
Detection of Impaired OFDM Waveforms Using

Deep Learning Receiver

Jaakko Pihlajasalo1, Dani Korpi2, Taneli Riihonen1, Jukka Talvitie1, Mikko A. Uusitalo2, and Mikko Valkama1

1Electrical Engineering, Tampere University, Finland 2Nokia Bell Labs, Espoo, Finland

Abstract—With wireless networks evolving towards mmWave
and sub-THz frequency bands, hardware impairments such as IQ
imbalance, phase noise (PN) and power amplifier (PA) nonlinear
distortion are increasingly critical implementation challenges.
In this paper, we describe deep learning based physical-layer
receiver solution, with neural network layers in both time-
and frequency-domain, to efficiently demodulate OFDM signals
under coexisting IQ, PN and PA impairments. 5G NR standard-
compliant numerical results are provided at 28 GHz band to
assess the receiver performance, demonstrating excellent robust-
ness against varying impairment levels when properly trained.

Index Terms—5G NR, 6G, deep learning, hardware impair-
ments, IQ imbalance, machine learning, mmWave, nonlinear
distortion, power amplifier, phase noise, sub-THz

I. INTRODUCTION

One timely paradigm in 5G evolution and 6G research

is harnessing new spectrum from the 50–300 GHz bands

[1], [2]. While such mmWave or sub-THz bands can offer

large channel bandwidths and thereon improved capacity and

latency characteristics, the use of such bands for mobile radio

access imposes also substantial technical challenges, including

the quality, cost- and energy-efficiency of the electronics [2],

[3], the extreme path loss and propagation characteristics [4]

and the overall system complexity and deployment costs to

provide indoor and outdoor network coverage with mobility

support. To this end, the combination of extremely wide chan-

nel bandwidths and high center-frequencies pushes the per-

formance boundaries of the involved electronics, particularly

data converters, transceivers, oscillators and power amplifiers

to their limits, with challenging tradeoffs in the corresponding

integrated circuit size, design and implementation costs, as

well as the energy consumption [2], [5].

In this work, we investigate and develop solutions for

utilizing modern machine learning (ML) techniques to reliably

demodulate received signals under severe levels of radio

frequency (RF) impairments. Building on top of our prior

work in [6], we consider the challenging case of co-existing

power amplifier (PA) nonlinear distortion, inphase/quadrature

(IQ) imbalance and oscillator phase noise (PN), and devise a

hybrid time-/frequency-domain neural network (NN) structure

and associated learning procedures facilitating reliable detec-

tion of the information bits from the distorted time-domain

IQ signal. Extensive set of numerical results conforming

to the current 5G New Radio (NR) mmWave specifications

are provided, demonstrating the successful operation of the

developed receiver system under varying levels of the involved

RF imperfections. Such receiver technology can provide native

ML support for the 6G physical layer, while allowing to

improve the network coverage, energy-efficiency and cost-

efficiency.

Notation: Matrices are represented with boldface uppercase

letters and they can consist of either real- or complex-valued

elements, i.e., X ∈ F
N×M , where F stands for either R or C.

II. STATE-OF-THE-ART

ML-aided radio reception has already been considered in

several works, some of which have investigated implementing

certain parts of the receiver chain with learned layers [7]–[9],

while some works have learned the complete receiver from

data [10]–[12]. Such fully learned receivers have demonstrated

high performance especially under sparse pilot configurations

or when the cyclic prefix is omitted. In addition, the solution

in [12] is shown to be capable of dealing rather well with

transmitter clipping noise, a type of hard nonlinearity.

The prospect of hardware impairments has also been an-

alyzed in the context of ML-based receiver solutions. In

addition to our earlier work on mitigating transmitter PA-

induced distortion [6], [13], there are some existing works

focusing on PN and IQ imbalance [14]–[17]. In particular, [14]

proposes an ML-based channel estimator under PN and IQ

imbalance, demonstrating higher accuracy than conventional

methods. The work in [15], on the other hand, describes a

fully learned receiver that can operate under IQ imbalance

and carrier frequency offset. The ML-based receiver archi-

tecture proposed therein utilizes a parallel structure, shown

to outperform the conventional baseline receiver. The issue

of PN in sub-THz frequency bands is addressed in [16]

by using a deep NN receiver solution. The proposed NN

receiver takes in the received signal and a channel estimate,

and provides a hard symbol decision as its output, achieving

lower bit error rates than the baseline solution. Finally, the

work in [17] investigates another type of PN resistant ML

receiver, consisting of separate NN elements trained to carry

out channel estimation and data detection. It is shown that

introducing an additional NN for mitigating the effects of PN

results in higher detection accuracy.

