic
events (Zagheni, 2015).
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A key challenge in producing our microsimulation is that we want to work with single-year age
groups and time steps of 1 year. This decision on the treatment of time and age groups aligns with
the needs of our project at a later stage. In the UN data, however, mortality, fertility, and migration
are all provided for 5-year age groups over 5-year periods, as described above. An additional
challenge is to identify the correct order of operations, so that the risks of mortality, fertility and
migration are sequenced in a way that accords with the CCM.

Our basic approach is as follows. At initialization, the distribution of the population by age and
sex matches that reported by the UN for the year 1950. Thereafter, every year, every individual has
a probability of dying determined by their age, sex, and the time period. Individuals drop out of the
population on death. Female individuals of reproductive age may give birth, with the probability
depending on age and year. Births create a new individual of age 0 and a probability of being male
or female depending on the prevailing sex ratio at birth. Further additions or deductions from the
population occur in each period according to the statistics on net migration. The cycle is repeated
for simulation runs from 1950 through 2100.

Output from the simulation is generated for every 5-year period for comparison with UN
estimates and projections. We collect counts of the total population, births, deaths and immigrants
or emigrants. Birth, death, and growth rates can be calculated from these values. We also calculate
the mean age and standard deviation.

Following 1000 runs of the simulation, we calculate the interquartile range for each of these
statistics. If the values reported by the UN fall within that range (i.e., the two middle quartiles), we
consider the model to be acceptably accurate. Further, we used two other metrics to compare the
accuracy of the microsimulation in replicating the CCM values. The first metric was calculated for

Table 1. Migration data provided by the United Nations for Norway.

Migration

Year
1950–
1955

1950–
1955

1955–
1960

1955–
1960

2015–
2020

2015–
2020

2020–
2025

2020–
2025

Age\Sex Males Females Males Females Males Females Males Females

Total 311 �4272 �4513 �4,922 77,000 63,000 77,000 63,000
0–4 �243 �211 �567 �342 4748 3881 4748 3881
5–9 �23 �22 �24 �38 2063 1687 2063 1687
10–14 �1313 �1515 0 147 1582 1380 1582 1380
15–19 563 �42 584 914 8065 7294 8065 7294
20–24 595 �936 �500 �1,362 14,516 12,693 14,516 12,693
25–29 �175 �846 �2377 �1,582 13,951 11,753 13,951 11,753
30–34 �541 �982 �2198 �1,152 10,566 8,572 10,566 8572
35–39 �17 �1111 �1289 �1309 7328 5725 7328 5725
40–44 �157 �313 �281 �41 4921 3701 4921 3701
45–49 255 �95 �266 �458 3266 2365 3266 2365
50–54 165 �236 192 �87 2158 1504 2158 1504
55–59 263 �102 348 �108 1424 956 1424 956
60–64 153 228 107 �157 939 607 939 607
65–69 170 360 866 229 619 385 619 385
70–74 161 868 589 138 408 244 408 244
75–79 128 140 469 �47 269 155 269 155
80+ 327 542 �167 331 177 98 177 98
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every 5-year time period and represents the proportion of times the microsimulation values (i.e.,
population size; number of births and deaths; and average age of the whole, male, and female
population) were higher (H) or lower (L) than the corresponding UN value. The metric thus
assesses whether the UN value falls within the distribution of values generated by the micro-
simulation or in the extremes of the distribution. This procedure is analogous to procedures used in
social network analysis where finding statistical significance requires the creation of null models
(Hobson et al., 2021). Using this procedure, a ‘p-value’ can be calculated by determining whether
the UN value is higher (H) or lower (L) than 95%, 99% or 99.9% of the values generated by the
microsimulation. The second metric is the average of the absolute differences between the UN
values and the corresponding microsimulations values divided by the average UN value. This
metric was calculated for 50-year time periods. It gives an estimate of the percentage of error
between the microsimulation and the UN values.

Our initial results showed significant discrepancies between the output from the model and the
UN figures we aimed to replicate (see supplementary material). The microsimulation generated
too few births, especially during the 21st century. In addition, the average age in the simulated
population was systematically too high. In the next section, we detail the steps required to bring
the microsimulation into alignment with the UN data.

