
Tampere University Dissertations 687

687/2022
EM

R
E C

A
N

 K
AYA

 Visual and G
eom

etric D
ata C

om
pression for Im

m
ersive Technologies

Visual and Geometric
Data Compression for

Immersive Technologies

EMRE CAN KAYA

TUNI_Kaya_Emre_kansi.indd 1TUNI_Kaya_Emre_kansi.indd 1 30.9.2022 12:40:4230.9.2022 12:40:42

Tampere University Dissertations 687

EMRE CAN KAYA

Visual and Geometric Data Compression
for Immersive Technologies

ACADEMIC DISSERTATION
To be presented, with the permission of

the Faculty of Information Technology and Communication Sciences
of Tampere University,

for public discussion at Tampere University
on 4 November 2022, at 12 o’clock.

ACADEMIC DISSERTATION
Tampere University, Faculty of Information Technology and Communication
Sciences
Finland

Responsible
supervisor
and Custos

Professor Ioan Tabus
Tampere University
Finland

Pre-examiners Professor Søren Forchhammer
Technical University of Denmark
Denmark

Professor Titus Zaharia
Télécom SudParis
France

Opponent Assoc. Professor Simone Milani
University of Padova
Italy

The originality of this thesis has been checked using the Turnitin OriginalityCheck
service.

Copyright ©2022 author

Cover design: Roihu Inc.

ISBN 978-952-03-2605-0 (print)
ISBN 978-952-03-2606-7 (pdf)
ISSN 2489-9860 (print)
ISSN 2490-0028 (pdf)
http://urn.fi/URN:ISBN:978-952-03-2606-7

Carbon dioxide emissions from printing Tampere University dissertations
have been compensated.

PunaMusta Oy – Yliopistopaino
Joensuu 2022

http://urn.fi/URN:ISBN:978-952-03-2606-7

PREFACE/ACKNOWLEDGEMENTS

This dissertation is based on my research at Tampere University during 2019 to 2022.
The purpose of this dissertation is to present novel compression algorithms for visual
and geometric data related to immersive technologies.

Firstly, I wish to express my sincere appreciation and my highest level of grat-
itude to Prof. Ioan Tabus, for all the strong guidance, advice and cooperation he
has provided regarding all theoretical and practical aspects of my studies during this
fruitful research period. Secondly, I wish to thank to Sebastian Schwarz from Nokia
Technologies, with whom I had the privilege to cooperate. Next, I wish to sincerely
thank Prof. Søren Forchhammer for acting as pre-examiner, Prof. Titus Zaharia for
acting as pre-examiner, and Prof. Simone Milani for acting as opponent.

I wish to express my gratitude to my colleague Emanuele Palma for his help-
ful, constructive and positive attitude which always enabled a peaceful and friendly
workplace atmosphere. Moreover, I am also deeply thankful to Pekka Astola, with
whom I had the privilege to work in the same office in my initial year and who also
provided guidance in several aspects regarding my studies. I would particularly like
to thank my parents and sister for their love and care. I am very grateful to Kari
Suomela and Virve Larmila for all the administrative, technical assistance and more
importantly for helping me master the Finnish language. Finally, I am very grateful
to all the wonderful people from all around the world that I shared the work envi-
ronment with, in the Computing Sciences Unit of the Faculty of ITC in Tampere
University.

iii

iv

ABSTRACT

The contributions of this thesis are new compression algorithms for light field im-
ages and point cloud geometry. Light field imaging attracted wide attention in the
recent decade, partly due to emergence of relatively low-cost handheld light field
cameras designed for commercial purposes whereas point clouds are used more and
more frequently in immersive technologies, replacing other forms of 3D represen-
tation. We obtain successful coding performance by combining conventional image
processing methods, entropy coding, learning-based disparity estimation and opti-
mization of neural networks for context probability modeling.

On the light field coding side, we develop a lossless light field coding method
which uses learning-based disparity estimations to predict any view in a light field
from a set of reference views. On the point cloud geometry compression side, we de-
velop four different algorithms. The first two of these algorithms follow the so-called
bounding volumes approach which initially represents a part of the point cloud in
two depth maps where the remaining points of the cloud are contained in a bound-
ing volume which can be derived using only the two depth maps that are losslessly
transmitted. One of the two algorithms is a lossy coder that reconstructs some of the
remaining points in several steps which involve conventional image processing and
image coding techniques. The other one is a lossless coder which applies a novel con-
text arithmetic coding approach involving gradual expansion of the reconstructed
point cloud into neighboring voxels. The last two of the proposed point cloud com-
pression algorithms use neural networks for context probability modeling for coding
the octree representation of point clouds using arithmetic coding. One of these two
algorithms is a learning-based intra-frame coder which requires an initial training
stage on a set of training point clouds. The lastly presented algorithm is an inter-
frame (sequence) encoder which incorporates the neural network training into the
encoding stage, thus for each sequence of point clouds, a specific neural network
model is optimized which is also transmitted as a header in the bitstream.

v

vi

CONTENTS

1 Introduction . 1

1.1 Motivation of the thesis . 1

1.2 Objectives of the thesis . 2

1.3 Outline of the thesis . 3

2 Preliminaries on Compression Methodologies 5

2.1 General Data Compression Concepts . 5

2.1.1 Dictionary-Based Methods . 5

2.1.2 Entropy Coding . 6

2.1.2.1 Context Coding . 7

2.1.2.2 Run-Length Encoding 8

2.1.3 Performance Evaluation for Lossy and Lossless Compression 8

2.2 Point Cloud Representation and Compression 10

2.2.1 Octree Representation . 11

2.2.2 An Initial Look at the Benchmark Datasets 12

2.2.3 Literature on Point Cloud Geometry Compression 15

3 Contributions to Light Field Disparity Estimation and Light Field Com-
pression . 19

3.1 Disparity Estimation from Light Field . 20

3.2 Lossless Light Field Coding Using Estimated Disparities 22

3.3 Experimental Results . 24

4 Contributions to Point Cloud Geometry Compression 29

4.1 Geometry Compression using Bounding Volumes 29

vii

4.1.1 Lossy Compression using Bounding Volumes 29

4.1.1.1 Quantization and Unquantization 37

4.1.1.2 Experimental Results 38

4.1.2 Lossless Compression using Bounding Volumes 40

4.1.2.1 Experimental Results 43

4.2 NNOC: Neural Networks and Octrees 46

4.2.1 Parallel NN execution and the fast model 50

4.2.2 Neural Network Structure and Training 51

4.2.3 Additional Details on NNOC and fNNOC Algorithms . . . 57

4.2.4 Experimental Results . 57

4.3 SeqNOC: Optimizing a CNN Model for Compressing a Sequence
of Point Clouds . 60

4.3.1 Experimental Results . 64

5 Conclusions and Summary . 67

References . 69

Publication I . 81

Publication II . 87

Publication III . 95

Publication IV . 103

Publication V . 111

List of Figures

2.1 Octree Representation. Occupied voxels and the nodes correspond-

ing to them (1-nodes) are shown in gray. 12

2.2 log2(Number of Points) vs. Resolution for the point clouds in Table

2.1 . 13

viii

2.3 Number of occurence of octets at 4 highest resolutions (r). Each row

corresponds to one point cloud. The rightmost column corresponds

to the octets at the final resolution of the respective point cloud (10

for phil and loot and 16 for stanford). 15

3.1 EPINET [79]method for disparity estimation from light fields. Dis-

parity map that corresponds to the center (highlighted) view is gen-

erated with a fully convolutional neural network that operates on

four stacks of input images collected from vertical, horizontal and

diagonal directions. 21

3.2 CEPINET is our variant of EPINET [79] that estimates the disparity

for the upper-left corner view of the light field. The original network

architecture is modified such that there are 3 input stacks. 21

3.3 Block diagram of the proposed LLFC encoder. Four corners and

center views of the light field are selected as reference views and the

corresponding color images are transmitted. For each reference view,

a disparity map is estimated and transmitted. A non-reference view

which is denoted target view is predicted using the reference views

and estimated disparities. Residuals to this prediction are transmitted

to ensure lossless compression. 23

3.4 Block diagram of the proposed LLFC decoder. Prediction of a tar-

get view is performed using five reference views and corresponding

disparity maps. A target view is losslessly reconstructed using the

corresponding residual. 24

3.5 Top Row: Warped corner reference views(From left to right: Upper-

left, upper-right, lower-left, lower-right corners.) Bottom Row, from

left to right: Warped center reference, best reference labels, predicted

target view, ground truth target view. 25

ix

3.6 Each row corresponds to a light field, from top to bottom: side-

board, bedroom, dino, herbs, bicycle, boxes and cotton. First col-

umn: EPINET (Center View) output disparity map. Remaining

columns: CEPINET (Upper-left, upper-right, lower-left, lower-right)

output disparity maps. 26

4.1 Overview of the proposed encoding scheme in the Lossy Bounding

Volumes (LBV) algorithm. 30

4.2 Projection of the input point cloud along the projection axis results

in front (middle) and back (right) view depth maps. 31

4.3 Initially, the input point cloud is decomposed into so-called tubes,

which are point clouds such that when traversed in a certain axis

called the sweeping axis, their 2D cross section binary occupancy

images contain at most one connected component each. 31

4.4 A two dimensional section of the main tube. 32

4.5 A two dimensional section of the main tube (same as in Fig. 4.4)

where the projected points are shown in green. 33

4.6 Green: Projected points. Blue: Points encoded by Primitive I. Gray:

Unoccupied locations in feasible region boundary. Pink: Feasible

region. 34

4.7 Green: Current Reconstruction after Primitive I. Red circles: An-

chor points. Purple: Points encoded at Primitive II. 34

4.8 Green: Current reconstruction after Primitive II. Yellow: Points en-

coded by Primitive A. 35

4.9 Light green: Current reconstruction at y = y0 after Primitive A.

Dark green: Some of the points reconstructed at the previous section

(y = y0− 1). Blue: Points reconstructed at Primitive III. 36

x

4.10 The main tube where points reconstructed at Primitive III are high-

lighted in red. 36

4.11 Left: Input point cloud. Center: Points at a single section (FN:

Missed points, CERV: Points reconstructed by CERV; P1, P2, PA,

P3: Points reconstructed by Primitives I, II, A, III). Right: Close up

view of the section. 37

4.12 Blue Curves: Bitrate vs number of reconstructed points obtained af-

ter individual stages of LBV (CERV, Primitives I,II,A,III). Orange

Curves: Bitrate vs number of reconstructed points when the same re-

constructions obtained after each stage are compressed with G-PCC.

. 37

4.13 Results obtained with the proposed Lossy Bounding Volumes (LBV)

scheme (pink) compared against the G-PCC baseline and trisoup codecs. 39

4.14 Quantization parameter q vs. encoding/decoding times of LBV for

longdress from Cat1A. 39

4.15 Shells of point clouds. For the point clouds in top row, all of the

points are contained in two shells. For the shiva point cloud (2nd

row), the structure of the inner shells is much more complex than

the former point clouds. 41

4.16 Encoding a shell in BVL. Encoding of the remaining shell points is

summarized in Algorithm 1. 42

4.17 Overview of NNOC. Encoding and decoding proceeds from low

resolution to high resolution. At every resolution r , the candidate

voxels P C
r obtained by upsampling the reconstruction at the pre-

vious resolution Pr−1 are traversed. Probability of occupancy of a

candidate voxel is estimated by a neural network based on a context

derived from current and past resolution information. 47

xi

4.18 Context extraction in NNOC. Green Tile: Candidate location cur-

rently being encoded/decoded. White Tiles: Locations already en-

coded/decoded with occupancy status 1. Black Tiles: Locations with

candidacy/occupancy status 0. Grey Tiles: Candidate locations that

are not yet encoded/decoded. Red squares: w×w context windows

surrounding the context region. © 2021 IEEE 49

4.19 Context extraction in fNNOC. Green Tile: Candidate location cur-

rently being encoded/decoded. White Tiles: Locations already en-

coded/decoded with occupancy status 1. Black Tiles: Locations with

candidacy/occupancy status 0. Grey Tiles: Candidate locations that

are not yet encoded/decoded. Red squares: w×w context windows

surrounding the context region. © 2021 IEEE 52

4.20 Structure of the Neural Network in NNOC. 52

4.21 Overview of the proposed SeqNOC point cloud sequence encoder. . 61

4.22 Encoding of a single frame in SeqNOC proceeds in a similar way to

NNOC where the current resolution voxel grid is swept along a so-

called sweeping dimension. Encoding of a 2D section of the current

resolution PC is achieved in four phases. The workflow in a single

phase is shown here. 63

List of Tables

2.1 Properties of Several Benchmark Point Clouds 13

2.2 Bitrates (bpov) obtained for benchmark point clouds, R: Resolution,

Np : Number of Points . 14

xii

3.1 Bits-per-pixel results for test samples for which ground truth dispar-

ities are available . 27

3.2 Bits-per-pixel results for the test samples 27

4.1 Average Rate [Bpov] results on point clouds from CAT1A 45

4.2 Average Rate for the first 200 frames for all sequences from MVUB

[44] and 8i [14] for the proposed BVL encoder compared to recent

codecs. 45

4.3 Average Rate [Bpov] results on point clouds from CAT1A 59

4.4 Ablation Study: Average Rate [Bpov] results on point clouds from

CAT1A . 59

4.5 Durations of encoding and decoding with NNOC and fNNOC . . . 60

4.6 Breakdown of durations of encoding and decoding with NNOC and

fNNOC (Per-frame average over the loot sequence) 60

4.7 Comparing Average Bitrates of SeqNOC (the default configuration)

with Other Recent Methods . 66

4.8 Bitrates [bpp], Encoding Times (te[s]) and Decoding Times (td [s])

for three different configurations of SeqNOC 66

xiii

xiv

ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

bpov bits per occupied voxel

BV Bounding Volumes

CL Codelength

CNN Convolutional Neural Network

G-PCC Geometry based Point Cloud Compression (Standardization
Process)

LBV Lossy Bounding Volumes

MLP Multi Layer Perceptron

MSE Mean Square Error

MVUB Microsoft Voxelized Upper Bodies

NN Neural Network

PC Point Cloud

PCC Point Cloud Compression

PSNR Peak Signal to Noise Ratio

V-PCC Video based Point Cloud Compression (Standardization Pro-
cess)

xv

xvi

ORIGINAL PUBLICATIONS

Publication I E. C. Kaya and I. Tabus. Corner view disparity estimation for
lossless light field compression. 2019 1st European Light Field
Imaging Workshop (ELFI). 2019.

Publication II I. Tabus, E. C. Kaya and S. Schwarz. Successive Refinement of
Bounding Volumes for Point Cloud Coding. 2020 IEEE 22nd
International Workshop on Multimedia Signal Processing (MMSP).
2020, 1–6. DOI: 10.1109/MMSP48831.2020.9287106.

Publication III E. C. Kaya, S. Schwarz and I. Tabus. Refining The Bounding
Volumes for Lossless Compression of Voxelized Point Clouds
Geometry. 2021 IEEE International Conference on Image Process-
ing (ICIP). 2021, 3408–3412. DOI: 10.1109/ICIP42928.2021.
9506767.

Publication IV E. C. Kaya and I. Tabus. Neural Network Modeling of Proba-
bilities for Coding the Octree Representation of Point Clouds.
2021 IEEE 23rd International Workshop on Multimedia Signal Pro-
cessing (MMSP). 2021, 1–6. DOI: 10.1109/MMSP53017.2021.
9733658.

Publication V E. C. Kaya and I. Tabus. Lossless Compression of Point Cloud
Sequences Using Sequence Optimized CNN Models. IEEE Access
10 (2022). DOI: 10.1109/ACCESS.2022.3197295.

xvii

https://doi.org/10.1109/MMSP48831.2020.9287106
https://doi.org/10.1109/ICIP42928.2021.9506767
https://doi.org/10.1109/ICIP42928.2021.9506767
https://doi.org/10.1109/MMSP53017.2021.9733658
https://doi.org/10.1109/MMSP53017.2021.9733658
https://doi.org/10.1109/ACCESS.2022.3197295

Author’s contribution

This study is conducted under the supervision of Prof. Ioan Tabus at the Comput-
ing Sciences Unit of Tampere University. The author contributed to all stages of
research and preparation of the enlisted publications. The author contributed to
development of concepts, to the proposal of original algorithms and methodology,
implementation of the proposed algorithms in C and Python environments, and to
evaluation of the proposed methods.

Publication I The author has contributed to the design and development of the
LLFC lossless light field image coding scheme. The author im-
plemented the coding scheme in Python environment. The au-
thor performed experiments to evaluate the performance of the
proposed codec, and contributed to the writing of the manuscript.

Publication II The author contributed to the design and development of the
LBV lossy point cloud compression scheme. The author was the
main contributor to the implementation of the coding scheme in
C environment. The author performed experiments to evaluate
the performance of the proposed codec, and contributed to the
writing of the manuscript.

Publication III The author contributed to the design and development of the
BVL lossless point cloud compression scheme. The author was
the main contributor to the implementation of the proposed scheme
in C environment. The author performed experiments to eval-
uate the performance of the proposed codec, and contributed to
the writing of the manuscript.

Publication IV The author has contributed to the design and development of the
NNOC lossless point cloud coding scheme. The author was the
main contributor to the implementation of the coding scheme
in Python environment. The author performed experiments to
evaluate the performance of the proposed codec, and contributed
to the writing of the manuscript.

xviii

Publication V The author has contributed to the design and development of Se-
qNOC lossless point cloud sequence compression scheme. The
author was the main contributor to the implementation of the
coding scheme in Python environment. The author performed
experiments to evaluate the performance of the proposed codec,
and was the main contributor to the preparation of the manuscript.

xix

xx

1 INTRODUCTION

In this chapter, we introduce the motivation behind this study and we present the
objectives in Publications I to V, and finally we provide an outline of the structure
of this thesis.

1.1 Motivation of the thesis

Immersive technologies aim to create virtual worlds for us to experience or to ex-
tend our perception of reality. Defining immersion is not an easy task and it relates
to one’s subjective senses of being surrounded which is certainly not limited to the
visual experience [3]. Several concepts that are closely related to immersive technolo-
gies include augmented reality, virtual reality, mixed reality, holography, volumetric
video, telepresence and digital twin applications. A few decades ago, such technolo-
gies were merely considered as sci-fi visions. In recent years however, immersive
technologies started to attract a wide audience and for some of us they have already
become a part of the daily life through consumer products such as VR glasses.

In immersive technologies, transmission of 3D geometry of objects in real-time
is essentially important. Since a few decades, 3D geometry of objects is represented
with triangular meshes [48, 63, 73] whereas, recently, point clouds also proved to
be an efficient means of representing the 3D geometry. Point clouds are useful for
augmented and virtual reality applications such as telepresence [47, 88], volumetric
video [75], self-driving vehicles [1, 38], 3D printing [59] and digital preservation of
cultural heritage assets [64].

1

1.2 Objectives of the thesis

The main objective of this thesis is to develop compression algorithms for point
cloud geometry and light field images which are two types of immersive data. Our
approach leverages the well established image compression paradigms whereas it also
aims to build upon the more recently introduced learning-based methods which
prove to be successful in several tasks related to computer science and computer
vision. In addition to the aim of contributing to academic knowledge, we aim to
develop software complying with practical considerations. In the following, we
summarize our objectives in each publication. The publications are numbered in
chronological order according to respective submission dates.

• Publication I. Redundancy in light field images can be efficiently represented
by the usage of disparity maps. For compression purposes, it is valuable to
describe the scene geometry through various disparity maps corresponding to
different views of the scene. In Publication I, our first objective is to develop
a disparity estimation method for the corner views of a light field image by
building upon an existing learning-based scheme which was proposed recently.
Secondly, we build a lossless light field image coder that makes use of disparity
map estimation at five view points.

• Publication II. In certain real-life usage cases of point clouds such as telepres-
ence, geometry of a human’s body is represented using point clouds. For such
point clouds, most of the points can be represented in two depth maps ob-
tained by projecting the point cloud in opposite directions on a certain axis.
In Publication II we develop a method which utilizes projections to gener-
ate depth maps. The points represented in the depth maps are used to define
what we call a bounding volume which provides us anchors to represent encode
the remaining points in an efficient manner. The proposed method builds
upon the well established depth map and image compression techniques to
obtain perceptually plausible lossy reconstructions having competitive rate-
distortion performance and running times.

• Publication III. In this publication, we follow the bounding volume approach
which was proposed in Publication II and develop a lossless point cloud com-
pression method dubbed BVL. BVL treats a point cloud as a combination of

2

what we call shells where each shell is a point cloud that is efficiently encoded
using depth map compression combined with a novel context arithmetic cod-
ing scheme that iteratively expands into the neighboring locations of the depth
map points. Achieving lossless compression is the main objective which re-
quires the proper treatment of all possible arrangements of points in a voxel
grid, unlike the lossy compression scenario in Publication II.