As opposed to any of these earlier works, in this paper we

provide methods and results for a scenario where all dominant

impairment sources are jointly present. That is, we devise,

train and evaluate the performance of the fully learned receiver

solutions under the joint effect of PN, IQ imbalance, and PA-

induced nonlinearities. Moreover, unlike in most prior works,

the training and validation data is generated under varying
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Fig. 1. High-level illustration of the considered system, where the transmitter is producing IQ imbalance and PN in the upconversion phase, and nonlinear
distortion at the power amplifier. This work considers three different receiver systems, each depicted in the lower part of the figure.

impairment levels, instead of a static scenario. Therefore, the

reported performance results correspond to a more practical

scenario, with large anticipated technological relevance. It is

shown that HybridDeepRx [6] like receivers with properly

trained NN layers in both time- and frequency-domain can

handle the challenging combination of co-existing RF impair-

ments and mobile multipath channel, clearly outperforming

the ordinary DeepRx [10].

III. SYSTEM MODEL

The system model is depicted in Fig. 1, illustrating both

the transmit and receiver side processing. We consider a 5G-

type scenario, although the proposed deep learning receiver

architecture is also a promising candidate for beyond 5G and

6G systems [13]. Therefore, the transmitter produces an or-

thogonal frequency-division multiplexing (OFDM) waveform

and follows a typical direct-conversion architecture in the RF

domain. Denoting the ideal time-domain transmit waveform

by x(n), the baseband-equivalent transmit signal after the IQ

upconversion can be written as

xIQ(n) = (K1x(n) +K2x
∗(n)) ejθ(t), (1)

where θ(t) is the PN term, and the IQ imbalance coeffi-

cients are defined as K1 = (1 + g exp(−iφ)) /2 and K2 =
(1− g exp(iφ)) /2, with g and φ denoting the amplitude and

phase imbalances, respectively (g = 1 and φ = 0 correspond

to a case with no IQ imbalance). Note that in this work we

assume the IQ imbalance to be frequency-independent, while

the PN is modeled based on a free-running oscillator (FRO)

model.

After this, the upconverted RF signal is fed to the nonlinear

power amplifier, and the final transmit signal is given by

xRF (n) =

P∑

p=1
p odd

fp |xIQ(n)|
p−1

xIQ(n) (2)

where P is the nonlinearity order of the model and fp denotes

the pth-order coefficient of the polynomial model.

This transmit signal then experiences a mobile multipath

channel while propagating to the receiver, after which the

received signal can be written as follows:

y(n) =
M−1∑

m=0

hm,nxRF (n−m) + w(n), (3)

where hm,n denotes the time-varying M -path channel impulse

response, and w(n) is the noise-plus-interference signal.

Considering the signal during a single transmission time

interval (TTI), the received time-domain signal can be denoted

by a matrix Yt ∈ C
(NCP+N)×Nsymb , where NCP is the

maximum cyclic prefix (CP) length within the TTI, N is the

fast Fourier transform (FFT) size and Nsymb is the number

of OFDM symbols. That is, the elements of Yt consist

simply of the received signal samples, ordered based on their

corresponding OFDM symbols. In case the symbols have

different CP lengths, as is often the case in 5G, zero-padding

is used to align the total symbol lengths to NCP +N .

After removing the CP, the received signal can be converted

to frequency domain using a fast Fourier transform (FFT).

With this, the received frequency domain signal can be written

as

Y = H ◦ X +N, (4)

where Y ∈ C
ND×Nsymb and X ∈ C

ND×Nsymb are the

received and transmitted OFDM symbols in frequency domain,

respectively, H ∈ C
ND×Nsymb is the frequency-domain single-

tap channel matrix, N ∈ C
ND×Nsymb is the noise-plus-

interference signal, and ND denotes the number of allocated

subcarriers. Note especially that the noise terms in N con-

tain also all the distortion components stemming from IQ

imbalance, PN, PA nonlinearities, and inter-carrier interference

(ICI) meaning that it is a function of the original TX signal.

A conventional linear receiver interprets such components as

noise, while the proposed ML-based receiver will learn to

model and mitigate these distortions.

Such a conventional receiver is utilized in this work as a

baseline to provide the proper comparison and context for

the performance of the ML-based DeepRx. In the baseline

receiver, the demodulation reference signals (DMRSs) are



extracted from the pilot-carrying OFDM symbols in Y for

channel estimation, as illustrated in Fig. 1, after which the

signal is equalized and the soft bits, or log-likelihood ratios

(LLRs), are extracted. For a more detailed description of the

baseline receiver, see, e.g., [10].

IV. CONSIDERED ML-BASED RECEIVERS AND DATA

GENERATION

The goal of the proposed ML-based receivers is to detect the

bits from the impaired RX signals collected during a transmis-

sion time interval (TTI). In this work, we consider two ML-

based receivers: DeepRx [10] and HybridDeepRx [6]. DeepRx

is a deep learning receiver with trainable convolutional layers

in the frequency-domain, while HybridDeepRx has trainable

convolutional layers both in the time- and frequency-domain.