Reproducing the UN data

Adjusting the microsimulation model to replicate the CCM results involved a number of steps,
some of which are far from intuitive. The CCM and microsimulation approaches work very
differently. In arriving at population estimates for previous decades, the UN examines data from a
variety of sources (in this case, primarily the Norwegian national statistics agency) covering every
5-year period. By examining this dataset, the UN estimates fertility/mortality rates and emigrant/
immigrant numbers that bridge the exact population numbers from one time-period to the next
one. The results are designed to be internally consistent, so that the CCMwill go from the previous
counts to the current ones. Fertility rates are made consistent with the number of births during the
interval and the number of women in each age group at the beginning and end of the period.
Similarly, life table rates must be consistent with the number of deaths and the population counts
by age and sex. Net migration is what remains once natural growth has been considered. The
estimation procedure is thus largely retrospective because all of the counts and rates are adjusted to
reflect empirical observation at the end of each period. By contrast, the microsimulation is entirely
prospective, in that it starts from the initial population in 1950 and then runs its course. Our model
uses the UN statistics on fertility, mortality, and migration for each successive period, but there are
no ad hoc adjustments in mid-stream. Therefore, it is not possible to assess which model, the
microsimulation or the CCM, has better accuracy for past periods. Of course, we also lack census
data on future populations. Thus, we assess the accuracy of the microsimulation by estimating how
well it fits the UN values generated via the CCM.

Mortality

The abridged life tables contain a variety of measures of mortality and its complement, survival,
and we use the UN’s life table labeling and notation hereafter. The statistic used to construct the
life table is the central death rate, labeled m(x,n). It is calculated by taking the number of people
who are at least age x but not yet x+n when they die, divided by the number of people in that age
group. The microsimulation uses this value as the most suitable expression of mortality risk. Note
that the CCM employed by the UN uses the survival ratio, labeled S(x,n), which is roughly
speaking the average count in one age group divided by the average count in the one below,
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assuming a stationary population. We originally supposed that the survival ratio would give us the
best chance of replicating the UN figures and used it to derive an annual probability of dying. We
came to realize, however, that this approach is inappropriate in a model with single-year age
groups. As an example, consider the proportion of people aged 65–69 who survive to be 70–74
5 years later. Many of the deaths affecting individuals in this group would have occurred when
they were in their early 70s, and so the risk of mortality implied by the survival ratio should not be
applied to people aged 65, 66 … 69.

dð0; 1Þ � ðlð0Þ � Lð0; 1ÞÞ
Lð0; 1Þ

The microsimulation proceeds in discrete steps of 1 year (rather than the 5 years of the UN
CCM). Because aging is continuous, however, some people will have their birthdays in the first
half of the year, potentially affecting the rates that apply to them. A woman of 24, for example,
might move into the 25–29 category for fertility and mortality by mid-year. We addressed this
problem by splitting each year of age into two equal groups, corresponding to dates of birth in the
first or second half of the year. For most individuals in most years, the half-year age bins make no
difference. For individuals on the cusp of the next age category, however, half will experience the
mortality and fertility rates for the age group they belong to at the beginning of the period, while
the other half will experience the mortality and fertility rates of the next age group.

Births during the year produce an additional problem of calculating how much infant mortality
to attribute to which period. Births in a given year should be multiplied by L(0,1)/l(0) to give the
count aged 0 in the following year. L(0,1) is the life table value for the number of person-years
lived in the 12 months following birth, given a cohort size of l(0). In addition, however, the starting
population includes infants below 1 year of age, that is, children aged 0 (who will be one the
following year). In order to account for all of the deaths in the life table, we need to apply the
remainder of infant mortality. Any snapshot of the age 0 population will include both recent
newborns and infants approaching their first birthday. Such a count will reflect some deaths that
have already occurred (which we can calculate as l(0) – L(0,1)), but not the full extent of deaths in
the first year of life (d(0,1)). The difference can be divided by the size of the infant population to
give the death rate for children aged 0:

Migration

As mentioned above, the UN accounts for natural increase in a 5-year interval, compares the result
with data on the population at the end of the period, and then takes the residual to be net migration.
That being so, it is tempting to program the microsimulation to add or subtract migrants at the end
of each period, once all of other processes have been executed. The situation is more complicated,
however. The number of births is influenced by the number of immigrants and emigrants. In the
CCM, fertility is calculated by applying the age-specific fertility rates to the mid-period pop-
ulation, which is a simple average of the starting and ending populations for the 5-year period. As
migrants are included in the count at the end of the period, half of them are effectively included in
the mid-point average. Our initial results underestimated the number of births from 2005 onwards
because we were not adding immigrants (whose numbers had greatly increased by this point) until
the end of each period.