• Publication IV. Computer science community witnessed the strong success
of machine learning in most topics of research in the recent decade and data
compression was no exception. On the other hand, octree representation has
been extensively used for point cloud compression since around fifteen years.
In Publication IV, our objective was to develop a machine learning scheme
dubbed NNOC with a novel octree-based context coding approach which
yielded better compression rates than existing coding schemes.

• Publication V. The NNOC scheme proposed in Publication IV was comparing
favorably with the other learning-based approaches whereas it was aiming at
single point cloud compression although in many usage scenarios one is inter-
ested in compression of dynamic (i.e. sequences of) point clouds. Moreover
it had its own limitations arising from its learning-based nature. In Publica-
tion V we aimed to develop a lossless sequence (of point clouds) compression
scheme which incorporates the well studied neural network optimization tech-
niques as part of the encoding stage without necessiating a long preliminary
training phase which is typical in learning-based approaches. The results are
competitive in both bitrates and encoding/decoding times.

1.3 Outline of the thesis

This dissertation is structured in the following way. In Chapter 2, background infor-
mation on the compression methodologies that are referred to in the later chapters of
the dissertation are conveyed. In Chapter 3, contributions to depth estimation and
lossless light field compression in Publication I are presented. In Chapter 4, contri-
butions to lossy and lossless compression of point cloud geometry in Publications
II, III, IV and V are presented. Finally, In Chapter 5, the conclusions and summary
of the dissertation are presented.

3

4

2 PRELIMINARIES ON COMPRESSION

METHODOLOGIES

This chapter provides the relevant technical background for the subsequent chap-
ters which are devoted to describe the main contributions in the thesis. Section 2.1,
describes the relevant concepts that are common to all fields of data compression.
Section 2.2, describes the octree representation of point clouds and reviews the liter-
ature related to point cloud compression.

2.1 General Data Compression Concepts

In this section, we shall overview some of the basic data compression concepts which
are not specific to any type of data. These concepts are relevant for understanding
the methods that we describe in the contribution chapters as well.

2.1.1 Dictionary-Based Methods

In computer science terminology, dictionary is an unordered set of unique key-value
pairs. In dictionary-based compression, the idea is to substitute pieces of data with
keys (codewords) that take up less storage space than the data itself. A dictionary is
called static, semi-adaptive or adaptive based on whether it changes while the input
is being processed or not. A static dictionary can be preferable when there is prior
knowledge about the data. For instance, if the compressor is going to be used to
compress only texts written in English, a meaningful strategy would be to assign
the shortest codewords to the most frequent words in English [92]. If there is no
prior information about the data, i.e. if we want to have a generic compression tool,
adaptive dictionary is the most preferable choice. In this approach, the encoder and
the decoder should be able to construct the same dictionary on the fly, i.e. while

5

processing the data.
Most of the adaptive dictionary-based methods that are currently in widespread

use are variants of two methods called LZ77 and LZ78 which are also referred to as
the Lempel-Ziv Algorithms [99, 100].

2.1.2 Entropy Coding

Data Compression has its theoretical roots in information theory. Information the-
ory is a branch of probability theory that mainly originates from the seminal works
of C.E. Shannon [78]. In information theory, entropy is a measure of how much we
are uncertain about the possible outcomes of a probabilistic data source. The higher
is the entropy of the source, the lower are our chances to compress the generated
data. Thus, entropy establishes an upper limit to how much compression can be
achieved with a certain probabilistic model of the data source. A group of methods
in lossless compression which are called entropy coding methods aim to get as close
as possible to the limit dictated by the entropy.

One notable example of entropy coding is Huffman coding [32], where one con-
structs a prefix-free code having optimal codeword lengths for each symbol based
on its probability of occurrence. The optimal value for the codeword length of a
symbol is calculated from its probability p of occurence as −l o g (p). This optimal
value is, in general, a real number whereas length of a codeword can only take integer
values.

Arithmetic coding [72] is the most efficient entropy coding approach, which in-
stead of assigning codewords to individual symbols, partitions the 0 to 1 probability
interval, corresponding to all possible outcomes, into probability intervals assigned
to sequences of symbols. Thus, instead of having a codeword that uniquely rep-
resents a symbol, the encoding of the entire signal results in a single floating point
number between 0 and 1 that corresponds to a probability interval uniquely assigned
to one of all the possible sequences (signals) that can be generated by the data source.
The more probable the sequence is to be generated by the data source, the larger the
probability interval assigned to it and the less number of bits are needed in the final
floating point number written to the bitstream to distinguish it from other intervals
corresponding to other possible sequences.

We cannot emphasize enough that entropy tells something about a certain prob-

6

abilistic model that we devise and use to explain the data, rather than the data itself.
Entropy coding can yield the best outcome for that particular model which on the
other hand might be inferior to many other possible models that could have been
used instead. With the discovery of entropy coding, the real challenge in modern
data compression has became to design powerful probabilistic models which yield
low entropy.

2.1.2.1 Context Coding

An important advantage of arithmetic coding is that it is not restricted to fixed prob-
abilities as in Huffman coding. In other words, the probability of encountering a
symbol can be defined as a function of the neighboring symbols rather than a con-
stant. This enables us to design more realistic probabilistic models. In the most
general sense, context is the surroundings of something. One can define context for
various types of data in various ways. For a text, context of a word can be a func-
tion of the words that occur in the same sentence or paragraph. Similarly, in a raster
image, neighboring pixels can serve as a context for each other.

In arithmetic coding, as in many other coding frameworks, the bitstream is tra-
versed (written and read) by the encoder and the decoder in the same order. When
the encoder and the decoder are at the same part of the bitstream, the already en-
coded parts of the data are identical to the already decoded parts of the data. These
already encoded/decoded parts are past inputs for the encoder and they are available
to both the encoder and the decoder. On the other hand, the not yet encoded/de-
coded parts of the data are not available to the decoder and they are the future inputs
for the encoder. A context that is to be utilized in arithmetic coding has to be causal
in the sense that it is defined using the past inputs of the encoder only (not the future
inputs, since they are not available to the decoder).

In context coding, the goal is to estimate the conditional probability P (X |C) of
occurrence of a symbol X given its context C . In many classical approaches [2, 71,
82, 94], the estimation of conditional probabilities is achieved by collecting statistics
from the input data by the encoder and the decoder in synchrony. This adaptive strat-
egy has the disadvantage that, at the beginning of encoding/decoding, the estimates
are based on a small number of observations hence they might be inaccurate. More-
over, collection of statistics requires keeping of frequency tables containing entries
for each possible context. This requirement puts a limit to the maximum number

7

of possible contexts due to memory limitations. If the size of the context window
(template) is set to be very large, number of possible contexts also becomes large
and the probability of observing any of the contexts decreases. As a result of this,
the estimations based on the collected statistics become inaccurate. This is referred
to as the context dilution problem. One possible solution to the context dilution
problem is to apply context quantization [7, 17, 89, 93] where similar contexts are
classified into a set of classes.

2.1.2.2 Run-Length Encoding

In certain cases, there are prior information available about the data which can be
used to improve the compression performance significantly. Run-Length Encoding
is a good option when the data is a string which is known to contain large blocks
of repeated characters. In that approach, the string is first expressed as a series of
integers each representing a character and the number of times it repeats. The in-
tegers can then be efficiently compressed using an entropy coding scheme such as
Golomb-Rice Coding.

2.1.3 Performance Evaluation for Lossy and Lossless Compression

Lossless compression methods perfectly reconstruct the original input data. In loss-
less compression, the goal is simply to reduce the bitrate and one can express the
compression performance with a single number which is generally referred to as bi-
trate. When the compression performance of the lossless case is not satisfactory, one
can resort to lossy compression.

In lossy compression, performance evaluation is more complex. The goal is to
reduce the bitrate while keeping the output reconstruction as similar to the input
data as possible. The degree of similarity between the original data and the recon-
struction is quantified in dB scale. dB expresses the ratio of the power of one signal
to the power of another signal. In lossy compression, the intention is to measure the
similarity of the output signal to the input (reference) signal. The degree of similarity
between the two signals is quantified in dB scale where the ratio is taken between the
power of the reference signal and the power of the error between the reference and
the non-reference (output, reconstructed) signal. The error between two signals can
be computed in many ways. One frequently used error function is the mean square

8

error (MSE) which is defined for a reference signal xr and a non-reference signal xn r

as

MSE(xr , xn r) =
1

nr

nr
∑︂

ir=1

(xr (ir)− xn r (in r (ir)))
2, (2.1)

where nr is the number of data points in the reference signal, ir is an index associated
with the reference signal and in r (ir) is an index associated with the non-reference
signal. One needs to define the function that associate in r and ir . For example,
considering point cloud compression, the reference signal xr can be chosen as the
original (input) point cloud and xn r can be the output of a lossy compression algo-
rithm. If the metric for associating the points in the two point clouds is chosen as
the euclidean distance d (p1, p2) between points p1 and p2, in r (ir) would be

in r (ir) = argmin
i

d (xr (ir), xn r (i)) (2.2)

where

d (p1, p2) =
⌜

⃓

⎷

∑︂

c∈(x,y,z)

(p1
c − p2

c)2 (2.3)

and px , py , pz are the x,y,z coordinates of a point p.
Considering that the error between the two signals is defined as MSE(xr , xn r),

the similarity between xr and xn r is computed as

PSNR(xr , xn r) = 10 · log10(
X 2

r,max

MSE(xr , xn r)
), (2.4)

where Xr,max is the maximum value the reference signal xr can take. If xr is a vox-
elized point cloud having resolution R bits per dimension, Xr,max is 2R− 1. PSNR
is one way to quantify how much a signal is distorted, has undergone an unwanted
change. Note that, the value of the P SN R(xr , xn r) computed by (2.4) depends on
which of the two signals is chosen to be the reference signal xr . Therefore it is not
symmetric,

PSNR(xr , xn r) ̸= PSNR(xn r , xr). (2.5)

For measuring the distortion for evaluating lossy compression, it is desirable to use
a symmetric measure. A commonly used distortion measure for point clouds is the

9

D1 metric [83, 95] which is defined as

D1(Pi ,Po) =min(PSNR(Pi ,Po),PSNR(Po ,Pi)) (2.6)

such that PSNR is computed as in (2.4) once by taking the original (input) point
cloud Pi as the reference signal and once by taking the output point cloud (recon-
struction)Po as the reference signal. Note that, here, the word metric is not used in
the strict mathematical sense but it is used only to be consistent with the common
usage in the literature for D1. Plotting a distortion measure such as D1 versus the bi-
trate one obtains a so-called rate-distortion curve. Rate-distortion curve characterizes
the compression performance of a compression algorithm in an objective manner.

2.2 Point Cloud Representation and Compression

A point cloud is an unordered set of three dimensional points possibly having at-
tributes such as color and surface normals. The coordinates of the points can in
general take any real value. These real values may correspond to actual physical dis-
tances if the point cloud is obtained through a physical measurement process such
as LIDAR. On the other hand, a point cloud may also represent a purely virtual
entity such as a 3D model created by an artist. In any case, in this unconstrained
form, where the coordinates can take any real value, point clouds are not computer-
friendly. Therefore, a process called voxelization is employed, which maps the coor-
dinates to integers in the [0,2r) interval where r is an integer specifying the resolu-
tion of the output voxelized point cloud. Depending on how densely the 3D space is
initially populated by the points, this mapping may result in multiple points being
mapped to the same voxel. Since more than one points having the same coordinates
are redundant, it is customary to remove the duplicate points after voxelization. It
is possible to voxelize a point cloud without generating any duplicate points by se-
lecting the resolution sufficiently high.

Point cloud compression can be divided into subtopics as geometry compression
and attribute compression according to which part of the data is being compressed.
Geometry compression deals with compression of the 3D coordinates only, whereas
attribute compression deals with attributes of points such as their normals and col-
ors. According to whether the data is a single point cloud or consisting of multiple

10

frames (a sequence of PCs), it can be called static or dynamic point cloud compres-
sion. In this thesis, we deal with both static (single frame) and dynamic (multi frame)
geometry compression.

2.2.1 Octree Representation

Octree or 8-ary tree is a rooted tree where each node has at most 8 children. A vox-
elized point cloud can be efficiently represented with an octree having depth equal
to the bits-per-dimension resolution of the point cloud [46].

Suppose the point cloud is fully contained in a 2r×2r×2r voxel grid where r is the
bits-per-dimension resolution of the point cloud. By downsampling the point cloud
by 2, as (x, y, z)→ (⌊x/2⌋, ⌊y/2⌋, ⌊z/2⌋), one obtains the one step lower resolution
version of the point cloud. Here we assumed that x, y, z ∈ {0, . . . , 2r − 1}. This
coarser point cloud lives in a 2r−1 × 2r−1 × 2r−1 voxel grid, hence its resolution is
r − 1. Downsampling can be applied further until obtaining a 1× 1× 1 grid thus a
single voxel.

One voxel being occupied in resolution r̂ − 1, where 0 < r̂ <= r , corresponds
to 8 possibly occupied voxels in resolution r̂ . This relationship is represented in
the octree as an internal node having 8 children in the one step higher depth level.
Every node in a depth level r̂ of the tree corresponds to a voxel in the voxel grid with
resolution r̂ , where the binary value assigned to the node denotes the occupancy of
the voxel. For convenience, we shall refer to the nodes having value 0 and 1 as 0-nodes
and 1-nodes, respectively. The 0-nodes which represent the unoccupied voxels do not
have any children nodes because they are already known to be 0-nodes, as well. An
example octree and corresponding voxel grids are depicted in Fig. 2.1.

Octree representation is frequently used in point cloud compression [15, 18, 19,
20, 35, 36, 68]. The simplest lossless point cloud compression algorithm based on
octree representation can be devised in the following manner. The entire octree
constructed for a point cloud can be represented in a bitstream consisting of octets
(8 bit portions) where each octet corresponds to 8 children of a 1-node. The octree
bitstream has a length C Loc t =N1×8 where N1 is the total number of 1-nodes with
children.

11

Figure 2.1 Octree Representation. Occupied voxels and the nodes corresponding to them (1-nodes) are
shown in gray.

2.2.2 An Initial Look at the Benchmark Datasets

Several benchmark datasets are proposed to assess and compare the performances of
different methods as part of the standardization processes conducted by MPEG and
JPEG such as 8i Voxelized Full Bodies [14] and Microsoft Voxelized Upper Bodies
(MVUB) [44] datasets. In Table 2.1, a list of 10 point clouds from benchmark datasets
are provided. In Fig. 2.2, the numbers of points obtained at lower resolutions when
each of these point clouds are downsampled are plotted in log2. From Fig. 2.2, it is
observed that, at resolutions between 2 to 10, the curves are close to linear suggesting
that the number of points are increasing exponentially in that interval. On the other
hand, at resolutions higher than 10 bits/dimension, the number of points increase
at a much slower pace, suggesting that the higher resolution point clouds are much
more sparse.

Applying the basic octree-based compression scheme described in Section 2.2.1,
to benchmark point clouds, we obtain bpovoc t ’s in Table 2.2. In order to exemplify
the efficiency of the octree representation, note, for instance, redandblack has 10 bit-
s/dimension, thus without any compression applied, it can be stored by consuming
3× 10 = 30 bits for each point, in other words, the point cloud has a bitrate of 30
bits-per-occupied-voxel [bpov] in its raw form. Octree bitrate obtained for this point
cloud (according to Table 2.2) is around 3 bpov, hence, by simply using the octree
representation one is able to compress this particular point cloud roughly 10 times
already.

An octet is an 8-bits piece of information so it can take 28 = 256 different val-
ues. In an octree, since the all-zero octet cannot appear, there are 255 possible val-

12

Table 2.1 Properties of Several Benchmark Point Clouds

Point Cloud Dataset Resolution Approx. Nr. of Points

Phil MVUB 10 1.66M

Ricardo MVUB 10 0.96M

Sarah MVUB 10 1.36M

Loot 8i 10 0.81M

Redandblack 8i 10 0.76M

Longdress 8i 10 0.86M

House-without-roof-00057 Cat 1-B 12 4.85M

Shiva-00035 Cat 1-B 12 1.01M

Facade-00015 Cat 1-A 14 8.91M

Stanford-Area-2 Cat 1-C 16 47.06M

Figure 2.2 log2(Number of Points) vs. Resolution for the point clouds in Table 2.1

13

Table 2.2 Bitrates (bpov) obtained for benchmark point clouds, R: Resolution, Np : Number of Points

Point Cloud R Np bpovoc t bpovH

Phil 10 1.66M 2.5417 2.0086

Ricardo 10 0.96M 2.4949 1.9270

Sarah 10 1.36M 2.5260 1.9641

Loot 10 0.81M 2.9828 2.3357

Redandblack 10 0.76M 3.0056 2.4040

Longdress 10 0.86M 2.9899 2.3336

House-without-roof 12 4.85M 9.9892 6.3488

Shiva-00035 12 1.01M 19.6640 10.0627

Facade-00015 14 8.91M 17.5234 9.2316

Stanford-Area-2 16 47.06M 26.3682 12.7442

ues. Thus, it can be formulated as a source having an alphabet with 255 symbols.
The probability of occurence of each of these symbols can be estimated in the sim-
plest way by counting their numbers of occurences and dividing these with the total
number of octets. Note that, in this estimation, we do not make use of any possible
dependencies among the neighboring octets hence they are independent probabili-
ties. Using these independent and fixed probabilities, one can estimate an entropy
Hr for each resolution level r . Hr ’s estimated with independent probabilities estab-
lish a lower bound for the average codelength that can be obtained with an entropy
coding method that can make use of these fixed probabilities such as Huffman Cod-
ing. Using Hr ’s, we estimate a theoretical bpovH for encoding a point cloud with
resolution R having Np points as,

bpovH =
1

Np

R
∑︂

r=1
Hr ∗Noc t ,r (2.7)

where, Noc t ,r is the number of octets at depth level r in the octree representation
of the point cloud. bpovH ’s obtained for the selected benchmark point clouds are
presented in Table 2.2.

The numbers of occurences of 255 unique octets at the 4 highest depth levels for
3 different point clouds (Phil, Loot, Stanford-Area-2) are presented as histograms in

14

Figure 2.3 Number of occurence of octets at 4 highest resolutions (r). Each row corresponds to one
point cloud. The rightmost column corresponds to the octets at the final resolution of the
respective point cloud (10 for phil and loot and 16 for stanford).

Fig. 2.3 where the estimated entropies (H) are also given for each of the histograms.
From Fig. 2.3, it is observed that Stanford-Area-2 is much more sparse when com-
pared to the other two point clouds. Moreover, for stanford, only a few octet con-
figurations (out of 255 possible configurations) are encountered at the highest depth
levels of the octree. As a result of this, the entropy estimated with independent prob-
abilities is significantly lower than the entropies at the lower resolutions.

2.2.3 Literature on Point Cloud Geometry Compression

Point cloud compression (PCC) has been an active area of research in the recent
years. Also, two standards have been developed, namely G-PCC [23], and V-PCC
[33]. In a recent survey, Cao et al. [9] (2019) provide an extensive walkthrough over
the existing methods until that time. A more recent comprehensive survey is in [10].
Quach et al. [65] provide a general overview of the topic with a focus on the learning-
based methods. In this section we shall overview some of the most prominent works
in the field.

Gumhold et al. [26] construct predictive trees through one dimensional traversal
of the points, in which the nodes are associated with points in point cloud where the

15

neighboring points correspond to nodes connected with a single edge. The encoding
of the trees is achieved with arithmetic coding. Merry et al. [49] employ a similar
predictive tree approach with better heuristics.

Although the definition of point cloud does not necessitate that the points are dis-
tributed in the 3D space as a 2D manifold, most point clouds which are of practical
interest, possess such a manifold like structure. Therefore, it is feasible to decom-
pose a point cloud into 2d patches and apply the well established 2d compression
techniques on those patches. Many methods in the literature employ patch genera-
tion [58, 77, 96].

Octree representation, which is described in detail in Section 2.2.1, has been in-
troduced in early 1980s [46] as a geometric modeling technique for arbitrary 3-D
objects. It was utilized in a point cloud compression scheme for the first time in
2006 [74]. Several point cloud compression methods adopt octree representation
[15, 18, 19, 20, 35, 36, 68]. In [35], exclusive disjunction operator (XOR) is em-
ployed for differential encoding of octrees corresponding to consecutive frames of
a point cloud sequence. In another inter-frame octree-based scheme, de Queiroz et
al. [69] define the context through distances of voxels to occupied voxels in a refer-
ence frame. Garcia and de Queiroz [20], apply arithmetic coding with context and
Lempel-Ziv-Welch (LZW) algorithm [90] (a Lempel-Ziv [100] variant) on the octree
representation. More recently, Garcia et al. [18] propose a multiple context octree
coding method in which, a reference octree is used as a reference to encode the cur-
rent octree and the resulting frequency histogram is viewed as a discrete 3D surface
and is encoded using another octree.