The time-domain layers are well-suited for mitigating the non-

linear impairments that are inherently time-domain phenomena

such as IQ imbalance and PA distortion. Similarly, the layers

in the frequency-domain will mitigate frequency-domain im-

pairments while simultaneously performing channel estimation

and the actual signal detection. The general architectures of

both receiver solutions are presented in Fig. 1.

Considering first the inputs of the two ML-based receivers,

the input of the frequency-domain DeepRx consists of the

post-FFT received signal Y ∈ C
ND×Nsymb and the raw least

squares (LS) DMRS channel estimates Ĥ ∈ C
ND×Nsymb ,

where the latter has been filled with zeros for the non-

DMRS REs. The real and imaginary parts of the inputs are

concatenated along the third input dimension to construct the

full input array Z ∈ R
ND×Nsymb×4.

As opposed to this, HybridDeepRx takes as input the time-

domain received signal with the CPs, denoted by Yt ∈
C

(NCP+N)×Nsymb , as well as the frequency-domain DMRS

channel estimates Ĥ ∈ C
ND×Nsymb . The time-domain RX

signal is fed directly to the time-domain layers as a real-valued

array Z1 ∈ R
(N+NCP )×Nsymb×2, while the channel estimates

are fed to the frequency-domain part of the ML receiver, also

as a real-valued array Z2 ∈ R
(ND)×Nsymb×2.

The outputs of both trained receivers are real-valued arrays

L ∈ R
ND×Nsymb×B consisting of the estimated LLRs, where

B is the number of bits per RE. The bit estimates are obtained

by feeding the LLRs through the sigmoid-function. Note that

the convolutional ML receivers estimate LLRs also for the

DMRS-carrying REs, but these are naturally discarded.

In this work, we consider three scenarios with varying

impairments affecting the signals: (1) a PN only scenario, (2)

an IQ imbalance only scenario, and (3) a scenario including

all impairment sources, i.e., PN, IQ imbalance, and the PA-

induced nonlinearities. The impairments are modeled accord-

ing to the signal model presented in section III with parameter

ranges specified in Table I for the training datasets. For

validation, we utilize separate datasets with similar parameter

ranges, as well as datasets with fixed impairment parameters.

The PA models used in training and validation are varied by

dithering a measured polynomial PA model to ensure that

TABLE I
IMPAIRMENT PARAMETER RANGES FOR TRAINING. THE RANGES

CORRESPOND TO THE BOUNDS OF A UNIFORM DISTRIBUTION

Phase noise Amplitude Phase PA output

3dB bandwidth imbalance imbalance backoff

Scenario 1 1 Hz to 20 Hz N/A N/A N/A

Scenario 2 N/A −15% to 15% −15
◦ to 15

◦ N/A

Scenario 3 1 Hz to 20 Hz −15% to 15% −15
◦ to 15

◦ 3 dB

TABLE II
MMWAVE SIMULATION PARAMETERS FOR TRAINING AND VALIDATION

Parameter Value Randomization

Center frequency 28 GHz None

Channel model TDL-A to TDL-E Uniform distribution

PA model Measured Dithered coefficients

SNR 0 dB – 30 dB Uniform distribution

Doppler shift 0 Hz – 1500 Hz Uniform distribution

Delay spread Up to 100 ns Uniform distribution

Channel bandwidth 50 MHz None

Number of subcarriers (ND) 792 subcarriers None

FFT size (N ) 1024 None

Subcarrier spacing 60 kHz None

Maximum CP length (NCP ) 104 None

TTI length (Nsymb) 14 OFDM symbols None

DMRS configuration 2 OFDM symb. / TTI None

Modulation scheme 64-QAM None

the neural network generalizes properly. For further details

on utilized PA models, we refer to [6].

To generate data, we employ Matlab’s 5G Toolbox [18]

to simulate a 5G physical uplink shared channel (PUSCH)

link. Parameters for the simulation are specified in Table II.

The training dataset for each scenario utilizes a randomly

chosen tapped delay line (TDL) channel model among TDL-B,

TDL-C and TDL-D [19] models while the validation datasets

utilize TDL-A and TDL-E models. For training, the SNR

is chosen randomly, while for the validation the SNRs are

in uniform grid with 2.5 dB steps in the specified range.

The training datasets consist of 105 000 TTIs whereas the

validation datasets consists of 32 000 TTIs.