We need to add immigrants and subtract emigrants every year. The challenge is to do so in a
way that is consistent with the CCM calculations. Because the migrant numbers are only estimated
at the end of each 5-year period, any immigrants included in that count have by definition survived
to the end of the period. Hence, if we are adding them year by year in the microsimulation, they
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need to be preserved from dying until subsequent periods. Similarly, their ages also need to be held
constant during the 5-year period of their arrival. (We could assign younger ages on arrival so that
they age into the correct group, but then they would be subject to the wrong age-specific fertility
rates.) We assume that migratory events are spread evenly over the year, and hence half of the net
migrants in each year are exposed to the risk of childbearing and the other half are not.

As a final point of detail, note that the UN supplies net migrant counts as integer values for each
5-year period. When the number is not a multiple of five, the annual net migrant count cannot be
constant. In such cases we alternate the high and low values, with the center of gravity in the
middle year. For example, if over 5 years there are 30 immigrants in a particular age group, they
would be distributed as 6,6,6,6,6 in each year; if the total is 29, the distribution is 6,6,5,6,6; 28 is
divided as 6,5,6,5,6; 27 as 5,6,5,6,5; and 26 as 5,5,6,5,5. Similarly, the same number of im-
migrants can only be allocated to the first and second half of the year when the annual total is an
even number. When it is odd, we alternated rounding up or down for the first half year.

The sequence of events in each year in the simulation is:

1. Everyone is aged half a year to the mid-point.
2. Half of immigrants for the year are added and exposed to the risk of childbearing; newborns

of immigrants are added as normal members of the population. Half of emigrants are
removed (prior to exposure to childbearing).

3. The host population is exposed to risks of fertility and mortality.
4. The second half of immigrants for the year are added (with no exposure to risk of

childbearing). The second half of out-migrants is removed (after exposure to childbearing).
5. Non-immigrants are aged half a year.

Results

After the adjustments to the microsimulation outlined above, the results of the microsimulation for
Norway are very similar to the UN’s estimates and projections. As shown in Figures 1 and 2, the
UN statistics always fall within the interquartile range of the simulated values (see supplementary
material for results of the simulation without adjustments). This is further corroborated by the
results shown in Tables 2 and 3. Table 2 shows the proportion of times the microsimulation values
(n = 1000) were higher (H) or lower (L) than the UN value. In no case were more than 80% (or less
than 20%) of the values of the microsimulation higher (or lower) than the UN value. Hence, for all
variables, the UN value always falls well within the distribution of values generated by the
microsimulation and never at the extremes. Table 3 shows the percentage of error between the UN
and the microsimulations values for three 50-year periods. Before adjustments, errors more than
double with time for total population and births, and for births the error increased up to over 5% for
the 2050–2100 period (Supplemental Table S2). In contrast, after adjustments errors were kept to a
minimum, with total population around 1% and births under 2% error (Table 3). Adjustments are
thus particularly important for long-running simulations, where initially small errors will become
problematic later. Further, by comparing the errors to the annual population growth in Norway,
∼0.6%, and over 2% in other countries (World Bank, 2019), we note that over a 50-year period the
simulation goes off target by no more than the change expected in a year or two.

Despite the improvements, the microsimulation still slightly overestimate the number of births
from around 2050 onwards (average difference between median and projected UN value for
periods 2050–2100 = 39.8, i.e., 1.11% more births than projected by the UN, Figure 1). Nev-
ertheless, for our practical purposes the model does what is needed. Belowwe discuss the potential
sources of the remaining discrepancies between the microsimulation and the UN data.
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The CCM and microsimulation approaches have fundamental differences in their underlying
assumptions (van Imhoff & Post, 1998; Zagheni, 2015). We struggled most with the translation of
birth, death, and migration statistics in our microsimulation. In the CCM, birth and death rates are
expressed as the average exposure to risk experienced by people who are aging into and out of

Figure 1. Population size, number of births and deaths in the microsimulation and UN data for Norway.
Boxplots are generated from 1000 runs of the microsimulation and the red dot is the estimated/projected
value from the UN data. Note. UN = United Nations

Figure 2. Mean age of the Population, Male and Females individuals per period for Norway. Boxplots are
generated from 1000 runs of the microsimulation and the red dot is the estimated/projected value from
the UN data.
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Table 2. Proportion of times the microsimulation values (n = 1000) were higher (H) or lower (L) than the
expected United Nations value.