As a notably different approach than the octree-based methods, Peixoto [62] pro-
poses to recursively apply dyadic decomposition. In this approach, a so-called silhou-
ette image of the input point cloud is obtained by sweeping the point cloud along a
user-defined axis and this image is encoded in a context adaptive binary arithmetic
coding scheme. After that, the point cloud is split into two where each of the result-
ing point clouds are processed using the silhouette image obtained from their parent
point cloud as a 2d-mask telling which locations are known to be unoccupied. The
procedure is recursively applied to each of the newly obtained children point clouds
where the silhouette of the previously encoded children serve as a context for the
currently encoded ones. In Silhouette 4D [61], the dyadic decomposition based ap-
proach in [62] was extended into dynamic point clouds (sequences of point clouds).

16

In [70], Ramalho et al. develop a context selection preprocessing stage for the Silhou-
ette 4D coder. Focusing on a certain type of point cloud such as humanoid avatars,
one might benefit from the appropriate usage of a specific representation such as the
skeleton model representation of the human body for efficent motion estimation as
done in [11].

In recent years, the majority of methods for several types of processing of point
clouds involved machine learning [8, 13, 24, 41, 42, 43, 87, 97, 98]. In particular,
learning-based schemes started to prove successful in compression of point cloud ge-
ometry [4, 25, 30, 37, 45, 50, 51, 55, 56, 67, 85]. In OctSqueeze [30], a tree-structured
entropy model, consisting of several MLP stages, is employed to encode the octree
representation of LIDAR point clouds. Quach et al. [66] propose a 3D convolu-
tional autoencoder architecture for extracting latent representations for the input
point cloud which is then quantized to yield competitive lossy compression results.
Guarda et al. [25] propose the PCG-AE scheme which employs autoencoders to ex-
tract latent representations from 3D blocks of point clouds which are encoded with
entropy coding. Milani [50] proposes a convolutional autoencoder scheme that ap-
plies the principles of distributed source coding to deep representations of voxelized
point cloud geometry. In [51], the distributed source autoencoder approach in [50]
is further developed and enhanced with an adversarial training strategy. In [91], rate-
distortion optimization is achieved through an end-to-end learned analysis-synthesis
transform pair combined with an adaptive decomposition stage. Wang et al. [86]
employ a variational autoencoder scheme for lossy geometry compression. In Vox-
elContextNet [68] a deep neural network, consisting of several 3D convolutional
stages followed by several fully connected stages, is employed to predict probability
distributions from a local 3D "voxel context".

In VoxelDNN [55], 3D masked convolutions are employed to enforce causality
in the context. The input of the deep convolutional neural network is a fixed size
block of voxels and the network predicts occupancy probabilities for all of the voxels
in the block. VoxelDNN achieves competitive lossless bitrates for MVUB [44] and
8i [14] datasets. More recently, a fast and less accurate version of VoxelDNN called
MSVoxelDNN [57] is proposed. In MSVoxelDNN, voxels are grouped in a certain
way and their occupancies are fed to the network in parallel such that some of the
context information is sacrified for speed.

17

18

3 CONTRIBUTIONS TO LIGHT FIELD

DISPARITY ESTIMATION AND LIGHT FIELD

COMPRESSION

In this chapter, the contributions to light field processing are presented. The con-
tributions in Publication I are two-folded. In Section 3.1, we focus on disparity es-
timation from light field images. In Section 3.2, we present the lossless light field
compression method dubbed LLFC, which uses a set of reference views and corre-
sponding estimated disparities to predict any view in a light field image.

Disparity estimation is a widely studied problem in computer vision with count-
less practical application cases. Disparity estimation can be performed on different
types of data such as single images (monocular) [22], stereo images [6] or light field
images [60]. Our mammalian brains perform depth estimation from the stereo im-
age pair generated in our eyes involuntarily whenever our eyes are open in a suf-
ficiently illuminated environment. Thanks to our built-in depth estimation algo-
rithm, we perceive the surrounding objects as three dimensional entities. Whether
it is human eyes or stereo cameras, depth estimation process is based on the disparity
of objects, which is the location difference of the same object in the two images. The
disparity of the object is related to its depth via camera parameters such as baseline
distance (the distance between two cameras) and focal length of the camera. There-
fore, for a setup with known camera parameters, depth estimation problem reduces
to disparity estimation. For this reason, depth estimation and disparity estimation
are the two terms that may be encountered in the literature when referring to the
same problem.

Light field image compression has also been an active area of research in recent
years [5, 12, 16, 28, 29, 39, 40, 80]. Light field images are considered to be highly re-
duntant when compared to other types of visual data. The redundancy in light field

19

images can be efficiently represented with the so called Epipolar Plane Images (EPI).
For this reason, several light field compression algorithms adapt the EPI approach
[31, 53, 54].

3.1 Disparity Estimation from Light Field

Disparity is the distance between the positions of corresponding pixels in two images
of a scene which are obtained from different view angles. In the context of light
fields, the term disparity may sound ambiguous since there are more than two views.
Therefore, when speaking about disparity in light fields, one should also mention
between which two views the disparity is being measured. Notable works related to
light field disparity estimation in recent years include [34, 79, 84].

In this chapter, we build on a learning-based disparity estimation scheme for light
fields called EPINET [79]. It is a supervised learning-based scheme in which the
parameters of the model are tuned based on the error between the estimated dis-
parity and the ground truth disparity provided in the training dataset. Therefore,
the disparity output by the model is to be interpreted according to how the ground
truth disparities are defined. As its name implies, EPINET employs EPI approach.
EPINET [79] is trained on a synthetic dataset called 4D Light Field Benchmark
(HCI) [27] which features ground truth disparities. For HCI data, the disparities
provided for one view are the differences with respect to the closest right horizontal
neighbor view. HCI dataset features a very idealized 4D light field representation
unlike the actual light fields produced by light field cameras such as Lytro cameras
[21]. The main advantage of using a synthetic dataset is the availability of very accu-
rate ground truth disparities. On the other hand, it should be noted that the actual
light field images are quite different than the HCI images in terms of the positioning
of the viewpoints with respect to each other and in terms of the visual qualities.

EPINET is summarized in Fig. 3.1. It is a deep multistream fully convolutional
network. The first stage of the network consists of structurally identical convolu-
tional blocks devoted to each of the input stacks. In the first stage, there are six 2×2
convolutional layers each with 70 filters for each of the stacks. Outputs of the 1st
stage are concatenated to yield a stack of convolutional features with 280 channels.
The 2nd stage consists of 15 convolutional layers (2× 2) each with 280 filters and a
2× 2 convolutional layer with a single channel output at the end.

20

Figure 3.1 EPINET [79] method for disparity estimation from light fields. Disparity map that corresponds
to the center (highlighted) view is generated with a fully convolutional neural network that
operates on four stacks of input images collected from vertical, horizontal and diagonal direc-
tions.

Figure 3.2 CEPINET is our variant of EPINET [79] that estimates the disparity for the upper-left corner
view of the light field. The original network architecture is modified such that there are 3 input
stacks.

Since the EPINET structure is not directly applicable to the corner reference
views, in Publication I, we propose the corner variant CEPINET that operates on
three stacks of input as shown on Fig. 3.2. The structure of CEPINET differs in
that it has 3 input streams instead of 4 and since after concatenation there are 210
feature maps, the number of filters in the 2nd stage is 210 (instead of 280). In Fig.
3.2, the disparity estimation is exemplified with the upper-left corner view whereas
one is able use the same network (having the same weights) to estimate the disparity
for all four corner views by applying the appropriate rotations.

21

3.2 Lossless Light Field Coding Using Estimated Disparities

In Publication I, we propose a lossless light field image compression method called
LLFC. The key ingredient in LLFC is the learning-based disparity estimation scheme
that estimates disparities for corner and center reference angular views using EPINET
[79] and CEPINET models described in the previous section. The estimated dispar-
ities and the corresponding reference view color images are losslessly compressed
and transmitted. Using the corresponding disparity map, one can warp a reference
view to any target view. All of the non-reference (target) views are reconstructed by
performing a prediction using the warped reference view color images.

An overview of LLFC encoding and decoding schemes is presented in Fig. 3.3
and 3.4, respectively. At the encoder side, referring to Fig. 3.3, five reference views
are selected from the input light field; four of them being the corner views and one
being the center view. Center view disparity map is estimated using EPINET and
corner view disparities are estimated using CEPINET. The five reference disparity
maps and the corresponding five reference color images are encoded with JPEG2000.
Next, the operations that are shown inside the red box in Fig. 3.3 are repeated for
each target view that we want to encode. Each of the reference view color images
are warped to the target view resulting in warped reference view color images IW ,r

where r is the reference index. Out of the five reference disparity maps, the one that
is closest (in euclidian distance over the angular plane) to the target view is picked
and it is warped to the target view. This warped reference disparity is quantized
and divided into connected components. Each connected component is assigned
a best reference label which are marked in a Best Reference Labels Image IB . Let
C Ci denote the group of pixels that belong to the i ’th connected component and let
M SEC Ci

(IW ,r , IT) denote the mean square error computed over C Ci between the
target view ground truth color image IT and the warped reference view color image
IW ,r obtained from the r ’th reference view. Best reference label of all pixels in C Ci

is the reference index r that minimizes the aforementioned MSE, hence,

IB (x, y) = argmin
r
(M SEC Ci

(IW ,r , IT)), ∀(x, y) ∈C Ci (3.1)

where IB (x, y) can take 5 different values. IB can be compressed by either a generic
lossless image compression method such as JPEG2000 or a more suited compression

22

Figure 3.3 Block diagram of the proposed LLFC encoder. Four corners and center views of the light
field are selected as reference views and the corresponding color images are transmitted.
For each reference view, a disparity map is estimated and transmitted. A non-reference view
which is denoted target view is predicted using the reference views and estimated disparities.
Residuals to this prediction are transmitted to ensure lossless compression.

method such as CERV [81]. The results with CERV are slightly better when com-
pared to the JPEG2000 case. Here we present experimental results obtained by com-
pressing IB with CERV. In Publication I, results for compressing IB with JPEG2000
are also available. A prediction for the target view color is constructed by combin-
ing the parts from the warped reference images IW ,r according to IB resulting in the
prediction image Î T which can be formally expressed as,

Î T (x, y) = IW ,IB (x,y)(x, y). (3.2)

Since Î T is a lossy reconstruction of IT , we also need to compress the residual for
all target views in order to achieve lossless compression.

The decoding scheme is much simpler as seen from Fig. 3.4. Initially, the refer-
ence color images and disparity maps are decoded. For decoding a target view, ref-
erence color images are warped to obtain IW ,r ’s which are used in conjunction with
the IB of the target to perform the prediction expressed in (3.2). Finally, residual of
the target is added.

In Fig. 3.5 are shown the warped reference views, corresponding best reference

23

Figure 3.4 Block diagram of the proposed LLFC decoder. Prediction of a target view is performed using
five reference views and corresponding disparity maps. A target view is losslessly recon-
structed using the corresponding residual.

labels, prediction and ground truth for a particular target view. Warped reference
view color images contain empty regions (shown in black). The prediction step ex-
pressed in (3.2) combines the information available from all reference views such that
eventually there are no empty regions in the predicted target view.

3.3 Experimental Results

In this section we provide an overview of the experimental results that we obtained.
With the same training set, we train an EPINET and a CEPINET model. The train-
ing set consists of 12 samples from the default training split of HCI dataset [27].
The data augmentation employed in the original EPINET [79] scheme is performed
also during CEPINET training. In Fig. 3.6, the disparity maps obtained with both
the EPINET (first column) and CEPINET (remaining columns) are presented for
a number of test samples for which the ground truth disparities are not available.

24

Figure 3.5 Top Row: Warped corner reference views(From left to right: Upper-left, upper-right, lower-left,
lower-right corners.) Bottom Row, from left to right: Warped center reference, best reference
labels, predicted target view, ground truth target view.

From Fig. 3.6, it is evident that our corner view disparity estimations are in accor-
dance with the EPINET center view disparities.

Table 3.1 shows bitrates obtained with LLFC and JPEG2000 for a number of test
samples for which the ground truth disparity maps for all five reference views are
available. Bitrates obtained with LLFC are much better than the baseline JPEG2000
results. The last column contains the results for the case when the ground truth dis-
parities are used instead of EPINET/CEPINET estimations. Hence, rather than an
implementable result, the last column represents a lower bound for the bitrates that
can be converged to by improving only the disparity estimation in LLFC scheme.
The differences between the actual results (2nd column) and the last column demon-
strates how much the deviation of our disparity estimations from the ground truth
disparities effect the final compression results. In Table 3.2, results for the remaining
test samples (for which ground truth disparities are not available) are presented.

The experimental results obtained with the proposed scheme look promising,
yet it is worth emphasizing that these results are obtained with synthetic data for
which there was the possibility to use quite accurate ground truth disparities. On
the other hand, for real light fields, this sort of accurate ground truth disparities are
not available and the networks trained on synthetic data are not expected to perform
well on the real data. Therefore, the obtained results should be seen as a promising

25

Figure 3.6 Each row corresponds to a light field, from top to bottom: sideboard, bedroom, dino, herbs,
bicycle, boxes and cotton. First column: EPINET (Center View) output disparity map. Re-
maining columns: CEPINET (Upper-left, upper-right, lower-left, lower-right) output disparity
maps.

26

Table 3.1 Bits-per-pixel results for test samples for which ground truth disparities are available

Sample JPEG2000 LLFC LLFC (with GT Disparities)

vinyl 7.38 4.30 4.08

kitchen 9.07 6.15 5.78

museum 10.97 6.92 6.67

greek 8.15 5.10 4.94

Table 3.2 Bits-per-pixel results for the test samples

Sample JPEG2000 LLFC

dino 9.65 5.79

dots 24.16 20.06

bedroom 10.13 6.90

pyramids 19.88 13.32

stripes 3.44 1.92

bicycle 12.85 8.65

backgammon 16.62 11.30

origami 10.53 6.83

boxes 11.34 7.95

cotton 6.96 3.21

sideboard 13.93 9.42

herbs 11.93 8.01

initial step towards the actual goal of compressing real light field images.

27

28

4 CONTRIBUTIONS TO POINT CLOUD

GEOMETRY COMPRESSION

In this chapter, we present our contributions to point cloud geometry compression
in Publications II, III, IV and V. Section 4.1, discusses a lossy and a lossless method
which are based on the concept of bounding volumes. In Section 4.2, we present a
method based on octrees and context coding with neural network estimated proba-
bilities.

4.1 Geometry Compression using Bounding Volumes

A bounding volume is an approximation for a 3D object that fully contains the ob-
ject and possibly additional (empty) volume. It can be thought of as the three di-
mensional analog of a bounding box. In Publications II and III, a bounding volume
is defined for a point cloud using two depth maps which are obtained by project-
ing the point cloud along two opposite directions. In this manner, a portion of the
points are represented and encoded in the form of depth maps. The remaining points
are known to be contained in the bounding volume defined by the two depth maps.
In this section, we present the two different methods described in Publications II and
III, to encode a point cloud with the bounding volume approach.

4.1.1 Lossy Compression using Bounding Volumes

In Publication II, a lossy point cloud geometry compression algorithm which we re-
fer to as LBV (Lossy Bounding Volumes) is presented. An overview of LBV encoding
scheme is given in Fig. 4.1. In this scheme, different bitrates are achieved by adjust-
ing a single parameter q , which is the quantization step, where q = 1 is equivalent
to no quantization taking place and corresponds to the highest bitrate and lowest

29

Figure 4.1 Overview of the proposed encoding scheme in the Lossy Bounding Volumes (LBV) algorithm.

distortion case. After quantization, the quantized point cloud Pq is decomposed
into what we call tubes. We define tube as a point cloud such that when it is tra-
versed along an axis, all of its cross section binary occupancy images contain at most
one connected component. We call the axis, through which the tube is traversed,
the sweeping axis. Before deciding on the sweeping axis, initially, a projection axis,
which we shall denote z, is selected. The projection axis is selected from the three
inherent axes of the point cloud as the one that captures the most number of pro-
jection points. Projection of a point cloud in two directions along one axis and the
resulting front and back view depth maps are visualized in Fig. 4.2.

After deciding the projection axis z, one of the two remaining inherent axes of the
point cloud which are orthogonal to the projection axis is selected as the sweeping
axis, denoted y. According to the selected sweeping axis y, the point cloud is decom-
posed into what we call tubes. Decomposition of the input point cloud into tubes
is visualized on Fig. 4.3. When decomposing the input point cloud into tubes, the
points in consecutive cross sections are included in the same tube if their connected
components (in the consecutive cross section binary images) have large overlapping
regions. While each of the tubes are valid inputs for the subsequent algorithm stages,
in our experiments, we compress only the main tube (the one with the most num-
ber of points) for all test point clouds and compress all of the remaining points with
G-PCC.

The main tube is then projected along the projection axis in the opposite direc-
tions to obtain two depth maps which are then encoded by a depth map compression

30

Figure 4.2 Projection of the input point cloud along the projection axis results in front (middle) and back
(right) view depth maps.

Figure 4.3 Initially, the input point cloud is decomposed into so-called tubes, which are point clouds such
that when traversed in a certain axis called the sweeping axis, their 2D cross section binary
occupancy images contain at most one connected component each.

algorithm called CERV [81]. In CERV, the depth (or disparity) map is divided into
constant depth regions and the crack edges between the regions are encoded using
optimally pruned context trees which are transmitted first. The constant values in-
side the regions are predicted and encoded by making use of the already transmitted
neighboring region information as context. The remaining (not projected) points in
the main tube are encoded in a number of stages which are called Primitives.

The main tube is traversed (swept) along the sweeping axis and encoding/decod-
ing is performed section-by-section in several stages as explained in the following.

31

Figure 4.4 A two dimensional section of the main tube.

Suppose the ground truth for a two dimensional section of the main tube is as shown
in Figure 4.4. The points in the two dimensional section of the tube that are pro-
jected to depth maps are shown in Fig. 4.5 in green. Projected points were already
encoded/decoded as two depth maps. After decoding the depth maps, the decoder
is able to reconstruct the points shown in green in Fig. 4.5. Furthermore, using the
projected points, the encoder/decoder constructs a so-called feasible region in which
all the remaining points of the current 2D section of the tube have to be confined.
In other words, the feasible region is a two dimensional section of the bounding vol-
ume defined by the two depth maps. The feasible region obtained from the projected
points is shown in Fig. 4.6 in pink.

In the next step which we refer to as Primitive I, the boundary of the feasible
region is traced such that one obtains an ordered list of possibly occupied locations
Lb that constitute the boundary of the feasible region. Note that the decoder is able
to obtain the same Lb by using only the feasible region information. Lb contains
3 sorts of locations: Firstly, there are the locations of projected points which are
already encoded as depth maps. No further action is required for them. Secondly,
there are unoccupied locations (gray locations in Fig. 4.6) and finally, there are loca-
tions which are occupied but not yet encoded (blue points in Fig. 4.6). All of the not
projected feasible boundary locations (blue and gray) are collected in a new list Lb2.
The goal of Primitive I is to efficiently encode the not projected occupied locations
(true points) in the boundary. The occupancy of feasible region boundary locations,

32

Figure 4.5 A two dimensional section of the main tube (same as in Fig. 4.4) where the projected points
are shown in green.

excluding the projected (already encoded) points, is represented with a binary vector
vP1 where the i’th element of vP1 denotes the occupancy status of the i’th location in
Lb2. vP1 can be efficiently encoded via run-length encoding or arithmetic coding.

After Primitive I, the current reconstruction consists of the green and the blue
points in Fig. 4.6. The next stage is Primitive II. In Primitive II, the pieces of con-
tours that we have as the current reconstruction are completed into one big closed
contour consisting of true points residing at the outer surface of the tube. For the
datasets that we experiment with, the overwhelming majority of the true points lie
in such contours.

In Primitive II, all end points of the contours in the current reconstruction are
called anchor points. Anchor points are denoted with red circles in Fig. 4.7. Primi-
tive II encodes the points that bind the anchor points (shown in purple) using chain
codes.

After Primitive II, we have an additional stage which is not mentioned in Publi-
cation II. Here we call this Primitive A. In Primitive A, the current reconstruction
after Primitive II which is a closed contour, is traversed from the inside. For each
cross (diagonally) connected consecutive true point pair, there is one location in the

33

Figure 4.6 Green: Projected points. Blue: Points encoded by Primitive I. Gray: Unoccupied locations in
feasible region boundary. Pink: Feasible region.

Figure 4.7 Green: Current Reconstruction after Primitive I. Red circles: Anchor points. Purple: Points
encoded at Primitive II.

34

Figure 4.8 Green: Current reconstruction after Primitive II. Yellow: Points encoded by Primitive A.

feasible region that is 4-connected to both of the already encoded points. The occu-
pancies of these locations are represented in a binary vector which is encoded using
arithmetic coding. The points encoded at Primitive A are shown in Fig. 4.8.