The training of ML receivers is performed based on the

binary cross entropy (CE) loss between the estimated bits and

the transmitted bits, similar to [10]. The CE loss is defined as

CE(θ) ≜ −
1

#DB

∑

(i,j)∈D

B−1∑

l=0

(
bijl log

(
b̂ijl

)
(5)

+(1− bijl) log
(
1− b̂ijl

))

where θ represents the set of trainable of parameters, D de-

notes the time and frequency indices of data-carrying resource

elements (RE), #D is the total number of data-carrying REs,

B is the number of bits per RE, and b̂ijl is the receiver’s

estimate for the probability that the bit bijl is one. We use

Adam optimizer as the stochastic gradient descent (SGD)

algorithm for learning the model parameters.
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Fig. 2. The BER performance of the considered receivers with phase noise affecting the signals for both validation scenarios.
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(a) g = 1.15, φ = 15◦
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Fig. 3. The BER performance of the considered receivers under IQ imbalance for both validation scenarios.

V. PERFORMANCE EVALUATION

The performance of the ML-based receivers is first eval-

uated under Scenarios 1 and 2 after which we investigate

the Scenario 3 with all impairments simultaneously present.

Uncoded bit error rate (BER) is considered the main perfor-

mance criteria, the results of the deep learning receivers being

compared with a baseline receiver utilizing linear minimum

mean square error (LMMSE) equalization and least squares

(LS) channel estimation. In addition, we include as a reference

the BER achieved by an LMMSE based receiver with known

channel and without any impairments, representing essentially

the performance bound.

Fig. 2 shows the BER performance of DeepRx under Sce-

nario 1 for the PN impaired signals under FRO 3dB bandwidth

of a) 20 Hz and b) 1-20 Hz with uniformly distributed

values. It was observed that the performance of DeepRx and

HybridDeepRx was essentially identical in this scenario, hence

HybridDeepRx is not presented in the figures. In both cases,

we can see that DeepRx can mitigate the PN considerably well.

This is because it has the structural capability to learn and

suppress ICI within neighboring subcarriers induced by PN.

It outperforms the LMMSE-based receiver by a clear margin,

and is not far behind the ideal baseline even with the most

severe PN case in Fig. 2a.

In Fig. 3 we see the BER performance of the considered

receivers under Scenario 2 with the IQ imbalance impaired

signals, when considering a) fixed and b) randomized im-

balance parameters. Fig. 3a shows the performance when

amplitude and phase imbalances are fixed at 15% and 15◦

respectively, which corresponds to an image rejection ratio

(IRR) of 16.5 dB. Correspondingly, Fig. 3b shows the BERs

when the imbalance parameters are uniformly distributed on

the specified interval, with mean IRR of 22.9 dB. To provide

some context for the IRR values, over 99% of the possible

IRR values are between 16.5 to 40 dB with the considered

parameter ranges. In both cases, HybridDeepRx has better
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Fig. 4. The BER performance of the considered receivers with coexisting PN,
IQ imbalance and PA nonlinearity. The impairment parameters are randomized
as in the training dataset.

performance than other considered receivers, even in the

most severe imbalance considered. This is due to frequency-

domain IQ imbalance resulting in mirrored spectrum being

overlapped on top of the original spectrum, making it ill-suited

for convolutional processing. Hence, HybridDeepRx learns to

deal with IQ imbalance more efficiently by utilizing its time-

domain layers. Note that even though HybridDeepRx has more

parameters than DeepRx due to the time-domain layers, adding

layers with same number of parameters to the frequency side

does not significantly affect the performance of the DeepRx.

Finally, we consider Scenario 3 with all the impairments

present simultaneously, meaning that the signal is distorted by

PN, IQ imbalance, and PA nonlinearities. Fig. 4 shows that

the BER performance of the considered ML-based receivers

is better than that of the conventional LMMSE-based one.

Again, HybridDeepRx clearly outperforms DeepRx in this

challenging scenario, as the time-domain NN layers are able

to mitigate both IQ imbalance and PA distortion much more

efficiently. Altogether, Fig. 4 demonstrates the resilience of

the ML-based receivers, particularly that of HybridDeepRx,

against various types of hardware impairments.

VI. CONCLUSIONS

In this paper, we demonstrated how different ML-based

receiver architectures can be trained to deal with various

hardware impairments. Our study covered two ML-based

receivers, one of which is operating only in the frequency

domain (DeepRx), and another one that has processing layers

both in time and frequency domains (HybridDeepRx). We

provided extensive numerical results in 28 GHz mmWave

network context, which indicate that a frequency-domain neu-

ral network is well-suited for mitigating the effects of PN,

whereas a hybrid time/frequency-domain network is required

for dealing with IQ imbalance and nonlinear distortion. The

results also indicated that both ML-based receivers outperform

conventional baseline receivers in the appropriate impairment

scenarios. This demonstrates the resilience of the ML-based

receivers against various types of hardware impairments.
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