Period

Population
Size

Number of
Births

Number of
Deaths

Mean Age
Pop

Mean Age
Male

Mean Age
Fem

H L H L H L H L H L H L

1950–1954 0.439 0.562 0.532 0.474 0.664 0.352 0.778 0.223 0.710 0.291 0.798 0.203
1955–1959 0.434 0.567 0.461 0.546 0.535 0.478 0.740 0.261 0.659 0.342 0.663 0.338
1960–1964 0.411 0.590 0.439 0.570 0.526 0.487 0.623 0.378 0.612 0.389 0.499 0.503
1965–1969 0.458 0.544 0.583 0.421 0.449 0.563 0.555 0.446 0.515 0.487 0.587 0.414
1970–1974 0.543 0.459 0.694 0.312 0.483 0.538 0.379 0.622 0.355 0.646 0.446 0.555
1975–1979 0.595 0.406 0.687 0.317 0.474 0.537 0.291 0.710 0.334 0.667 0.406 0.595
1980–1984 0.612 0.389 0.624 0.382 0.436 0.572 0.349 0.652 0.333 0.668 0.293 0.708
1985–1989 0.614 0.387 0.568 0.438 0.477 0.533 0.319 0.682 0.452 0.550 0.364 0.637
1990–1994 0.626 0.375 0.556 0.450 0.463 0.546 0.370 0.631 0.485 0.517 0.306 0.695
1995–1999 0.634 0.367 0.620 0.384 0.425 0.585 0.447 0.554 0.510 0.492 0.395 0.606
2000–2004 0.653 0.348 0.695 0.311 0.444 0.561 0.441 0.560 0.487 0.515 0.353 0.648
2005–2009 0.693 0.308 0.685 0.323 0.263 0.744 0.471 0.531 0.559 0.442 0.374 0.627
2010–2014 0.710 0.291 0.714 0.294 0.362 0.650 0.565 0.436 0.545 0.457 0.528 0.474
2015–2019 0.718 0.283 0.664 0.341 0.454 0.556 0.613 0.388 0.566 0.435 0.494 0.508
2020–2024 0.731 0.270 0.690 0.317 0.521 0.489 0.593 0.408 0.583 0.418 0.653 0.348
2025–2029 0.733 0.268 0.693 0.310 0.626 0.380 0.607 0.394 0.591 0.410 0.607 0.394
2030–2034 0.732 0.269 0.693 0.314 0.790 0.214 0.444 0.557 0.428 0.573 0.649 0.352
2035–2039 0.715 0.286 0.680 0.330 0.765 0.238 0.406 0.595 0.506 0.496 0.493 0.509
2040–2044 0.714 0.287 0.672 0.333 0.662 0.347 0.378 0.623 0.400 0.601 0.458 0.544
2045–2049 0.715 0.286 0.703 0.304 0.588 0.420 0.363 0.638 0.395 0.606 0.416 0.585
2050–2054 0.722 0.279 0.703 0.307 0.552 0.457 0.424 0.577 0.370 0.631 0.480 0.522
2055–2059 0.743 0.258 0.724 0.279 0.587 0.418 0.414 0.587 0.371 0.630 0.530 0.472
2060–2064 0.743 0.258 0.730 0.272 0.596 0.410 0.422 0.579 0.389 0.612 0.489 0.513
2065–2069 0.744 0.257 0.720 0.285 0.636 0.374 0.420 0.581 0.360 0.641 0.520 0.482
2070–2074 0.749 0.252 0.700 0.306 0.652 0.355 0.449 0.552 0.360 0.641 0.509 0.493
2075–2079 0.755 0.246 0.714 0.290 0.668 0.335 0.398 0.603 0.399 0.602 0.498 0.504
2080–2084 0.750 0.251 0.723 0.282 0.678 0.336 0.445 0.556 0.445 0.556 0.472 0.530
2085–2089 0.755 0.246 0.744 0.260 0.693 0.309 0.460 0.542 0.431 0.570 0.498 0.504
2090–2094 0.763 0.238 0.738 0.268 0.679 0.324 0.409 0.592 0.490 0.512 0.419 0.582
2095–2099 0.767 0.234 0.728 0.276 0.699 0.309 0.409 0.592 0.476 0.526 0.486 0.516

Table 3. Percentage of error.