The final stage of encoding in LBV, called Primitive III, involves not only the
current section of the tube (y = y0) but also the previously encoded/decoded section
(y = y0 − 1). In this stage, we make the assumption that in quite many cases, a
point cloud is a water tight surface. Water tight assumption allows us to reconstruct
groups of neighboring points efficiently. By overlaying the reconstructions from
two sections y0 and y0 − 1, one obtains connected component regions. For each
of these regions, we encode a single binary flag stating whether these regions are
occupied or not at the currently being encoded section (y0). Primitive III points are
depicted at Fig.s 4.9 and 4.10. As an overview, the points reconstructed at different
stages of LBV are visualized in Fig. 4.11.

For demonstrating the bitrate performance of different stages, we find it useful
to plot bpov-vs-number of points after each stage and compare these with the bpovs
obtained with the G-PCC codec. In Fig. 4.12, two such plots are shown for two
different point clouds. The vertical axis denotes the bitrate. In the blue curves, each
point corresponds to an instant after a certain stage of LBV (CERV, Primitive I,II,A

35

Figure 4.9 Light green: Current reconstruction at y = y0 after Primitive A. Dark green: Some of the
points reconstructed at the previous section (y = y0 − 1). Blue: Points reconstructed at
Primitive III.

Figure 4.10 The main tube where points reconstructed at Primitive III are highlighted in red.

36

Figure 4.11 Left: Input point cloud. Center: Points at a single section (FN: Missed points, CERV: Points
reconstructed by CERV; P1, P2, PA, P3: Points reconstructed by Primitives I, II, A, III). Right:
Close up view of the section.

Figure 4.12 Blue Curves: Bitrate vs number of reconstructed points obtained after individual stages of
LBV (CERV, Primitives I,II,A,III). Orange Curves: Bitrate vs number of reconstructed points
when the same reconstructions obtained after each stage are compressed with G-PCC.

or III) is completed. The G-PCC (orange curves) results are obtained by compress-
ing the reconstructions obtained after each LBV stage using G-PCC codec. Such a
comparison aims to demonstrate the bitrate efficiency of the primitives.

4.1.1.1 Quantization and Unquantization

For the lower bitrate modes of operation, we employ quantization at various levels.
Quantization Qq (P) of a point cloudP with the quantization step size q > 1 is the
first stage of encoding and is a two step operation such that, Pq = Qq (P). In the

37

first step, the quantized points

(xq , yq , zq) = (⌊
x
q
⌋, ⌊

y
q
⌋, ⌊ z

q
⌋) (4.1)

are obtained from all points (x, y, z) ∈P . Next, duplicate points are removed in the
resulting set to obtain a unique set of pointsPq .

Unquantization function QU
q (.) is the decoder counterpart and is the final stage

of decoding. Let P DEC
q denote the lossy reconstruction of the quantized point

cloud Pq at the decoder side, consisting of the decoded points (xD
q , yD

q , zD
q). For

each decoded point (xD
q , yD

q , zD
q) ∈ P DEC

q , unquantization function QU
q (.) gener-

ates q3 points as

xD , yD , zD = (xD
q + kx , yD

q + ky , zD
q + kz),∀kc = 0, ..., q − 1,∀c ∈ x, y, z. (4.2)

The resulting set of points is called the decoded point cloud P DEC =QU
q (P DEC

q)
where P DEC

q = Qq (P DEC) = Qq (Q
U
q (P DEC

q)). Hence, the unquantized point
cloudP DEC contains all the points x, y, z that may yield a point xq , yq , zq inP DEC

q

when (4.1) is applied.

4.1.1.2 Experimental Results

Performance of LBV is evaluated with the D1 metric which was defined in (2.6).
Rate-D1 curves for Cat 1A samples are presented in Fig. 4.13 in dB scale. It is ob-
served from Fig. 4.13 that LBV outperforms G-PCC baseline and trisoup codecs for
wide ranges of bitrates. Furthermore, it is observed that distortion is most of the
time monotonically decreasing with the bitrate, which is a very desirable quality for
a lossy encoder. Rate-D1 curves of LBV in Fig. 4.13 contain the operating points
obtained by adjusting the quantization parameter as 1 <= q <= 4, where q = 1 is
equivalent to having no quantization.

Besides distortion and bitrates, another important consideration is encoding/de-
coding times. In Fig. 4.14 is plotted quantization parameter q vs. encoding and
decoding times for the longdress sample for the same q values as in Fig. 4.13 (1 <=
q <= 4). It is observed that, for all quantization levels, decoding proceeds faster than
encoding.

38

Figure 4.13 Results obtained with the proposed Lossy Bounding Volumes (LBV) scheme (pink) com-
pared against the G-PCC baseline and trisoup codecs.

Figure 4.14 Quantization parameter q vs. encoding/decoding times of LBV for longdress from Cat1A.

39

4.1.2 Lossless Compression using Bounding Volumes

LBV, described in the previous section, employed a projection (depth map extrac-
tion) stage that generates depth maps in which the points, which are visible from the
two opposite directions in the projection axis, are represented. In the subsequent
stages, which were called primitives, we were able to encode some of the remain-
ing points in an efficient way by making certain assumptions. Considering the 2D
section-wise processing of the point cloud, all of the encoded points in primitives
were, by construction, 8-connected to the projected points in the currently processed
section.

In Publication III, is presented a lossless scheme called BVL that starts with the
same projection stage as in LBV where the projected points are represented and en-
coded as depth maps in the same way as in LBV. Similar to LBV, the point cloud
is swept along one axis and processed section-by-section. However, unlike LBV,
this time, at every 2D section, all of the points which are connected to the pro-
jection points (via a path of 8-connected points in the 2D section) are encoded in
the same way with a context coding scheme which will be described in detail. The
projected points and the points which are connected to the projected points with an
8-connectivity path, together form what we call a shell. Once a shell is encoded, one
takes out the shell, like a matryoshka doll, and the procedure is repeated for the re-
maining points. While in general, a point cloud, by definition can consist of a large
number of shells, for the common types of point clouds that are of practical use,
just a few number of these shell iterations are sufficient to encode the entire point
cloud. In fact, in all our experiments, we encode only 2 shells and the remaining
points (if any) are directly written to bitstream without any compression. Shells for
3 point clouds are visualized in Fig. 4.15. For relatively simpler point clouds, all of
the points can be contained in two shells. However, for more complex point clouds,
the method starts to become inefficient.

An overview of the scheme for encoding a shell is presented in Fig. 4.16. In the
2D cross section, all of the not projected points which are connected to the projected
(depth map) points are shown in blue and they belong to the currently encoded shell.
The small group of points that are shown in red are not part of this shell hence they
will be encoded as part of the second shell.

Encoding of the remaining shell points in a 2D section which are shown in blue

40

Figure 4.15 Shells of point clouds. For the point clouds in top row, all of the points are contained in two
shells. For the shiva point cloud (2nd row), the structure of the inner shells is much more
complex than the former point clouds.

in Fig. 4.16 is summarized in Algorithm 1. Here we shall go through the algorithm
steps in detail and refer to the related lines in Algorithm 1 where necessary.

LetP denote the input point cloud defined in a voxel grid of size Nx ×Ny ×Nz .
We denote the sweeping axis as y. A 2D section ofP with y = y0 can be represented
with a binary image Ty0

(z, x) where Ty0
(z, x) = 1 if (x, y0, z) ∈ P and Ty0

(z, x) =
0 otherwise. In the first step of Algorithm 1, the encoder/decoder initializes the
reconstruction of the current cross section Ry0

with the already encoded/decoded
depth map points. Next, the encoder/decoder constructs the feasible regions image
F from Ry0

. Note that, unlike the situation in LBV where we had a so-called tube as

41

Figure 4.16 Encoding a shell in BVL. Encoding of the remaining shell points is summarized in Algorithm
1.

input, Ty0
is not constrained to contain a single connected component therefore F

can contain more than one connected component as well.
It is useful to represent our knowledge of occupancies of all the locations in the

current section with a binary image K . All of the locations, for which F (z, x) = 0,
are known to be unoccupied and the locations, for which Ry0

(z, x) = 1 (the projected
points), are known to be occupied. Therefore, initially K is simply F+Ry0

where F is
the logical inverse of F . K is updated whenever a new location is encoded/decoded.

With the projected points, we initialize a list of locations to be processed called
Lp . The processing of a location in Lp involves two steps: Firstly, encoding/decod-
ing its occupancy if it’s not already known and secondly, appending its 8-connected
neighbors to Lp if their occupancies are not already known. Once a location is pro-
cessed, it is removed from Lp . Processing continues until Lp is empty and all of the
shell points are encoded. Since initially all of the locations in Lp are known loca-
tions, the lines 8-17 in Algorithm 1 are inactive and we simply add the neighboring
unknown locations (line 20).

The occupancy of an unknown location in Lp has to be encoded/decoded. The
encoding is performed using arithmetic coding with context. The context of a loca-

42

tion (x, y0, z) is extracted from a 3× 3× 2 neighborhood in the following manner.
Let the location ln = (xn , y0, zn) be one of the 8 neighbors of (x, y0, z) at the cur-
rent section. Regarding occupancy and our knowledge of occupancy, there are three
possibilities: ln’s occupancy may be unknown, ln may be known to be unoccupied
or ln may be known to be occupied. We consider all three possibilities as context
information. The context information regarding all 8 neighbors can be represented
in a ternary 3× 3 matrix Cy0

which can be computed by simply adding a R3x3 and
a K3x3 cropped from Ry0

and K from the 8-neighborhood of (x, y0, z). The second
part of the context called Cy0−1 is extracted from the reconstruction of the previ-
ous section Ry0−1. Regarding the previous section, there are 9 neighbors for which
Ry0−1(zn , xn) can be either 0 or 1. These are represented with the 3×3 binary matrix
Cy0−1 cropped from Ry0−1. In order to make use of rotational invariances, we apply
a normalizing rotation α∗(.) such that the four rotated versions of the 3D context
around the sweeping axis are treated as the same context. Eventually, a context is
represented with a unique label ζ which consists of a pair of integers.

ζ = (I (Cy0,α∗), J (Cy0−1,α∗)) (4.3)

where,

I (C) =
2
∑︂

j=0

2
∑︂

i=0

Ci j 3
i+3 j (4.4)

and

J (C) =
2
∑︂

j=0

2
∑︂

i=0

Ci j 2
i+3 j . (4.5)

Considering that the highest value J (Cy0−1,α∗) can take is 29 − 1, one can also
express the unique label ζ as an integer as ζ = I (Cy0,α∗)2

9+ J (Cy0−1,α∗). Lines 8-14
in Algorithm 1 are the context formation steps.

4.1.2.1 Experimental Results

In this section we shall present the experimental results obtained with BVL. In Ta-
ble 4.1, bitrates obtained with BVL are compared with G-PCC for 11 and 10 bit
point clouds from Category 1A of MPEG. With most of the point clouds, BVL

43

Algorithm 1: Encoding the Remaining Shell Points
Require: Ty0

: Current section (y = y0) ground truth
Ry0−1: Reconstruction of the previously encoded section (y = y0− 1)

1: Initialize reconstruction of the current section Ry0
with projected points

2: Construct the feasible regions image F using Ry0

3: Initialize K , the binary image of known locations K← F +Ry0

4: Initialize Lp , the list of pixels to be processed Lp ←{(z, x)|Ry0
(z, x) = 1}

5: while Lp ̸= ∅ do
6: Read (z, x) from the top of Lp
7: if K(z, x) == 0 then
8: Extract a 3× 3 matrix R3x3 from Ry0

centered at (z, x)
9: Extract a 3× 3 matrix K3x3 from K centered at (z, x)

10: Cy0
← R3x3+K3x3

11: Extract a 3× 3 matrix Cy0−1 from Ry0−1 centered at (z, x)
12: Find normalizing rotation α∗(Cy0

) and form Cy0,α∗

13: Use α∗(Cy0
) to rotate Cy0−1 as Cy0−1,α∗

14: Form the context ζ = (I (Cy0,α∗), J (Cy0−1,α∗))
15: Encode Ty0

(z, x) using the context ζ
16: Update the current reconstruction: Ry0

(z, x)← Ty0
(z, x)

17: Update K: K(z, x)← 1
18: end if
19: if Ry0

(z, x) == 1 then
20: Append to Lp every 8-connected neighbor (zn , xn) of (z, x) for which

K(zn , xn) = 0
21: end if
22: Remove (z, x) from Lp
23: end while

outperforms G-PCC codec. In Table 4.2, the average bitrate results for sequences
from MVUB [44] and 8i [14] datasets are presented and compared with other recent
codecs. With the MVUB point clouds, Dyadic Decomposition based method [62]
yields the best results, whereas BVL results are close to G-PCC. With the 8i dataset,
BVL outperforms the other methods.

44

Table 4.1 Average Rate [Bpov] results on point clouds from CAT1A

Point Cloud Bitdepth G-PCC BVL

basketball player 11 0.885 0.852

dancer 11 0.876 0.826

facade 00064 11 1.1969 1.3331

longdress 10 1.032 0.9223

loot 10 0.9818 0.8991

queen 0200 10 0.783 0.7883

redandblack 10 1.1055 1.0418

shiva 00035 10 3.6966 5.5642

soldier 10 1.0419 0.9577

Table 4.2 Average Rate for the first 200 frames for all sequences from MVUB [44] and 8i [14] for the
proposed BVL encoder compared to recent codecs.

Average Rate [bpv]
Sequence P(PNI)[18] G-PCC[52] DD[62] BVL

Microsoft Voxelized Upper Bodies [44]

Andrew9 1.83 1.14 1.12 1.17

David9 1.77 1.08 1.06 1.10

Phil9 1.88 1.18 1.14 1.20

Ricardo9 1.79 1.08 1.03 1.05

Sarah9 1.79 1.07 1.07 1.08

Average 1.81 1.11 1.08 1.12

8i Voxelized Full Bodies [14]

Longdress 1.75 1.03 0.95 0.91

Loot 1.69 0.97 0.91 0.88

Redandblack 1.84 1.11 1.03 1.03

Soldier 1.76 1.04 0.96 0.96

Average 1.76 1.04 0.96 0.94

45

4.2 NNOC: Neural Networks and Octrees

In Publication IV, we have proposed a lossless point cloud geometry compression
scheme called NNOC (short for neural network and octree). In this scheme, octree
representation of a point cloud is encoded with arithmetic coding using probabili-
ties estimated by a neural network. Octree representation is a multiresolution rep-
resentation in which, different depth levels in the octree representation correspond
to different resolutions of the point cloud. The octree is processed in breadth-first
order starting from a very low depth level and reaching the original resolution of
the point cloud in a resolution-progressive manner. An overview of NNOC is pre-
sented in Fig. 4.17. At every resolution level, candidate (possibly occupied) voxels
are obtained from the one step lower resolution and they are traversed at a certain
order which establishes the causality status for the voxels. According to the causality
status determined by the scanning order, for some of the voxels only the candidacy
information is available (coming from the previously encoded/decoded resolution),
whereas for the remaining voxels, occupancy status are available. For the currently
encoded candidate voxel, a hybrid context, which consists of neighboring occupan-
cies (where available) and candidacies, is formed as a binary vector. The probability
of occupancy of the currently encoded candidate voxel is estimated based on the con-
text vector. Traversing of candidate voxels and context extraction are made efficient
by utilizing binary images (buffers) that hold the relevant information.

The geometry-based point cloud compression (G-PCC) test model (TMC13) de-
veloped by MPEG also encodes octree representation with arithmetic coding. The
two major differences between our model and G-PCC are worth pointing out: Firstly,
the way we extract the context is fundamentally different from G-PCC. In G-PCC,
the location and orientation of the context region with respect to the correspond-
ing voxel is not the same for all voxels. Different child nodes of the same parent
voxel share the same context elements. The second major difference is, our scheme
employs a neural network for estimating the probability of occupancy of a voxel
given its context. As a result of this, unlike many other arithmetic coding schemes
including G-PCC, we do not need to keep track of the number of occurences for
each of the contexts to estimate a probability. Using a neural network allows us to
handle a huge number of possible contexts which would not be possible by keeping
occurences in lookup tables explicitly. Specifically, our context can take around 295

46

Figure 4.17 Overview of NNOC. Encoding and decoding proceeds from low resolution to high resolution.
At every resolution r , the candidate voxelsP C

r obtained by upsampling the reconstruction
at the previous resolution Pr−1 are traversed. Probability of occupancy of a candidate
voxel is estimated by a neural network based on a context derived from current and past
resolution information.

different configurations.
In Fig. 4.17, the input point cloud is denoted PR where R is the resolution. En-

coding and decoding proceeds from low resolution to high resolution. At every res-
olution r , the occupancies of the octree nodes are encoded with arithmetic coding
where the probability model is a neural network for which the weights are obtained
through offline training.

NNOC encoder and decoder are summarized in Algorithms 2 and 3, respectively,
which are conceptual descriptions that aim to maintain a certain level of readability
while conveying the most significant aspects of the method. For a more detailed de-
scription of the NNOC encoder, we refer the reader to Algorithm 6 which generates
the same bitstream as in Algorithm 2 in a faster way.

Suppose the input point cloud is PR with R bits per dimension resolution con-
sisting of points (xR, yR, zR) | xR, yR, zR ∈ Z∩[0,2R− 1]. NNOC encoder generates
the lower resolution versions ofPR;PR−1...P2 by downsamplingPR repeatedly by
2 in the following manner. Let Pr be a point cloud with resolution r ∈ {2, .., R}.
Pr−1 is the unique set of points obtained by mapping every point (xr , yr , zr) inPr

to a point (xr−1, yr−1, zr−1) such that

(xr−1, yr−1, zr−1) = (⌊
xr

2
⌋, ⌊

yr

2
⌋, ⌊

zr

2
⌋). (4.6)

47

P2 is a point cloud in 4× 4× 4 voxel grid and it is written to the bitstream in 64
bits where each bit corresponds to the occupancy of one voxel in the grid. Hence,
the first thing the decoder reads from the bitstream isP2. Starting with r = 3, for all
resolutions r = 3, .., R, the encoder/decoder generates candidate locations (possibly
occupied voxels) in resolution r calledP C

r usingPr−1, where

P C
r = {(xc , yc , zc) | (xc , yc , zc) = (2xr−1+α, 2yr−1+β, 2zr−1+ γ); α,β,γ ∈ {0,1}}

(4.7)
and

(xr−1, yr−1, zr−1) ∈Pr−1. (4.8)

Pr is a subset ofP C
r . After generatingP C

r , encoder and decoder traverseP C
r in

the same order. Here, the fastest and slowest traversal directions are denoted+y and
+z, respectively. The occupancy status O(x, y, z) of candidate locations are encod-
ed/decoded using arithmetic coding with 2 symbols. Probability of occupancy of a
candidate location (x0, y0, z0) ∈P C

r is the probability of (x0, y0, z0) being an element
ofPr :

P (O(x0, y0, z0) = 1) = P ((x0, y0, z0) ∈Pr) (4.9)

and is estimated with a neural network (N N) such that

P (O(x0, y0, z0) = 1) =N N (C0) (4.10)

where, C0 is the context vector extracted around location (x0, y0, z0) and

C0 = [c0..c4w2]. (4.11)

The context vectorC0 is obtained by flattening a 3D binary context region. The
dimensions of the 3D context region is w×w×4 in x, y, z coordinates, respectively
where w is set to be 5. The context region is symmetric around the current candidate
location (x0, y0, z0) in x and y directions but it is not symmetric in the z direction
because the locations at z = z0+ 2 plane are excluded from the context while loca-
tions with z = z0− 2 are part of the context. It is in a way justified in the sense that

48

Figure 4.18 Context extraction in NNOC. Green Tile: Candidate location currently being encoded/de-
coded. White Tiles: Locations already encoded/decoded with occupancy status 1. Black
Tiles: Locations with candidacy/occupancy status 0. Grey Tiles: Candidate locations that
are not yet encoded/decoded. Red squares: w×w context windows surrounding the con-
text region. © 2021 IEEE

for the z = z0 + 2 locations, only the candidacy (lower resolution) information is
available whereas for the z = z0−2 locations, the true occupancy status are known.
Candidacy is for sure less informative when compared to the occupancy. Context
extraction in NNOC is visualized in Fig. 4.18.

When constructing the context vector, context elements are scanned in the same
order as the traversal order of candidates, where+y is the fastest and+z is the slow-
est scanning direction, respectively. Scanning order of context elements can be ex-
pressed formally as a one-to-one mapping from an integer i to a triplet of integer
coordinate shifts as i → (x̂(i), ŷ(i), ẑ(i)). According to this, the first (5w2 − 1)/2
elements in C0 are expressed as,

ci =O(x0+ x̂(i), y0+ ŷ(i), z0+ ẑ(i)), i ∈Z∩[0,
5w2− 3

2
] (4.12)

49

where O(.) denotes the occupancy of a voxel considering Pr . The next (3w2+
1)/2 elements in C0 are expressed in a similar way,

ci =OC (x0+ x̂(i), y0+ ŷ(i), z0+ ẑ(i)), i ∈Z∩[5w2− 1
2

,4w2− 1] (4.13)

where OC (.) denotes the candidacy of a voxel consideringP C
r .

In order to be able to fetch the occupancies and candidacies that constitute the
context vector in an efficient manner, during traversal of the candidates, four binary
images Iz with z = z0−2, z0−1, z0, z0+1 are constructed both at the encoder and the
decoder side. Here, z0 denotes the z coordinate of the currently processed candidate
locations.

Iz0+ j (x, y) =O(x, y, z0+ j), j ∈ {−1,−2} (4.14)

Iz0
(x, y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

O(x, y, z0), if x < x0

O(x, y, z0), if x = x0, y < y0

OC (x, y, z0), otherwise

(4.15)

Iz0+1(x, y) =OC (x, y, z0+ 1) (4.16)

Additionally, the encoder constructs a binary image of true occupancies Tz0
as

Tz0
(x, y) =O(x, y, z0) (4.17)

4.2.1 Parallel NN execution and the fast model

For the sake of speed, parallel computation can be employed during NN execution
so that if LC is a list of context vectors, a single network execution can generate a
list of occupancy probabilitiesLP ,

LP =N N (LC) (4.18)

At the encoder side, parallel execution is possible since all the occupancies are
available. Thus, occupancy probabilities for all locations having the same z are esti-

50

mated with a single network pass. However, at the decoder side, the situation is dif-
ferent. For instance, the context vector C0 contains the occupancy O(x0, y0− 1, z0)
which is available to the decoder only after decoding it. Therefore, the decoding
proceeds by passing only one context vector to the neural network at a time which
turns out to be much slower than the encoding.

Alternatively, we propose a fast version called fNNOC which enables the parallel
NN execution at the decoder side by defining the context in a slightly different way.
fNNOC encoder and decoder are summarized in Algorithms 4 and 5, respectively.
In fNNOC, context vector C0 contains only candidacy values OC (x, y, z0) thus no
occupancies O(x, y, z0) are involved. Hence, the decoder can collect the same list of
contexts LC for all candidates having z = z0 as in the encoder side. The context
extraction in fNNOC is depicted on Fig. 4.19. Note that, only the z = z0 part of
the context is changed and accordingly, in fNNOC,

Iz0
(x, y) =OC (x, y, z0) (4.19)

whereas Iz0−2, Iz0−1, Iz0+1 are the same as in (4.14) and (4.16).

4.2.2 Neural Network Structure and Training

The neural network structure is depicted in Fig. 4.20. It is a multi layer perceptron
with a single hidden layer. The input to the neural network is a binary vector of
length 4w2 and the number of neurons in the hidden layer is set as twice the input
length which is 8w2. The number of output neurons is set as 2 where the output
values are denoted α1 and α2. Output probability estimation is computed with a
nonlinear transformation as,

P (O(x0, y0, z0)) =
eα1

eα1 + eα2
. (4.20)

The nonlinear activation function at the output ensures that the output value
is a valid probability estimation between 0 and 1. The total number of trainable
parameters in N N is 32w4+ 24w2+ 2. For w = 5, it is 20602 parameters.

Input binary context vector C0 combines the information at the neighborhood
of (x0, y0, z0) coming from P C

r and current reconstruction of Pr . While some of
the elements in C0 represent the candidacy status OC (.) of a neighbor location, the

51

Figure 4.19 Context extraction in fNNOC. Green Tile: Candidate location currently being encoded/de-
coded. White Tiles: Locations already encoded/decoded with occupancy status 1. Black
Tiles: Locations with candidacy/occupancy status 0. Grey Tiles: Candidate locations that
are not yet encoded/decoded. Red squares: w×w context windows surrounding the con-
text region. © 2021 IEEE

Figure 4.20 Structure of the Neural Network in NNOC.

52

Algorithm 2: Encoding with NNOC
Require: A point cloudPR with resolution R bits/dimension

1: Construct lower resolution point cloudsPR−1, . . . ,P2 representing the full
nodes at octree depth levels R− 1, . . . , 2.

2: EncodeP2 in 64 bits
3: Encode iterativelyP3 toPR as follows:
4: for r = 3, . . . , R do
5: Generate for each point (xr−1, yr−1, zr−1) ∈Pr−1 8 candidate voxels in the

resolution r , resulting in the set of candidate pointsP C
r

6: Traverse candidatesP C
r and encode occupancies as follows:

7: for z0 = 0 . . . 2r − 1 do
8: Initialize empty list of context vectorsLC = {}
9: Update Iz0+1, Iz0

, Iz0−1, Iz0−2 and Tz0
using points fromP C

r andPr
10: for x0 = 0 . . . 2r − 1 do
11: for y0 = 0 . . . 2r − 1 do
12: if (x0, y0, z0) ∈P C

r then
13: Extract the context vector C0 from Iz0+1, Iz0

, Iz0−1, Iz0−2
14: Append C0 toLC
15: Update Iz0

← Tz0
(xc , yc , z0)

16: end if
17: end for
18: end for
19: Pass all contexts inLC to NN in parallel to obtainLP =N N (LC)
20: for all (xc , yc , z0) ∈P C

r do
21: Encode the occupancy O(xc , yc , z0) using P (O(xc , yc , z0) = 1) fromLP
22: end for
23: end for
24: end for

remaining elements represent the true occupancy status O(.) at the current resolu-
tion. Therefore, it is worth noting that the neural network has devoted weights to
operate on these two different types of elements.

As an entropy coding method, arithmetic coding can achieve bits per symbol
codelengths very close to the entropy. This allows us to estimate the total codelength
and optimize the probabilistic model such that it minimizes the total codelength.
Our probabilistic model produces conditional probabilities such that the probability
of occurence of a symbol s j is expressed as P (s j |C) where C is a context vector.
There are only 2 symbols, that is, a candidate voxel is either occuppied or unoccupied

53

Algorithm 3: Decoding with NNOC
Require: Bitstream

1: ReconstructP2 from first 64 bits
2: Decode iterativelyP3 toPR as follows:
3: for r = 3, . . . , R do
4: InitializePr = {}
5: Generate for each point (xr−1, yr−1, zr−1) ∈Pr−1 the 8 candidate voxels in

the resolution r , resulting in the set of candidate pointsP C
r

6: Traverse candidatesP C
r and decode occupancies as follows:

7: for z0 = 0 . . . 2r − 1 do
8: Update Iz0+1, Iz0

, Iz0−1, Iz0−2 using points fromP C
r andPr

9: for x0 = 0 . . . 2r − 1 do
10: for y0 = 0 . . . 2r − 1 do
11: if (x0, y0, z0) ∈P C

r then
12: Extract the context vector C0 from Iz0+1, Iz0

, Iz0−1 and Iz0−2
13: Obtain the occupancy probability P (O(x0, y0, z0) = 1) =N N (C0)
14: Decode the occupancy O(x0, y0, z0) using P (O(x0, y0, z0) = 1)
15: Update Iz0

(x0, y0)←O(x0, y0, z0)
16: if O(x0, y0, z0) = 1 then
17: Add (x0, y0, z0) toPr
18: end if
19: end if
20: end for
21: end for
22: end for
23: end for

hence

s j ≡O(x0, y0, z0) = j , j ∈ {0,1}. (4.21)

Let different context vectors be denoted as Ci where i is an integer index, prob-
ability of occupancy of a candidate voxel given a context Ci is expressed as P1i =
P (s1|Ci) and similarly P0i = P (s0|Ci). P1i is what is produced by the neural net-
work P1i =N N (Ci) and P0i = 1− P1i . If the probability of occurence of a symbol
is P j i , arithmetic coding can achieve an average (bits per symbol) codelength close
to− log(P j i). Thus, if the number of occurences corresponding to a symbol-context
pair (s j ,Ci) is denoted n j i , the estimated total codelength for arithmetic coding is

54

Algorithm 4: Encoding with fNNOC
Require: A point cloudPR with resolution R bits/dimension

1: Construct lower resolution point cloudsPR−1, . . . ,P2 representing the full
nodes at octree depth levels R− 1, . . . , 2.

2: EncodeP2 in 64 bits
3: Encode iterativelyP3 toPR as follows:
4: for r = 3, . . . , R do
5: Generate for each point (xr−1, yr−1, zr−1) ∈Pr−1 8 candidate voxels in the

resolution r , resulting in the set of candidate pointsP C
r

6: Traverse candidatesP C
r and encode occupancies as follows:

7: for z0 = 0 . . . 2r − 1 do
8: Initialize empty list of context vectorsLC = {}
9: Update Iz0+1, Iz0

, Iz0−1, Iz0−2 and Tz0
using points fromP C

r andPr
10: for x0 = 0 . . . 2r − 1 do
11: for y0 = 0 . . . 2r − 1 do
12: if (x0, y0, z0) ∈P C

r then
13: Extract the context vector C0 from Iz0+1, Iz0

, Iz0−1, Iz0−2
14: Append C0 toLC
15: end if
16: end for
17: end for
18: Pass all contexts inLC to NN in parallel to obtainLP =N N (LC)
19: for all (xc , yc , z0) ∈P C

r do
20: Encode the occupancy O(xc , yc , z0) using P (O(xc , yc , z0) = 1) fromLP
21: end for
22: end for
23: end for

CL≈−
NC
∑︂

i=1

n0i log2 P0i + n1i log2 P1i (4.22)

where NC is the number of unique contexts.
Training set consists of (Ci , n0i , n1i) triplets where Ci is a context vector that

occurs in the training samples (point clouds) n0i + n1i times. In n1i of these oc-
curences, occupancy associated with Ci is O(x0, y0, z0) = 1 and in n0i of them, it is
O(x0, y0, z0) = 0. Training triplets are collected from two datasets called 8i Voxelized
Full Bodies [14] and Microsoft Voxelized Upper Bodies (MVUB) [44].

While total codelength (CL) is what we ideally want to minimize, due to practical

55

Algorithm 5: Decoding with fNNOC
Require: Bitstream

1: ReconstructP2 from first 64 bits
2: Decode iterativelyP3 toPR as follows:
3: for r = 3, . . . , R do
4: InitializePr = {}
5: Generate for each point (xr−1, yr−1, zr−1) ∈Pr−1 the 8 candidate voxels in

the resolution r , resulting in the set of candidate pointsP C
r

6: Traverse candidatesP C
r and decode occupancies as follows:

7: for z0 = 0 . . . 2r − 1 do
8: Initialize empty list of context vectorsLC = {}
9: Update Iz0+1, Iz0

, Iz0−1, Iz0−2 using points fromP C
r andPr

10: for x0 = 0 . . . 2r − 1 do
11: for y0 = 0 . . . 2r − 1 do
12: if (x0, y0, z0) ∈P C

r then
13: Extract the context vector C0 from Iz0+1, Iz0

, Iz0−1 and Iz0−2
14: Append C0 toLC
15: end if
16: end for
17: end for
18: Pass all contexts inLC to NN in parallel to obtainLP =N N (LC)
19: for all (xc , yc , z0) ∈P C

r do
20: Decode the occupancy O(xc , yc , z0) using P (O(xc , yc , z0) = 1) fromLP
21: end for
22: if O(x0, y0, z0) = 1 then
23: Add (x0, y0, z0) toPr
24: end if
25: end for
26: end for

limitations the training loss is defined over a randomly selected batch of contexts
rather than the entire training set as

Loss=− 1
Nb

Nb
∑︂

i=1

(n0i log2 P0i + n1i log2 P1i) (4.23)

where Nb is the training batch size.

56

4.2.3 Additional Details on NNOC and fNNOC Algorithms

Algorithms 2,3,4,5 describe NNOC and fNNOC encoders and decoders completely,
however, taking a closer look and noting the 3 loops of coordinates z0, y0, x0 over
the entire voxel grid (in lines 7,10,11 of Algorithm 2) would make one think that the
method is cursed to be quite slow. In order to respond to these concerns and show
how the method can be made feasible, we provide a more detailed description of
the NNOC encoder in Algorithm 6. In Algorithm 6, after generating the candidate
points (line 5), points in Pr and P C

r are sorted into lists Lr and L C
r , such that z

coordinate is the slowest changing coordinate. Next, two matrices each with size
(2r − 1) × 2 called S and SC are constructed where S is related to Pr and SC is
related to P C

r . The z0’th row of S and SC hold two indices that can be used to
access the z = z0 points in Lr and L C

r such that Lr,z0
=Lr (S(z0, 0) : S(z0, 1)) and

L C
r,z0
= L C

r (S
C (z0, 0) : SC (z0, 1)) are sorted lists of points having z = z0. To sum

up, prior sorting of the points allows us to access the relevant data in an efficient
way.

4.2.4 Experimental Results

Results for 11 and 10 bit point clouds from Category 1A of Common Test Condi-
tions of MPEG [76] are presented in Table 4.3.

Since the NNOC encoder, the fNNOC encoder and the fNNOC decoder allow
for parallel execution of neural network as in (4.18); for these three cases, neural
network executions are performed on GPU. On the other hand, NNOC decoder
cannot execute the NN in parallel on multiple contexts so the usage of GPU is not
improving the speed. Therefore, NNOC decoder is executed using CPU only. The
encoding and decoding durations obtained with different resolution samples are pre-
sented in Table 4.5. A breakdown of encoding and decoding times of NNOC and
fNNOC is presented in Table 4.6. All of the durations are measured on an Intel(R)
Xeon(R) Processor E5-2620 v4 with GeForce RTX 2080.

In order to investigate the effect of context size and network structure, we per-
formed an ablation study. We trained 5 variants of fNNOC which we will shortly
refer to as fN1-5. The differences of these models compared to fNNOC are as fol-
lows: In fN1, context region does not include the z = z0 + 1 plane hence C0 has

57

Algorithm 6: Encoding with NNOC - A More Detailed Description
Require: A point cloudPR with resolution R bits/dimension

1: Construct lower resolution point cloudsPR−1, . . . ,P2 representing the full
nodes at octree depth levels R− 1, . . . , 2.

2: EncodeP2 in 64 bits
3: Encode iterativelyP3 toPR as follows:
4: for r = 3, . . . , R do
5: Generate for each point (xr−1, yr−1, zr−1) ∈Pr−1 8 candidate voxels in the

resolution r , resulting in the set of candidate pointsP C
r

6: Sort points in bothPr andP C
r in ascending order such that, z coordinate is

the slowest and y coordinate is the fastest increasing coordinate, resulting in
sorted lists of pointsLr andL C

r
7: Construct two (2r − 1)× 2 matrices S and SC such that

Lr,z0
=Lr (S(z0, 0) : S(z0, 1)) andL C

r,z0
=L C

r (S
C (z0, 0) : SC (z0, 1)) are

sorted lists of points with z = z0.
8: Traverse candidatesP C

r and encode occupancies as follows:
9: for z0 = 0 . . . 2r − 1 do

10: Initialize empty list of context vectorsLC = {}
11: Update Iz0+1, Iz0

, Iz0−1, Iz0−2 and Tz0
usingL C

r ,Lr , S and SC .
12: for (x0, y0, z0) ∈L C

r,z0
do

13: Extract the context vector C0 from Iz0+1, Iz0
, Iz0−1, Iz0−2

14: Append C0 toLC
15: Update Iz0

← Tz0
(x0, y0, z0)

16: end for
17: Pass all contexts inLC to NN in parallel to obtainLP =N N (LC)
18: for (x0, y0, z0) ∈L C

r,z0
do

19: Encode the occupancy O(x0, y0, z0) using P (O(x0, y0, z0) = 1) fromLP
20: end for
21: end for
22: end for

3× 5× 5= 75 elements. In fN2, context region does not include the z = z0− 2 and
z = z0+1 planes henceC0 has 2×5×5= 50 elements. In fN3, w = 3 henceC0 has
4×3×3= 36 elements. In fN4, the number of neurons in the final layer is 1 instead
of 2 and the output probability is defined as

P (O(x0, y0, z0)) =
1

1+ e−α
(4.24)

58

Table 4.3 Average Rate [Bpov] results on point clouds from CAT1A

Bitdepth G-PCC BVL fNNOC NNOC

basketball player 11 0.885 0.852 0.6908 0.5934

dancer 11 0.876 0.826 0.6907 0.5751

facade 00064 11 1.1969 1.3331 1.2216 1.1053

queen 10 0.7817 0.7883 0.7573 0.6897

redandblack 10 1.1055 1.0418 0.8854 0.7353

loot 10 0.9818 0.8991 0.7615 0.5989

Average 0.971 0.957 0.8616 0.7163

Table 4.4 Ablation Study: Average Rate [Bpov] results on point clouds from CAT1A

fNNOC fN1 fN2 fN3 fN4 fN5

length of C0 100 75 50 36 100 100

of neurons by layer (200,2) (150,2) (100,2) (72,2) (200,1) (200,200,2)

basketball player(11) 0.6908 0.8924 1.2689 0.9098 0.6945 0.7083

dancer(11) 0.6907 0.8874 1.2443 0.8931 0.6936 0.7037

facade 00064(11) 1.2216 1.3888 1.4973 1.3102 1.2098 1.2291

queen(10) 0.9196 1.1327 1.4814 1.1773 0.9309 0.9390

redandblack(10) 0.8854 1.107 1.514 1.1009 0.8932 0.8738

loot(10) 0.7615 0.975 1.3785 0.9798 0.7761 0.7557

Average 0.8616 1.0639 1.3974 1.0619 0.8663 0.8683

where α is the output value of the single output neuron. In fN5, the neural net-
work has an additional hidden layer with 200 elements. For all of the variants, num-
ber of hidden layer elements are set to be twice the length of the input context C0.
Comparing the results for fNNOC and its variants in Table 4.4, it is observed that,
none of the variants performs consistently better than fNNOC.

59

Table 4.5 Durations of encoding and decoding with NNOC and fNNOC

NNOC fNNOC

P. Cloud Bitdepth Nr. of Pts ENC DEC(CPU) ENC DEC

phil-0000 9 371k 35s 7m 38s 26s 27s

loot-1000 10 784k 1m 23s 20m 41s 1m 1m 6s

basket. player 11 2.926M 5m 14s 68m 3s 3m 42s 3m 53s

Table 4.6 Breakdown of durations of encoding and decoding with NNOC and fNNOC (Per-frame average
over the loot sequence)

NNOC fNNOC

Time Breakdown ENC DEC(CPU) ENC DEC

Total time 1m 16s 25m 18s 1m 4s 1m 8s

Neural Network 10s 20m 3s 2s

Arithmetic Coding 15s 45s 14s 21s

Remaining operations 51s 4m 33s 47s 45s

4.3 SeqNOC: Optimizing a CNN Model for Compressing a

Sequence of Point Clouds

In the NNOC scheme, which was described in Sec. 4.2, is trained a NN model using
contexts and corresponding statistics collected from a training set of point clouds,
which then becomes a part of the encoder and the decoder. The model architecture
and the learned parameters are not transmitted since they are assumed to remain
the same. The probability model which is obtained by using a specific training set
is used to compress any point cloud. In this approach, the point cloud to be com-
pressed needs to obey similar probability distributions as the training set, such that
good compression can be achieved. Because of this, the compression performance of
NNOC is dependent on the training data.

Alternatively, one can optimize a NN model on the point cloud to be com-

60

Figure 4.21 Overview of the proposed SeqNOC point cloud sequence encoder.

pressed. In such a scenario, the model should be transmitted as well, since it would
be different for each point cloud. In NNOC and fNNOC, the NN model contained
20602 trainable parameters where each parameter is a 32 bit floating point number.
Thus, assuming the model structure is known to the decoder, transmitting the model
would consume 82 kB which would be a huge cost for a single point cloud. Moreover,
the optimization of the NN, which usually is a time-consuming process, becomes in
this case a part of the encoding, contributing to the encoding time. Therefore, opti-
mizing such a NN model for the point cloud to be compressed, does not seem to be
a feasible approach.

On the other hand, for several practical usage scenarios for point clouds, it is
required to transmit a sequence of point clouds rather than a single point cloud which
is sometimes also referred to as dynamic point clouds. Unlike the single point cloud
case, for a sequence of point clouds, optimizing and transmitting a NN model can
be rather feasible if the sequence is sufficiently long.

In Publication V, we introduce a scheme for compressing a sequence of point
clouds which we call SeqNOC, which optimizes a NN model on the sequence to
be compressed and the optimized NN parameters are transmitted as a header in the
bitstream. An overview of SeqNOC is depicted in Fig. 4.21. The NN structure is
known to the decoder hence it is not transmitted. Here we refer to the point clouds
in a sequence as frames. Using the same probability model for all franes in a sequence
is sensible because the frames in a sequence usually contain similar contexts obeying
similar probability distributions.

Unlike the case in NNOC, in the proposed SeqNOC method, NN training is a
part of the encoding. SeqNOC encoder consists of 3 stages. The first stage is the
collection of training data. Training data are collected from a number of equidistant
point clouds taken from the sequence starting from the first frame, which we call

61

the training frames. From statistical perspective, it is expected that the compression
ratio improves as we use a larger amount of training data and if the compression per-
formance were to be the only concern, it would be reasonable to include the entire
sequence in the training data. However, from a practical perspective, besides com-
pression performance, we need to consider also the encoding time and the memory
consumption. Having more training frames may increase both the time spent for
training data collection and the time spent during training. Both of these times are
considered as parts of the total encoding time. Therefore, we train the network using
data collected from only a few training frames.