Population Number of Births Number of Deaths

Period Ave UN
value

Ave abs
diff

% of
error

Ave UN
value

Ave abs
diff

% of
error

Ave UN
value

Ave abs
diff

% of
error

1950–
1999

39,974 204 0.51 2985 55 1.84 1945 34 1.76

2000–
2049

57,064 547 0.96 3113 62 2.00 2445 44 1.81

2050–
2099

73,676 746 1.01 3585 70 1.97 3632 58 1.60

Note. Ave = average; abs diff = absolute difference; UN = United Nations.
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5-year age groups over a 5-year period. In our microsimulation, we converted the UN’s rates
into probabilities of an individual experiencing an event at a specific age in a specific year.

Although our adjustments reduced output discrepancies to low levels, there is still a slight drift
away from the expected number of births. This drift is only noticeable in projections from the mid-
21st century and may reflect a gradual accumulation of error. Immigration to Norway surged in the
early 21st century and remains relatively high in the UN’s projections to the end of the century.
Our corrected models allow half of immigrants to contribute to fertility during the period of
arrival, which produced an overall improvement. Even a few too many births would lead to even
more excess births when the extra individuals reach child bearing ages, however, and it is possible
that an imperfect correspondence between the microsimulation and the UN target produces the
slight birth surplus after the year 2050.

Conclusion

Throughout our troubleshooting and expert consultations, we were surprised at how little
guidance was available for designing a relatively straightforward microsimulation of population
change. Do we use data on both immigration and emigration or net migration? Do we use the
central death rate or the survival ratio? What are the consequences of using 1-year intervals? The
lack of guidance on sources of discrepancy between microsimulations and various CCM models
can lead to confusion among simulators who use existing CCMs to validate their microsimulation
projections. A common criticism among simulationists is a lack of documentation on design
decisions and model validation approaches (Li & O’Donoghue, 2013). A side benefit of the
procedure documented in this paper is the provision of such guidance to people building mi-
crosimulation projections.

The central message of this paper, however, is that microsimulations expose assumptions that
are latent in CCM population projections, even when the CCMs are simple, focusing only on age
and sex. We have demonstrated that implementing a simple scenario of population change with
typical demographic rates can lead to divergences between microsimulation and CCM projections
that are unrelated to more complex individual characteristics such as social network or kinship
ties.

Of course, microsimulations are able to incorporate increasingly more complex individual
characteristics and interactions (that are too unwieldly for traditional CCM approaches) while
simultaneously maintaining a realistic population composition and size. Therein lies their primary
advantage. This additional complexity is not tractable in a CCM approach, which can only operate
in aggregates of mutually exclusive population categories (e.g. racial groups by religion, by
region) and cannot maintain kinship ties (van Imhoff & Post, 1998). Added complexity, however,
brings up new challenges. One limitation of microsimulations is that they require much more
computational power than traditional CCM. Another one is the scarcity of quality demographic
data needed to inform the simulation. Given the added complexity at the individual level, re-
searchers may have a difficult time finding data for specific areas, to interpret the most appropriate
rates to use, specify the order of demographic events, etc. Nevertheless, by focusing on events and
processes at the individual level, rather than the aggregate, microsimulations allow us to un-
derstand the sensitivity of projections to many different conditions. Hence, we believe that
microsimulations have an important role to play in demographic projection, and simulationists and
CCM experts mutually benefit from more interdisciplinary dialogue and explicit defense of
projection model assumptions.

In future work, our team plans to explain the virtues of the microsimulation method for
population projection in more detail. We also wish to assess the “price” of microsimulation options
in divergence of demographic variables from normal benchmarks. We are also developing other
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models that will document the validation process for population projection microsimulations by
parametrizing all assumptions made in the CCM-implementation process.
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