Encoding of a frame in SeqNOC proceeds in a similar way to fNNOC with the
major difference being that the neural network stage is formulated as a CNN which
allows for a much faster implementation. Moreover, instead of encoding the occu-
pancy of each voxel in one symbol as was the case in fNNOC, here we encode the
occupancy of 2×2 groups of candidate voxels. That is, for each 2×2 block of voxels,
the CNN estimates a 16-element probability mass function (pmf) vector G(m, n)
where each element corresponds to a certain 2× 2 occupancy pattern. Around the
2× 2 block of voxels, the context region is a 6× 6× 4 block and it is implicit in the
structure of the CNN. In other words, for an input stack having shape 6× 6× 4,
the CNN output is a single pmf vector. The last dimension which has size 4 is the
channel dimension and the CNN consists of 2D convolutional layers sliding over
the other two dimensions. The number of output channels is 16 where each channel
corresponds to the predicted probability of occurence of an occupancy pattern for a
given context.

Encoding of a single point cloud (frame) in SeqNOC is described in Algorithm 7.
Algorithm 7 proceeds in a similar way to Algorithms 2 and 4 from lines 1 to 7. The
encoding of occupancies in a 2D section z = z0 is achieved in four phases ϕ = 1, ..., 4
as summarized in lines 10-18. Each phase ϕ is associated with a different so-called
phase selector imageΩϕ which is a binary image. UsingΩϕ, the phase candidates im-
age Ωϕ,C is generated which is also a binary image and it determines the candidates
to be encoded at phase ϕ. Operations at a single phase ϕ are illustrated in Fig. 4.22.
At each phase ϕ, the CNN is called once with a different input stack denoted Sz0

(ϕ).
Sz0
(ϕ) is an ordered set of 4 images Oz0−2,Oz0−1, Mz0

(ϕ),Cz0+1 which carry the con-
text information for the candidate voxels in the z = z0 plane. What differs in Sz0

(ϕ)
between phases is the mixing image Mz0

(ϕ). It is a four-level image where the levels

62

Figure 4.22 Encoding of a single frame in SeqNOC proceeds in a similar way to NNOC where the current
resolution voxel grid is swept along a so-called sweeping dimension. Encoding of a 2D
section of the current resolution PC is achieved in four phases. The workflow in a single
phase is shown here.

are 0 to 3. A pixel (x, y) in Mz0
(ϕ) having value 0 corresponds to a non-candidate

voxel in z = z0 plane. If (x, y, z0) is an unoccupied candidate voxel which is already
encoded (in a former phase), Mz0

(ϕ) at (x, y) is 1. If (x, y, z0) is a not yet encoded can-
didate voxel, Mz0

(ϕ) at (x, y) is 2. Finally, if (x, y, z0) is an occupied candidate voxel,
which is already encoded (in a former phase), Mz0

(ϕ) at (x, y) is 3. Construction of
Mz0
(ϕ) can be expressed in a single equation as

Mz0
(ϕ) = 2Cz0

◦ (1−Ωs
ϕ−1)+ (2Oz0

(ϕ)+ 1) ◦Ωs
ϕ−1, (4.25)

where Ωs
ϕ−1 represents the already processed voxels at z = z0 after phase ϕ− 1, i.e,

Ωs
ϕ−1 =Ω1∨. . .∨Ωϕ−1 (∨ denotes the element-wise OR operation). The four levels in

Mz0
(ϕ) are ordered in such a way that the value of a pixel being higher corresponds to

a stronger occupancy status. A non-candidate voxel has a weaker occupancy status
than a candidate voxel which is discovered to be unoccupied because, for the non
candidate voxel, not only the voxel itself but also its siblings, which decend from the
same parent voxel in the lower resolution, are known to be unoccupied. The order
of four levels is important because there is a single CNN model which applies the

63

Algorithm 7: Encoding of a frame (point cloud) in SeqNOC
Require: A point cloudPR with resolution R bits/dimension

1: Construct lower resolution point cloudsPR−1, . . . ,P2 representing the full
nodes at octree depth levels R− 1, . . . , 2.

2: EncodeP2 in 64 bits
3: Encode iterativelyP3 toPR as follows:
4: for r = 3, . . . , R do
5: Generate for each point (xr−1, yr−1, zr−1) ∈Pr−1 8 candidate voxels in the

resolution r , resulting in the set of candidate pointsP C
r

6: Traverse the voxel grid along the sweeping dimension z and encode each 2D
section z = z0 as follows:

7: for z0 = 0 . . . 2r − 1 do
8: Construct the occupancy images Oz0

,Oz0−1,Oz0−2 usingPr

9: Construct the candidacy images Cz0
,Cz0+1 usingP C

r
10: for ϕ = 1 . . . 4 do
11: Construct the phase candidates image Ωϕ,C as Ωϕ,C =Cz0

◦Ωϕ
12: Construct the mixing image

Mz0
(ϕ) = 2Cz0

◦ (1−Ωs
ϕ−1)+ (2Oz0

(ϕ)+ 1) ◦Ωs
ϕ−1

13: Construct the input stack Sz0
(ϕ) using Oz0−2,Oz0−1, Mz0

(ϕ),Cz0+1
14: Run C N N (Sz0

(ϕ)) to generate the output stack Gz0
(ϕ).

15: From Oz0
, collect the 2× 2 occupancy patterns Qm,n of the phase

candidates using Ωϕ,C
16: From Gz0

, collect the pmf vectors G(m, n) using Ωϕ,C
17: Encode Qm,n of the phase candidates using G(m, n) (The arithmetic

encoding step)
18: end for
19: end for
20: end for

same weights to contexts coming from different phases.

4.3.1 Experimental Results

Bpp (bits-per-point, same as bpov) results optained with SeqNOC are compared with
other methods in Table 4.7. Since the results for Silhouette 4D with Context Selec-
tion (S4DCS) [70] was reported for 100 consecutive frames of each benchmark se-
quence starting from the second frames, we also report for the same 100 frames, for

64

the sake of fairness in comparison. From Table 4.7, it is evident that SeqNOC per-
forms significantly better than the other methods which are not trained on a generic
dataset. The only inferior result was obtained for the Soldier sequence for which
S4DCS [70] yields 0.65 bpov.

In Table 4.7 and 4.8 we refer to the SeqNOC results obtained with what we call
the default configuration as SeqNOC (default). The default configuration has four
phases as described in Section 4.3 and the number of training frames (PCs) is set
to 5. In Table 4.8, the default configuration is compared with two other configu-
rations which are referred to as SeqNOC-10 and SeqNOC-SP. Each of these two
configurations differ in only one aspect from the default configuration so that we
can observe the impact of those aspects. SeqNOC-10 employs 10 training frames
and SeqNOC-SP has only one phase instead of four phases just like fNNOC (except
fNNOC encodes each voxel occupancy as a separate symbol whereas all SeqNOC
versions encode 2× 2 groups of neighboring voxels). From Table 4.8, it is evident
that employing 10 training frames (as in SeqNOC-10) instead of 5 (as in SeqNOC (de-
fault)), improves the bitrate performance significantly. However, it also increases the
encoding times (te[s]), since the time required for training statistics collection and
the time required for training both become longer. The differences in decoding times
(td [s]) between SeqNOC and SeqNOC-10 are not to be explained by the change in
the number of training frames because this is a change that is related to the encoding
procedure only. Comparing the results for SeqNOC (default) and SeqNOC-SP in
Table 4.8, one can observe that if a single phase ϕ of encoding is employed (as in
SeqNOC-SP) instead of four phases (as in SeqNOC (default)), the bitrates are signif-
icantly worse. However, the single phase configuration SeqNOC-SP has the advan-
tage of faster encoding and decoding since the estimation of the distributions for all
candidates in a 2D section is performed simultaneously. SeqNOC (default) appears
to offer a reasonable balance between speed and bitrate.

65

Table 4.7 Comparing Average Bitrates of SeqNOC (the default configuration) with Other Recent Methods

TMC13 [52] DD [62] P(Full) [18] S4DCS [70] SeqNOC

Andrew 1.14 1.12 1.37 0.95 0.85

David 1.07 1.06 1.31 0.94 0.78

Phil 1.17 1.14 1.42 1.02 0.86

Ricardo 1.09 1.04 1.34 0.90 0.79

Sarah 1.07 1.07 1.37 0.92 0.80

AverageMVUB 1.11 1.09 1.36 0.95 0.82

LongDress 1.02 0.95 1.13 0.88 0.70

Loot 0.96 0.92 1.02 0.84 0.66

RedAndBlack 1.08 1.02 1.23 0.94 0.77

Soldier 1.03 0.96 0.85 0.65 0.70

Average8i 1.02 0.96 1.06 0.83 0.71

Table 4.8 Bitrates [bpp], Encoding Times (te[s]) and Decoding Times (td [s]) for three different config-
urations of SeqNOC

SeqNOC (default) SeqNOC-10 SeqNOC-SP

bpp te[s] td [s] bpp te[s] td [s] bpp te[s] td [s]
Andrew 0.85 8.4 7.0 0.83 9.5 7.1 0.90 4.9 2.4

David 0.78 10.0 9.0 0.77 11.9 9.0 0.78 6.4 2.6

Phil 0.86 10.0 8.0 0.84 12.5 8.1 0.88 6.6 2.2

Ricardo 0.79 9.2 6.5 0.77 11.8 6.6 0.80 4.6 2.0

Sarah 0.80 9.2 8.5 0.78 10.9 7.7 0.79 5.9 2.2

AverageMVUB 0.82 9.4 7.8 0.80 11.4 7.7 0.83 5.7 2.3

Longdress 0.70 10.9 9.0 0.69 14.2 9.1 0.75 6.5 2.7

Loot 0.66 10.0 9.0 0.64 16.4 9.0 0.70 6.9 2.6

Redandblack 0.77 9.8 8 0.75 16.0 8.5 0.81 7.6 2.5

Soldier 0.70 12.7 10.0 0.70 13.4 10.2 0.77 6.4 3.0

Average8i 0.71 10.8 9.1 0.70 15.0 9.2 0.76 6.9 2.7

66

5 CONCLUSIONS AND SUMMARY

In this final chapter, the contributions of this dissertation work to compression of
point cloud geometry and compression of light field images are summarized. More-
over, we present our main conclusions drawn from the studies which were previ-
ously reported in five publications. In the previous chapters, we went over these five
publications which are also attached to the end of this document.

In Publication I, our contributions to light field processing were two-folds. Ini-
tially, we developed a CNN structure for estimating disparities for the corner views
of a light field image. The proposed CEPINET scheme was obtained by adapting a
method in the literature called EPINET [79], which estimates a disparity map asso-
ciated to the center view of a light field image, to the case of corner views. Corner
views are the most extreme locations in a camera array and therefore the disparity es-
timation is arguably more difficult. The second contribution was the development
of a lossless light field compression scheme which uses multiple disparity estima-
tions. By using the disparities associated with several different reference views in
conjunction, one is able to predict any target view color image in the light field with
highly compressible prediction errors.

Publications II and III were dealing with point cloud compression (PCC) based
on a novel representation which we refer to as bounding volumes. In Publication II is
presented a lossy PCC method called LBV, whereas in Publication III a lossless PCC
method called BVL is presented. In both LBV and BVL, the initial step is to define
a bounding volume using two depth maps obtained by projecting the input point
cloud in two opposite directions. The depth maps are efficiently compressed with
a method called CERV [81] and they represent the "outermost" points in the point
cloud which are then taken as anchors to describe the remaining points in the point
cloud in an efficient manner. This initial representation of a point cloud is quite
different from the well established and commonly used octree representation. As
evident from the experimental results presented in Chapter 4, the novel BV approach

67

is performing favorably with certain types of point clouds such as those involving
an entire human figure geometry whereas it is underperforming the G-PCC [23]
standard codec with more complex point clouds.

In Publication IV, we proposed NNOC, which is a novel learning based loss-
less geometry coding scheme operating on the octree representation. NNOC uses a
simple MLP i.e. a fully-connected NN for estimating the probability of voxel occu-
pancies given 3D contexts derived from two consecutive levels of resolution (in the
literature, also referred to as levels of detail). The NN model parameters are learned
from a set of training point clouds. Since the compression performance is expected
to depend on the choice of training PCs, in our experiments, we used a training
set of PCs that is very similar to that which was used in VoxelDNN [55] which
we regarded as a competitor method. The compression performance of NNOC is
highly competitive and running (encoding/decoding) times for the fast version fN-
NOC are in an acceptable level considering that the implementation was done in a
high-level programming environment unlike TMC13 [52] implementation of the G-
PCC standard codec [23] or our C implementation of BVL. Yet still, the fact that the
reported results depend on the choice of training set, causes NNOC to be a less gen-
eral method when compared to the methods which do not involve machine learning
such as G-PCC or BVL. Furthermore, NNOC is an intra-frame codec whereas sev-
eral practical applications of PCs require compression of a sequence of point clouds
instead of a single frame. Motivated by these critical viewpoints, in Publication V,
we proposed a sequence coder called SeqNOC which is similar to NNOC in the
way it handles the octree representation. SeqNOC is fundamentally different from
NNOC in the way the probabilities are modeled, where for a sequence to be com-
pressed, a CNN is trained from scratch as part of the encoding procedure, using
the statistics collected from the sequence itself. CNN training needs to take much
shorter than usual training times for similar CNN architectures in the literature such
that the per-frame encoding time is in the same level as the competitor methods. The
decoding times of SeqNOC are even shorter since decoding does not involve training
data collection and training.

To sum up, in this dissertation, several methods for lossy and lossless compres-
sion of immersive data were developed where the emphasis was on the point cloud
geometry compression side.

68

REFERENCES

[1] R. Abbasi, A. K. Bashir, H. J. Alyamani, F. Amin, J. Doh and J. Chen. Lidar
Point Cloud Compression, Processing and Learning for Autonomous Driving.
IEEE Transactions on Intelligent Transportation Systems (2022), 1–18. DOI: 10.
1109/TITS.2022.3167957.

[2] M. D. Adams. The JPEG-2000 still image compression standard. (2001).

[3] S. Agrawal, A. Simon, S. Bech, K. Bæntsen and S. Forchhammer. Defining
Immersion: Literature Review and Implications for Research on Audiovisual
Experiences. Journal of the Audio Engineering Society 68.6 (June 2020), 404–
417. DOI: https://doi.org/10.17743/jaes.2020.0039.

[4] E. Alexiou, K. Tung and T. Ebrahimi. Towards neural network approaches
for point cloud compression. Applications of Digital Image Processing XLIII.
Vol. 11510. SPIE. 2020, 18–37.

[5] P. Astola and I. Tabus. Wasp: Hierarchical warping, merging, and sparse pre-
diction for light field image compression. 2018 7th European Workshop on Vi-
sual Information Processing (EUVIP). IEEE. 2018, 1–6.

[6] M. Bleyer, C. Rhemann and C. Rother. Extracting 3D scene-consistent object
proposals and depth from stereo images. European Conference on Computer
Vision. Springer. 2012, 467–481.

[7] M. Cagnazzo, M. Antonini and M. Barlaud. Mutual information-based context
quantization. Signal Processing: Image Communication 25.1 (2010), 64–74.

[8] E. Camuffo, D. Mari and S. Milani. Recent advancements in learning algo-
rithms for point clouds: an updated overview. Sensors 22.4 (2022), 1357.

[9] C. Cao, M. Preda and T. Zaharia. 3D point cloud compression: A survey. The
24th International Conference on 3D Web Technology. 2019, 1–9.

69

https://doi.org/10.1109/TITS.2022.3167957
https://doi.org/10.1109/TITS.2022.3167957
https://doi.org/https://doi.org/10.17743/jaes.2020.0039

[10] C. Cao, M. Preda, V. Zakharchenko, E. S. Jang and T. Zaharia. Compression
of sparse and dense dynamic point clouds—methods and standards. Proceedings
of the IEEE 109.9 (2021), 1537–1558.

[11] C. Chao, C. Tulvan, M. Preda and T. Zaharia. Skeleton-based motion estima-
tion for Point Cloud Compression. 2020 IEEE 22nd International Workshop
on Multimedia Signal Processing (MMSP). IEEE. 2020, 1–6.

[12] J. Chen, J. Hou and L.-P. Chau. Light field compression with disparity-guided
sparse coding based on structural key views. IEEE Transactions on Image Pro-
cessing 27.1 (2017), 314–324.

[13] Y. Cui, R. Chen, W. Chu, L. Chen, D. Tian, Y. Li and D. Cao. Deep learn-
ing for image and point cloud fusion in autonomous driving: A review. IEEE
Transactions on Intelligent Transportation Systems (2021).

[14] E. d’Eon, B. Harrison, T. Myers and P. A. Chou. 8i voxelized full bodies-a vox-
elized point cloud dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG)
input document WG11M40059/WG1M74006 7 (2017), 8.

[15] R. L. De Queiroz and P. A. Chou. Compression of 3D point clouds using a
region-adaptive hierarchical transform. IEEE Transactions on Image Processing
25.8 (2016), 3947–3956.

[16] E. Dib, M. Le Pendu, X. Jiang and C. Guillemot. Local low rank approxi-
mation with a parametric disparity model for light field compression. IEEE
Transactions on Image Processing 29 (2020), 9641–9653. DOI: 10.1109/TIP.
2020.3029655.

[17] S. Forchhammer, X. Wu and J. D. Andersen. Optimal context quantization
in lossless compression of image data sequences. IEEE Transactions on Image
Processing 13.4 (2004), 509–517.

[18] D. C. Garcia, T. A. Fonseca, R. U. Ferreira and R. L. de Queiroz. Geometry
coding for dynamic voxelized point clouds using octrees and multiple contexts.
IEEE Transactions on Image Processing 29 (2019), 313–322.

[19] D. C. Garcia and R. L. de Queiroz. Context-based octree coding for point-
cloud video. 2017 IEEE International Conference on Image Processing (ICIP).
IEEE. 2017, 1412–1416.

70

https://doi.org/10.1109/TIP.2020.3029655
https://doi.org/10.1109/TIP.2020.3029655

[20] D. C. Garcia and R. L. de Queiroz. Intra-frame context-based octree coding
for point-cloud geometry. 2018 25th IEEE International Conference on Image
Processing (ICIP). IEEE. 2018, 1807–1811.

[21] T. Georgiev, Z. Yu, A. Lumsdaine and S. Goma. Lytro camera technology:
theory, algorithms, performance analysis. Multimedia content and mobile de-
vices. Vol. 8667. International Society for Optics and Photonics. 2013, 86671J.

[22] C. Godard, O. Mac Aodha and G. J. Brostow. Unsupervised monocular depth
estimation with left-right consistency. Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, 270–279.

[23] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki and A. Tabatabai.
An overview of ongoing point cloud compression standardization activities:
Video-based (V-PCC) and geometry-based (G-PCC). APSIPA Transactions on
Signal and Information Processing 9 (2020).

[24] F. Groh, P. Wieschollek and H. Lensch. Flex-convolution (million-scale point-
cloud learning beyond grid-worlds). arXiv preprint arXiv:1803.07289 (2018).

[25] A. F. Guarda, N. M. Rodrigues and F. Pereira. Point cloud coding: Adopting
a deep learning-based approach. 2019 Picture Coding Symposium (PCS). IEEE.
2019, 1–5.

[26] S. Gumhold, Z. Kami, M. Isenburg and H.-P. Seidel. Predictive point-cloud
compression. ACM SIGGRAPH 2005 Sketches. 2005, 137–es.

[27] K. Honauer, O. Johannsen, D. Kondermann and B. Goldluecke. A dataset
and evaluation methodology for depth estimation on 4D light fields. Asian
Conference on Computer Vision. Springer. 2016, 19–34.

[28] J. Hou, J. Chen and L.-P. Chau. Light field image compression based on bi-
level view compensation with rate-distortion optimization. IEEE Transactions
on Circuits and Systems for Video Technology 29.2 (2019), 517–530. DOI: 10.
1109/TCSVT.2018.2802943.

[29] X. Hu, J. Shan, Y. Liu, L. Zhang and S. Shirmohammadi. An adaptive two-
layer light field compression scheme using GNN-based reconstruction. ACM
Transactions on Multimedia Computing, Communications, and Applications (TOMM)
16.2s (2020), 1–23.

71

https://doi.org/10.1109/TCSVT.2018.2802943
https://doi.org/10.1109/TCSVT.2018.2802943

[30] L. Huang, S. Wang, K. Wong, J. Liu and R. Urtasun. Octsqueeze: Octree-
structured entropy model for lidar compression. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, 1313–1323.

[31] X. Huang, P. An, Y. Chen, D. Liu and L. Shen. Low bitrate light field compres-
sion with geometry and content consistency. IEEE Transactions on Multimedia
(2020).

[32] D. A. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE 40.9 (1952), 1098–1101.

[33] E. S. Jang, M. Preda, K. Mammou, A. M. Tourapis, J. Kim, D. B. Graziosi,
S. Rhyu and M. Budagavi. Video-based point-cloud-compression standard in
MPEG: From evidence collection to committee draft [standards in a nutshell].
IEEE Signal Processing Magazine 36.3 (2019), 118–123.

[34] H.-G. Jeon, J. Park, G. Choe, J. Park, Y. Bok, Y.-W. Tai and I. So Kweon.
Accurate depth map estimation from a lenslet light field camera. Proceedings
of the IEEE conference on computer vision and pattern recognition. 2015, 1547–
1555.

[35] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz and E. Steinbach.
Real-time compression of point cloud streams. 2012 IEEE International Con-
ference on Robotics and Automation. IEEE. 2012, 778–785.

[36] M. Krivokuća, P. A. Chou and M. Koroteev. A volumetric approach to point
cloud compression–part II: geometry compression. IEEE Transactions on Im-
age Processing 29 (2020), 2217–2229. DOI: 10.1109/TIP.2019.2957853.

[37] M. Li, W. Zuo, S. Gu, D. Zhao and D. Zhang. Learning convolutional net-
works for content-weighted image compression. Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. 2018, 3214–3223.

[38] Y. Li, L. Ma, Z. Zhong, F. Liu, M. A. Chapman, D. Cao and J. Li. Deep learn-
ing for lidar point clouds in autonomous driving: A review. IEEE Transactions
on Neural Networks and Learning Systems 32.8 (2020), 3412–3432.

[39] D. Liu, P. An, R. Ma, W. Zhan, X. Huang and A. A. Yahya. Content-based
light field image compression method with Gaussian process regression. IEEE
Transactions on Multimedia 22.4 (2020), 846–859. DOI: 10.1109/TMM.2019.
2934426.

72

https://doi.org/10.1109/TIP.2019.2957853
https://doi.org/10.1109/TMM.2019.2934426
https://doi.org/10.1109/TMM.2019.2934426

[40] D. Liu, L. Wang, L. Li, Z. Xiong, F. Wu and W. Zeng. Pseudo-sequence-based
light field image compression. 2016 IEEE International Conference on Multime-
dia & Expo Workshops (ICMEW). IEEE. 2016, 1–4.

[41] X. Liu, M. Yan and J. Bohg. MeteorNet: Deep learning on dynamic 3D point
cloud sequences. Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV). Oct. 2019.

[42] Y. Liu, B. Fan, G. Meng, J. Lu, S. Xiang and C. Pan. Densepoint: Learning
densely contextual representation for efficient point cloud processing. Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision. 2019,
5239–5248.

[43] Z. Liu, S. Zhou, C. Suo, P. Yin, W. Chen, H. Wang, H. Li and Y.-H. Liu. Lpd-
net: 3d point cloud learning for large-scale place recognition and environment
analysis. Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2019, 2831–2840.

[44] C. Loop, Q. Cai, S. O. Escolano and P. A. Chou. Microsoft voxelized upper
bodies-a voxelized point cloud dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1
(MPEG/JPEG) input document m38673 M 72012 (2016), 2016.

[45] G. Lu, X. Zhang, W. Ouyang, L. Chen, Z. Gao and D. Xu. An end-to-end
learning framework for video compression. IEEE Transactions on pattern anal-
ysis and machine intelligence (2020).

[46] D. Meagher. Geometric modeling using octree encoding. Computer graphics
and image processing 19.2 (1982), 129–147.

[47] R. Mekuria, K. Blom and P. Cesar. Design, implementation, and evaluation
of a point cloud codec for tele-immersive video. IEEE Transactions on Circuits
and Systems for Video Technology 27.4 (2016), 828–842.

[48] R. Mekuria, M. Sanna, S. Asioli, E. Izquierdo, D. C. Bulterman and P. Cesar.
A 3d tele-immersion system based on live captured mesh geometry. Proceed-
ings of the 4th ACM Multimedia Systems Conference. 2013, 24–35.

[49] B. Merry, P. Marais and J. Gain. Compression of dense and regular point
clouds. Proceedings of the 4th international conference on Computer graphics,
virtual reality, visualisation and interaction in Africa. 2006, 15–20.

73

[50] S. Milani. A syndrome-based autoencoder for point cloud geometry compres-
sion. 2020 IEEE International Conference on Image Processing (ICIP). IEEE.
2020, 2686–2690.

[51] S. Milani. ADAE: Adversarial Distributed Source Autoencoder For Point Cloud
Compression. 2021 IEEE International Conference on Image Processing (ICIP).
2021, 3078–3082. DOI: 10.1109/ICIP42928.2021.9506750.

[52] MPEG Group TMC13. https://github.com/MPEGGroup/mpeg-pcc-tmc13.
Accessed: 2020-03-20.

[53] M. U. Mukati and S. Forchhammer. Epipolar plane image-based lossless and
near-lossless light field compression. IEEE Access 9 (2020), 1124–1136.

[54] M. U. Mukati and S. Forchhammer. EPIC: Context adaptive lossless light field
compression using epipolar plane images. 2020 Data Compression Conference
(DCC). IEEE. 2020, 43–52.

[55] D. T. Nguyen, M. Quach, G. Valenzise and P. Duhamel. Learning-based loss-
less compression of 3d point cloud geometry. ICASSP 2021-2021 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
2021, 4220–4224.

[56] D. T. Nguyen, M. Quach, G. Valenzise and P. Duhamel. Lossless coding of
point cloud geometry using a deep generative model. IEEE Transactions on
Circuits and Systems for Video Technology 31.12 (2021), 4617–4629.

[57] D. T. Nguyen, M. Quach, G. Valenzise and P. Duhamel. Multiscale deep con-
text modeling for lossless point cloud geometry compression. 2021 IEEE Inter-
national Conference on Multimedia & Expo Workshops (ICMEW). IEEE. 2021,
1–6.

[58] T. Ochotta and D. Saupe. Compression of point-based 3D models by shape-
adaptive wavelet coding of multi-height fields. SPBG’04 Symposium on Point -
Based Graphics 2004. Ed. by M. Gross, H. Pfister, M. Alexa and S. Rusinkiewicz.
The Eurographics Association, 2004. ISBN: 3-905673-09-6. DOI: 10.2312/
SPBG/SPBG04/103-112.

[59] W. Oropallo, L. A. Piegl, P. Rosen and K. Rajab. Point cloud slicing for 3-D
printing. Computer-Aided Design and Applications 15.1 (2018), 90–97.

74

https://doi.org/10.1109/ICIP42928.2021.9506750
https://github.com/MPEGGroup/mpeg-pcc-tmc13
https://doi.org/10.2312/SPBG/SPBG04/103-112
https://doi.org/10.2312/SPBG/SPBG04/103-112

[60] I. K. Park, K. M. Lee et al. Robust light field depth estimation using occlusion-
noise aware data costs. IEEE Transactions on pattern analysis and machine intel-
ligence 40.10 (2017), 2484–2497.

[61] E. Peixoto, E. Medeiros and E. Ramalho. Silhouette 4D: An inter-frame loss-
less geometry coder of dynamic voxelized point clouds. 2020 IEEE Interna-
tional Conference on Image Processing (ICIP). IEEE. 2020, 2691–2695.

[62] E. Peixoto. Intra-frame compression of point cloud geometry using dyadic
decomposition. IEEE Signal Processing Letters 27 (2020), 246–250.

[63] J. Peng, C.-S. Kim and C.-C. Jay Kuo. Technologies for 3D mesh compres-
sion: A survey. Journal of Visual Communication and Image Representation
16.6 (2005), 688–733. ISSN: 1047-3203. DOI: https://doi.org/10.1016/j.
jvcir.2005.03.001. URL: https://www.sciencedirect.com/science/
article/pii/S1047320305000295.

[64] R. Pierdicca, M. Paolanti, F. Matrone, M. Martini, C. Morbidoni, E. S. Malin-
verni, E. Frontoni and A. M. Lingua. Point cloud semantic segmentation using
a deep learning framework for cultural heritage. Remote sensing 12.6 (2020),
1005.

[65] M. Quach, J. Pang, D. Tian, G. Valenzise and F. Dufaux. Survey on deep
learning-based point cloud compression. Frontiers in Signal Processing (2022).

[66] M. Quach, G. Valenzise and F. Dufaux. Learning convolutional transforms
for lossy point cloud geometry compression. 2019 IEEE International Confer-
ence on Image Processing (ICIP). IEEE. 2019, 4320–4324.

[67] M. Quach, G. Valenzise and F. Dufaux. Improved deep point cloud geometry
compression. 2020 IEEE 22nd International Workshop on Multimedia Signal
Processing (MMSP). 2020, 1–6. DOI: 10.1109/MMSP48831.2020.9287077.

[68] Z. Que, G. Lu and D. Xu. VoxelContext-Net: An octree-based framework for
point cloud compression. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2021, 6042–6051.

[69] R. L. de Queiroz, D. C. Garcia, P. A. Chou and D. A. Florencio. Distance-
based probability model for octree coding. IEEE Signal Processing Letters 25.6
(2018), 739–742.

75

https://doi.org/https://doi.org/10.1016/j.jvcir.2005.03.001
https://doi.org/https://doi.org/10.1016/j.jvcir.2005.03.001
https://www.sciencedirect.com/science/article/pii/S1047320305000295
https://www.sciencedirect.com/science/article/pii/S1047320305000295
https://doi.org/10.1109/MMSP48831.2020.9287077

[70] E. Ramalho, E. Peixoto and E. Medeiros. Silhouette 4D with context selec-
tion: lossless geometry compression of dynamic point clouds. IEEE Signal Pro-
cessing Letters 28 (2021), 1660–1664.

[71] J. Rissanen. A universal data compression system. IEEE Transactions on Infor-
mation Theory 29.5 (1983), 656–664. DOI: 10.1109/TIT.1983.1056741.

[72] J. Rissanen and G. G. Langdon. Arithmetic coding. IBM Journal of research
and development 23.2 (1979), 149–162.

[73] J. Rossignac. Edgebreaker: connectivity compression for triangle meshes. IEEE
Transactions on Visualization and Computer Graphics 5.1 (1999), 47–61. DOI:
10.1109/2945.764870.

[74] R. Schnabel and R. Klein. Octree-based point-cloud compression. PBG@ SIG-
GRAPH. 2006, 111–120.

[75] O. Schreer, I. Feldmann, S. Renault, M. Zepp, M. Worchel, P. Eisert and P.
Kauff. Capture and 3D video processing of volumetric video. 2019 IEEE In-
ternational Conference on Image Processing (ICIP). 2019, 4310–4314. DOI: 10.
1109/ICIP.2019.8803576.

[76] S. Schwarz, G. Martin-Cocher, D. Flynn and M. Budagavi. Common test con-
ditions for point cloud compression. Document ISO/IEC JTC1/SC29/WG11
w17766, Ljubljana, Slovenia (2018).

[77] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou, R. A.
Cohen, M. Krivokuća, S. Lasserre, Z. Li et al. Emerging MPEG standards for
point cloud compression. IEEE Journal on Emerging and Selected Topics in Cir-
cuits and Systems 9.1 (2018), 133–148.

[78] C. E. Shannon. A mathematical theory of communication. The Bell system
technical journal 27.3 (1948), 379–423.

[79] C. Shin, H.-G. Jeon, Y. Yoon, I. S. Kweon and S. J. Kim. Epinet: A fully-
convolutional neural network using epipolar geometry for depth from light
field images. Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. 2018, 4748–4757.

[80] M. Stepanov, M. U. Mukati, G. Valenzise, S. Forchhammer and F. Dufaux.
Learning-based lossless light field compression. IEEE International Workshop
on Multimedia Signal Processing (MMSP’2021). 2021.

76

https://doi.org/10.1109/TIT.1983.1056741
https://doi.org/10.1109/2945.764870
https://doi.org/10.1109/ICIP.2019.8803576
https://doi.org/10.1109/ICIP.2019.8803576

[81] I. Tabus, I. Schiopu and J. Astola. Context coding of depth map images un-
der the piecewise-constant image model representation. IEEE Transactions on
Image Processing 22.11 (2013), 4195–4210.

[82] D. Taubman. High performance scalable image compression with EBCOT.
IEEE Transactions on image processing 9.7 (2000), 1158–1170.

[83] D. Tian, H. Ochimizu, C. Feng, R. Cohen and A. Vetro. Geometric distor-
tion metrics for point cloud compression. 2017 IEEE International Conference
on Image Processing (ICIP). IEEE. 2017, 3460–3464.

[84] Y.-J. Tsai, Y.-L. Liu, M. Ouhyoung and Y.-Y. Chuang. Attention-based view
selection networks for light-field disparity estimation. Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 34. 07. 2020, 12095–12103.

[85] J. Wang, D. Ding, Z. Li and Z. Ma. Multiscale point cloud geometry compres-
sion. 2021 Data Compression Conference (DCC). IEEE. 2021, 73–82.

[86] J. Wang, H. Zhu, H. Liu and Z. Ma. Lossy point cloud geometry compression
via end-to-end learning. IEEE Transactions on Circuits and Systems for Video
Technology 31.12 (2021), 4909–4923.

[87] Y. Wang and J. M. Solomon. Deep closest point: Learning representations for
point cloud registration. Proceedings of the IEEE/CVF International Conference
on Computer Vision. 2019, 3523–3532.

[88] Z.-R. Wang, C.-G. Yang and S.-L. Dai. A fast compression framework based
on 3D point cloud data for telepresence. International Journal of Automation
and Computing 17.6 (2020), 855–866.

[89] M. J. Weinberger, J. J. Rissanen and R. B. Arps. Applications of universal con-
text modeling to lossless compression of gray-scale images. IEEE Transactions
on Image Processing 5.4 (1996), 575–586.

[90] T. A. Welch. A technique for high-performance data compression. Computer
17.06 (1984), 8–19.

[91] X. Wen, X. Wang, J. Hou, L. Ma, Y. Zhou and J. Jiang. Lossy geometry com-
pression of 3d point cloud data via an adaptive octree-guided network. 2020
IEEE International Conference on Multimedia and Expo (ICME). IEEE. 2020,
1–6.

77

[92] H. White. Printed English compression by dictionary encoding. Proceedings
of the IEEE 55.3 (1967), 390–396.

[93] X. Wu, P. A. Chou and X. Xue. Minimum conditional entropy context quan-
tization. IEEE International Symposium on Information Theory. Citeseer. 2000,
43–43.

[94] X. Wu and N. Memon. Context-based, adaptive, lossless image coding. IEEE
transactions on Communications 45.4 (1997), 437–444.

[95] J. Xiong, H. Gao, M. Wang, H. Li, K. N. Ngan and W. Lin. Advanced ge-
ometry surface coding for dynamic point cloud compression. arXiv preprint
arXiv:2103.06549 (2021).

[96] Y. Xu, W. Zhu, Y. Xu and Z. Li. Dynamic point cloud geometry compression
via patch-wise polynomial fitting. ICASSP 2019-2019 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019, 2287–
2291.

[97] J. Zhang, X. Zhao, Z. Chen and Z. Lu. A review of deep learning-based se-
mantic segmentation for point cloud. IEEE Access 7 (2019), 179118–179133.

[98] Z. Zhang, Y. Dai and J. Sun. Deep learning based point cloud registration: an
overview. Virtual Reality & Intelligent Hardware 2.3 (2020), 222–246.

[99] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on information theory 23.3 (1977), 337–343.

[100] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate
coding. IEEE Transactions on Information Theory 24.5 (1978), 530–536.

78

PUBLICATIONS

79

PUBLICATION

I

Corner view disparity estimation for lossless light field compression
E. C. Kaya and I. Tabus

2019 1st European Light Field Imaging Workshop (ELFI)2019

Publication reprinted with the permission of the copyright holders

CORNER VIEW DISPARITY ESTIMATION FOR LOSSLESS LIGHT FIELD
COMPRESSION

Emre Can Kaya, Ioan Tabus

Tampere University
Computing Sciences Unit

Tampere, Finland

ABSTRACT
In this paper we study disparity estimation for high
density camera arrays using convolution neural networks
(CNN) with the goal of achieving an overall description
of all disparity images needed in the warping process
for light field compression. Furthermore, we present a
lossless compression scheme that makes use of the ob-
tained disparity estimates. The scheme provides random
access to individual views, as opposed to most pub-
lished lossless light field compression, which require the
simultaneous decoding of all views. Following similar
steps as in EPINET, which is a recently published CNN
based estimator of the disparity at the center view, we
design a CNN for estimating the disparity of the views in
corner positions. EPINET uses several data augmentation
techniques through rotation and flipping of light field and
we study similar transformations of the light field that
provide data augmentation when estimating corner views
disparities. The performance of the estimated disparities
is evaluated first in terms of the traditional mean square
error and percentage of pixels above a certain threshold.
Additionally, we validate the quality of the disparity esti-
mates in terms of their successful usage for the warping
stage in a lossless color view compression scheme. The
lossless compression achieved by the estimated disparities
is shown to be close to the lossless compression achieved
when using ground truth disparities. Codes are available
at https://github.com/marmus12/CornerView.

I. INTRODUCTION

Disparity estimation is an active area of research that
has several applications in computer vision. Disparity
maps contain the essential information about how the
consecutive views in a certain angular direction of the
camera array are related, making them very useful for light
field compression.

Recently, CNN based methods proved to be successful
in several light field processing tasks [1], [2]. EPINET
[3] is a CNN model for estimating a disparity map of a
light field image. The disparity map generated by EPINET
corresponds to the center view which is the disparity
between the center view and its closest right horizontal
neighbour view. In the following, we use the term corner
view disparity to refer to the disparity between the corner
view and its closest right horizontal neighbor, or equiva-
lently the negative disparities to the left neighbor. EPINET

has a multi-stream architecture which efficiently combines
the information coming from different view stacks. In
the network, several stacks of views are considered, ex-
tracting information from the epipolar plane images at
different angular directions in the camera array. The four
input view stacks are intersecting at the center view. For
estimating the center view disparity with EPINET, it is
needed that input views from around the center view are
available. Here, we present a different scheme, in which
the disparities can be estimated for the most extreme
locations in a camera array, namely for the corner views.
It should be noted that once the corner and center view
estimates are available, reliable estimates can be obtained
for any desired view, since reliable information exists for
displacements on various angular directions.

II. CORNER VIEW DISPARITY ESTIMATION

The proposed CNN architecture for estimating a corner
view disparity map is depicted on Fig. 1. We call this
architecture CEPINET, short for Corner EPINET. This
architecture is derived from the original EPINET architec-
ture by replacing the 45◦ and 135◦ diagonal subnetworks
with a single diagonal subnetwork, since in CEPINET
there is a single diagonal stack. Moreover, the number of
filters in the merge network is reduced to 210 from 280 to
remain consistent with the number of input stacks. The
CEPINET network encompasses 2.96 million trainable
parameters, while the number for EPINET is 5.12 millions.

In EPINET, data augmentation of the light field through
rotation is performed by rotating the light field image
around the center view. Therefore, the center view remains
at the center after rotation. Hence, the resulting light field
is still a valid input for the network that estimates the
center disparity. In CEPINET, the situation is different in
the sense that whenever the light field is rotated about
the center of view array, the position of every corner
changes. In order to train a single network, which by
proper preprocessing can estimate any of the four corners,
we introduce rules for forming the input stacks, with
the convention that the disparity in the upper left corner
has to be estimated. According to this convention, when
estimating the other three corners, the input light field is
rotated by multiples of 90 degrees to bring the corner
view that is being estimated to the upper left position.
On the other hand, we also apply transposition of the
light field as an augmentation which also yields a valid

XXX-X-XXXX-XXXX-X/XX/$XX.XX ©2019 IEEE

light field. Upper left corner view remains in the same
place after transposing the light field, thus not violating our
convention. In summary, eight different training samples
are obtained by rotating and transposing a light field
image: two for each corner (original and transpose). The
other augmentation strategies such as color scaling are kept
the same as in EPINET.
III. LOSSLESS COMPRESSION USING CORNER

AND CENTER VIEW DISPARITIES

Once the disparity maps for the corner views and the
center view are obtained, any target view can be recon-
structed with small error by warping reference images and
combining the warped images. The proposed lossless light
field compressor, dubbed here LLFC, is depicted in Fig.
2. The scheme is close in spirit to the disparity based and
region based plenoptic image compression from [4], but
has a more refined combining of warping from several
references, based on a region based best performance
switch, as described next. Unlike the previous work in [4],
LLFC makes use of the corner view disparity estimations
in addition to the center view for predicting one general
position view.

For each target view, a disparity image is generated
by warping the closest reference’s disparity to the target
location. The target disparity is quantized and divided
into connected regions. For each region, one marks in an
image, called best reference labels image, the index of
that warped image which yields the smallest MSE over
the region. The best reference labels image is constructed
for each target and it is used in conjunction with the
warped references to predict the target view. Best reference
labels image has all elements as integers 1 to 5 (indexing
the winner, out of 4 corners and center). First the side
information is encoded: 5 reference disparity maps, 5
reference color images, and 1 best reference labels image
for each target. Furthermore, since we want to perform
lossless compression, residual images for each target are
also transmitted. Best reference labels images are very
sparse allowing them to be compressed efficiently. We
compress reference color, disparity images and residual
images with lossless JPEG 2000 [5] prior to transmission.
The best reference labels image can be encoded either with
JPEG 2000 or CERV [6]. We present results for both cases.

IV. EXPERIMENTAL WORK

In this section, we present experimental results for
corner view disparity estimation and lossless compression.
Our training and validation set consists of 13 samples
from the HCI Benchmark [7]. Three samples that contain
reflective surfaces (vinyl, kitchen and museum) are chosen
as test samples. Since reflective surface disparities are hard
to estimate, MSEs for these samples are much higher than
the validation samples in Tables I-II.

We train 2 CEPINET and 2 corresponding baseline
EPINET models, each time leaving out 1 sample (first
greek, then town) for validation so that the training set
consists of 12 samples. From each light field image, 8
different training samples are obtained by rotating the

Table I. MSE*103 with Town as Validation
View Train Mean Vinyl Kitchen Museum Town

NW 7.17 97.13 141.73 65.34 3.67
NE 7.55 79.11 138.28 60.66 2.95
SW 7.69 124.50 157.88 83.01 6.03
SE 9.21 156.59 153.87 107.58 5.14
Center 15.13 112.09 164.57 116.68 3.30

Table II. MSE*103 with Greek as Validation
View Train Mean Vinyl Kitchen Museum Greek

NW 22.74 114.53 148.17 66.88 95.12
NE 20.65 90.33 138.69 82.28 206.86
SW 21.43 115.13 175.99 52.73 250.77
SE 23.79 126.98 152.06 65.29 272.86
Center 12.00 117.70 154.84 76.05 118.61

light field with multiples of 90 degrees and taking the
transpose. These 8 different cases are randomly sampled
during training. One training batch consists of 48 randomly
chosen multi-scale patches with size 25x25. Learning rate
is initially set as 10−4 and it is dropped by a factor of 0.5
whenever training loss reaches a plateau. We present MSE
and Bad Pixel Ratio results for 5 different views, 4 being
corners and 1 being center on Tables I-IV. Qualitative
results obtained with 2 EPINET and 2 CEPINET models
with the corresponding validation samples are presented
on Figure 3.

We report the compressed size, as total compressed file
size over the total number of pixels (9 × 9× 512× 512)
of the light field, expressed in bits per pixel (bpp), for
16 test samples out of the training set averaged over all
target views with LLFC and JPEG2000 are presented on
Tables V-VI. According to Tables V-VI LLFC compres-
sion method yields superior results to JPEG2000 for all
samples. Using CERV [6] for compressing best reference
labels, instead of JPEG2000, yields slightly better results
as evident on Tables V-VI. CERV provides a specialized
framework for encoding constant value regions in an
image, therefore it is expected to yield better results
when compared to JPEG 2000 which is a generic image
compression scheme. On the other hand, JPEG 2000 has
the advantage of providing a less complicated encoder
and decoder architecture while not sacrificing a lot from
accuracy.

The compressed size obtained with ground truth (GT)
corner and center disparities are also presented as an ideal
reference on Table V. GT disparity results provide an

Table III. Bad Pixel Ratio with Town as Validation (Threshold =0.07)
View Train Mean Vinyl Kitchen Museum Town

NW 0.037 0.229 0.251 0.113 0.049
NE 0.037 0.237 0.238 0.107 0.043
SW 0.043 0.254 0.246 0.130 0.047
SE 0.043 0.230 0.244 0.132 0.052
Center 0.043 0.260 0.259 0.132 0.047

Table IV. Bad Pixel Ratio with Greek as Validation (Threshold = 0.07)
View Train Mean Vinyl Kitchen Museum Greek

NW 0.108 0.272 0.279 0.133 0.309
NE 0.108 0.267 0.278 0.125 0.295
SW 0.103 0.294 0.275 0.139 0.313
SE 0.109 0.273 0.271 0.143 0.337
Center 0.075 0.245 0.253 0.132 0.279

Figure 1. CEPINET: the angular directions for estimating the disparity map of the upper left corner view (green square) are depicted as black arrows.

Figure 2. Proposed encoder architecture for lossless compression.

Table V. The compressed size for samples with GT disparity available
Sample JP2K LLFC(JP2K/CERV) LLFC(GT Ds)
vinyl 7.38 4.41/4.30 4.08
kitchen 9.07 6.27/6.15 5.78
museum 10.97 7.01/6.92 6.67
greek 8.15 5.22/5.10 4.94

Table VI. The compressed size for samples without GT disparity
Sample JP2K LLFC(JP2K) LLFC(CERV)
dino 9.65 5.84 5.79
dots 24.16 20.43 20.06
bedroom 10.13 6.94 6.90
pyramids 19.88 13.40 13.32
stripes 3.44 2.01 1.92
bicycle 12.85 8.80 8.65
b.gammon 16.62 11.40 11.30
origami 10.53 6.97 6.83
boxes 11.34 8.12 7.95
cotton 6.96 3.26 3.21
sideboard 13.93 9.56 9.42
herbs 11.93 8.15 8.01

upper limit for the performance of our framework that can
be attained by improving the disparity estimation stage.
Best reference labels are encoded using CERV.

The compressed size results of our lossless compression

Table VII. The compressed size at different Views (LLFC(CERV))
Ref 7.81 7.96 8.01 8.10 7.95 7.91 7.80 Ref
7.92 8.70 8.77 8.82 8.23 8.83 8.76 8.70 7.93
8.02 8.73 8.80 8.77 8.14 8.76 8.83 8.75 8.02
8.04 8.75 8.73 8.69 7.94 8.68 8.75 8.79 8.06
7.95 7.89 7.86 7.72 Ref 7.73 7.89 7.94 8.00
8.21 8.72 8.69 8.66 7.88 8.64 8.72 8.75 8.19
8.12 8.81 8.71 8.67 7.97 8.67 8.73 8.81 8.13
7.96 8.73 8.80 8.71 7.99 8.68 8.77 8.73 7.97
Ref 7.79 7.94 7.98 7.92 7.93 7.89 7.77 Ref

scheme at every target view averaged over 16 samples
(listed on Tables V-VI) are presented on Table VII. These
values are computed by averaging the common costs due
to transmission of reference color and disparities over
all targets and adding each target’s own cost for best
reference labels and residuals. It should be noted that
this computation corresponds to the scenario when whole
light field image is being transmitted. Lossless JPEG2000
yields an average bpp of 11.7 for the same data for all
views. Hence, corner view based compression scheme
yields better results when compared to JPEG2000 at all
camera array locations as evident from Table VII.

Figure 3. Columns from left to right: Ground Truth, Estimation, Absolute Error, Bad Pixel Mask (0.07). Rows from top to bottom: Center, NW Corner,
Center, NW Corner.

V. CONCLUSION

In this work, we constructed the CEPINET for estimat-
ing corner view disparity maps of a light field image. It is
observed that this variant is able to generate corner view
disparities at a similar precision or even better than the
center view estimates by EPINET. The proposed lossless
compression method provides random access to individual
targets, at the cost of transmitting first only the references,
and its compression ratio is expected to be lower than the
methods that don’t possess the random access feature. On
the other hand, the compression ratio of LLFC is better
than the independent encoding of views by JPEG 2000,
which provides instantaneous random access.

VI. REFERENCES

[1] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi
Ramamoorthi, “Learning-based view synthesis for
light field cameras,” ACM Transactions on Graphics
(TOG), vol. 35, no. 6, pp. 193, 2016.

[2] Youngjin Yoon, Hae-Gon Jeon, Donggeun Yoo, Joon-
Young Lee, and In So Kweon, “Learning a deep
convolutional network for light-field image super-
resolution,” in Proceedings of the IEEE international
conference on computer vision workshops, 2015, pp.
24–32.

[3] Changha Shin, Hae-Gon Jeon, Youngjin Yoon,
In So Kweon, and Seon Joo Kim, “Epinet: A fully-
convolutional neural network using epipolar geometry
for depth from light field images,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 4748–4757.

[4] Ioan Tabus, Petri Helin, and Pekka Astola, “Lossy
compression of lenslet images from plenoptic cameras
combining sparse predictive coding and jpeg 2000,”
in 2017 IEEE International Conference on Image
Processing (ICIP). IEEE, 2017, pp. 4567–4571.

[5] Charilaos Christopoulos, Athanassios Skodras, and
Touradj Ebrahimi, “The jpeg2000 still image coding
system: an overview,” IEEE, vol. 46, no. 4, pp. 1103–
1127, 2000.

[6] Ioan Tabus, Ionut Schiopu, and Jaakko Astola, “Con-
text coding of depth map images under the piecewise-
constant image model representation,” IEEE Transac-
tions on Image Processing, vol. 22, no. 11, pp. 4195–
4210, 2013.

[7] Katrin Honauer, Ole Johannsen, Daniel Kondermann,
and Bastian Goldluecke, “A dataset and evaluation
methodology for depth estimation on 4d light fields,”
in Asian Conference on Computer Vision. Springer,
2016, pp. 19–34.

PUBLICATION

II

Successive Refinement of Bounding Volumes for Point Cloud Coding
I. Tabus, E. C. Kaya and S. Schwarz

2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)2020, 1–6
DOI: 10.1109/MMSP48831.2020.9287106

© 2020 IEEE. Reprinted, with permission, from Ioan Tabus, Emre Can Kaya
and Sebastian Schwarz, Successive Refinement of Bounding Volumes for

Point Cloud Coding, International Workshop on Multimedia Signal
Processing, and September/2020

https://doi.org/10.1109/MMSP48831.2020.9287106

Successive Refinement of Bounding Volumes for
Point Cloud Coding

Ioan Tabus
Computing Sciences Unit

Tampere University
Tampere, Finland
ioan.tabus@tuni.fi

Emre Can Kaya
Computing Sciences Unit

Tampere University
Tampere, Finland
emre.kaya@tuni.fi

Sebastian Schwarz
Media Technology Research

Nokia Technologies
Munich, Germany

sebastian.schwarz@nokia.com

Abstract—The paper proposes a new lossy way of encoding
the geometry of point clouds. The proposed scheme reconstructs
the geometry from only the two depth maps associated to
a single projection direction and then proposes a progressive
reconstruction process using suitably defined anchor points.
The reconstruction from the two depth images follows several
primitives for analyzing and encoding, several of which are
only optional. The resulting bitstream is embedded and can be
truncated at various levels of reconstruction of the bounding
volume. The encoding tools for encoding the needed entities are
extremely simple and can be combined flexibly. The scheme can
also be combined with the G-PCC coding, for reconstructing in
a lossless way the sparse point clouds. The experiments show
improvement of the rate-distortion performance of the proposed
method when combined with the G-PCC codec as compared to
G-PCC codec alone.

Index Terms—point cloud coding, lossy geometry compression,
anchor points.

I. INTRODUCTION

The compression of the geometry of point clouds is subject
to a renewed strong interest, especially since it became a
main topic of the standardization bodies [1], [2]. This follows
decades of intense coverage in academic literature, where the
octree point cloud compression was introduced some four
decades ago and then steadily developed, with some landmark
references [3]–[10]. However, other alternative approaches are
recently considered, with a large number of contributions in
the area of deep learning methods, e.g., investigated in [11],
[12] and also other new approaches, e.g., using 2D image
processing for encoding a collection of 2D images as explored
in [13], [14].

In Section II we present the principle of our method, while
in Section III we detail the main steps of the algorithm. In
Section IV we present experimental results and finally Section
V contains a discussion and conclusions.

II. PRINCIPLE OF THE METHOD

In this paper the geometry encoding is done through a
sequential process, where tight bounding volumes around the
points of the point cloud are iteratively constructed and refined.
The point cloud is translated so that x, y, and z are strictly
positive and bounded by N,M, and L, respectively. We select
a first axis, say Oz, for defining the depth, and a second
axis, say Oy, for drawing perpendicular plane sections. The

starting stage is the encoding of two 2D depth images: one
for max z(x, y) and one for min z(x, y), for all (x, y) in the
N ×M rectangular grid. A reconstruction bounding volume
(RBV) is initialized to include all points (x, y, z) having z
between max z(x, y) and min z(x, y). The reconstruction
bounding volume is then sectioned perpendicular to the second
axis, at the planes y = y0, and for each resulting point cloud
section the boundary is extracted and refined in two stages, so
that it becomes identical to the true boundary of the section
y = y0. The first refining stage marks as ones the points
of the reconstructed boundary contour (RBC) that are true
points, and as zeros the points that are not true boundaries,
and the resulting binary string (BS) is encoded using a Markov
model. The starts and ends of the zero runs in the BS form
the potential anchor points, between which the true boundary
is different from the RBC. These true segments are encoded
as chain codes, resulting finally in the true border of the
entire section y = y0. Next are considered the connections
between the two successive sections along the plane y = y0
and the plane y = y0 + 1 (for which we know only the
true boundaries, but we don’t know yet the possible interior
points). By examining the necessary connectivity relations,
one obtains sets of candidate interior points engulfed between
the two boundaries, which are checked against ground truth
and their validity state is transmitted to the decoder. At this
stage the outer shape of a reconstructed bounding volume
is fully defined. One can perform additional iterations for
clarifying if among the marked candidate interior points within
each section there are points that do not belong to the point
cloud, hence transmitting refinements for the interior points,
until all points within the true bounding volume are correctly
transmitted. The successive markings of the true points along
candidate boundary contours or across boundary surfaces at
various stages give rise to exclusion information, which is
stored so that no point is tested twice if it belongs to the
point cloud or not.

The transmission of the markings along a sequence, or of
the chain codes for a sequence between two anchor points,
or of the interior points, have each some associated code
length, per occupied voxel transmitted. The transmission of the
refinements of the RBV is organized in the increasing order of
the bits per voxels of the elements, resulting in an embedded

bitstream, that can be truncated at various points, for obtaining
an optimized RD overall performance. We note that a point
cloud can be pre-processed so that it is sectioned in several
bounding volumes, where each section, say at y = y0, is
decomposed in several 2D connected components, resulting in
simple processing along boundaries of connected components,
and also facilitating random access to the different parts of
the point cloud. For sparse point clouds, the proposed method
can be applied at lower than full resolution levels, while for
a full lossless reconstruction one may call several stages of
further octree decomposition and encoding. However, good
lossy performance can be obtained already using the proposed
scheme alone.

III. DESCRIPTION OF THE ALGORITHM STAGES

We consider a point cloud defined by a (nPC×3) matrix B,
with the i’th row a vector containing the i’th pixel coordinates
Bi = [xi yi zi] for all i = 1, . . . , nPC . We consider
voxelized point clouds with 2n pixels per coordinate, where
Bij ∈ {0, . . . , 2n − 1}. We also refer to the point cloud as a
set B = {(xi, yi, zi)|i = 1, . . . , nPC}.

When convenient we might consider the six possible per-
mutations of the components so that the point cloud is viewed
from any of the six different direction. In this presentation
we associate z to “depth” coordinate, y to the direction for
sectioning the point cloud with a plane y = y0, and (z, x) to
the order of coordinates in the 2D image representing a section
(where z is the height or row index and x is the column index
in the 2D image).

A. Encode two depth images describing the upper cover and
lower cover of the bounded volume across the vertical Oz axis

This stage can be described simply as encoding the depth
image of the highest points seen above the Oxy plane and
then encoding the depth image of the lowest points above
the Oxy plane. The empty part of each depth image is
the same, so one can improve the performance by utilizing
this information when encoding the two images. We define
formally the two depth images as follows. We construct first
the outer maximum depth image Zmax: associate to each 2D-
point (x, y) ∈ {0, . . . , 2n − 1}2 of the square grid the value
Zmax(x, y) which a) either indicates a non-existence marker
Zmax(x, y) = −1 (in the case that (x, y) 6= (xi yi)} for all
(xi, yi, zi) ∈ B) or b) Zmax(x, y) specifies an existent depth
(in case that (x, y) appears in any triplet (xi, yi, zi)). The
existent depth is set as Zmax(x, y) = max{zi|(x, y, zi) ∈ B}.

Then similarly consider the outer minimum half-shell, as
Zmin(x, y) = min{zi|(x, y, zi) ∈ B} (in case that (x, y)
appears in any triplet (xi, yi, zi)), or mark the non-existence
marker Zmin(x, y) = −1 for the pairs (x, y) that are not
appearing in any true point (xi, yi, zi).

We use for encoding the depth images the algorithm (crack-
edge,region,value) (CERV) [15] which is very efficiently en-
coding first the geodesic contours of the depth image, then
it constructs out of the contours the connected component

regions having the same depth value, and in the end transmits
the depth value for each region.

In Figure 1 we show the two depth images that are encoded
in the first stage. One can see the potential benefits of encoding
the geodesic contours first and the transmitting the values in
the constant regions. The similarities of the contour shapes
(elongated along the outer contours of the shapes) make the
algorithm to collect very specific statistics when encoding the
geodesic shapes, and hence capture important regularities in
the depth image.

B. Construct the feasible region on the section at the plane
y = y0

We now consider the second chosen axis, Oy, and construct
perpendicular sections at every y0. The true occupancy image
Sy0

is defined at the pixel coordinates (z, x) as Sy0
(z, x) = 1

if (x, y0, z) ∈ B and otherwise Sy0
(z, x) = 0. We show in Fig.

2a) the true occupancy image at y0. We proceed to reconstruct
this true image out of the already transmitted information, and
using additionally transmitted entities, as follows.

From the currently transmitted depth images we can already
mark in a first section reconstruction S

[0]

y0
some known bound-

ary points: select all existent points, at which Zmin(x, y0) >

−1, and mark S
[0]

y0
(Zmin(x, y0), x) = 1. Similarly the informa-

tion in Zmax can be transferred to the section reconstruction,
by marking S

[0]

y0
(Zmax(x, y0), x) = 1 for all Zmax(x, y0) >

−1. In Fig. 2b) we show the occupied pixels in S
[0]

y0
, known

after decoding the two depth images, for a given value of y0.
We notice that at section y0, for a given x0 we already know

that any occupied pixel (z, x0) needs to have the coordinate
z obeying the constraint Zmin(x0, y0) ≤ z ≤ Zmax(x0, y0).
Hence we define as feasible region of occupancy the area con-
taining pixels (z, x0), with Zmin(x0, y0) ≤ z ≤ Zmax(x0, y0).
We denote the binary feasible image S

[1]

y0
. We show in Fig. 2c)

the feasible occupancy image at y0.

C. Encoding by Primitive One: Encode a binary mask for
recovering vertical stretches of existent pixels on the section
at the plane y = y0

We show in Fig. 3a) in white the boundary of the feasible
occupancy image at y0. The boundary is stored as a list of
pixels, when traversing in clock-wise sense the boundary. We
mark each element of the list by the occupancy status of that
pixel. In Fig. 3b) is shown by red a pixel marked as one and
by blue a pixel marked by zero. The list of this markings
is a binary sequence that can be very efficiently coding by
run-length coding or Markov model of order 1 and arithmetic
coding. After this stage, the decoder knows that all pixels
marked in red a true contour pixels.

D. Encoding by Primitive Two: Encode the missing elements
of the true boundary using anchored chain codes

As a very useful outcome of the previous stage, one can
extract the anchor points, between which we need to recon-
struct the unknown yet pieces of boundary. All the possible

anchor points are the ends of the red segments in Fig. 3b).
These anchor points are shown by cyan and red circles (cyan
for a starting pixel and red for a landing pixels), along the
clockwise traversing of the true boundary. At the encoder, the
segments of true boundaries between the anchor points are
encoded as chain codes and transmitted to the decoder. The
length of each segment does not need to be transmitted, since
we check during decoding of the chain that we arrived in the
landing pixel, and stop the chain encoding or decoding.

The anchor points can be visualized as points having
coordinates (x, y0, z) on the outer surface of the bounding
volume, and each chain code segment reconstructs an inner
segment of arbitrary complexity, see, e.g., the cyan contour at
the bottom right part of Fig. 6, which has a convoluted shape,
requiring a complex transformation process if one wanted to
project it on a plane. We do not project the points to a plane,
but instead we keep them organized as anchored segments, at
known locations of the outer surface.

E. Encoding by Primitive Three: Infer possible inner points
in two consecutive sections

Two consecutive sections, at y = y0 and y = y0 + 1
might have quite different outer boundary of the true region. In
order for the bounding volume to maintain 4 or 8 connectivity,
between the outer boundary of two sections one needs to add
inner points in one or both of the sections.

In Figure 5 are shown the operations that are needed
for adding inner pixels to the boundary of a section, when
its boundary forms un-occupied islands between it and the
boundary of the previous section.

The reason to presume the existence of some inner pixels
is that they would be necessary for ensuring connectivity
between the boundary pixels at two consecutive sections,
which is the case if the point cloud surface is water tight.
However, if this water tight hypothesis is not true, the decoder
will be announced to not include the candidate inner points.
In this primitive we find the candidate inner pixels to add,
without any coding cost, only by comparing two successive
boundaries and marking the islands (each island is a connected
component) of black pixels engulfed in the interior of the red
boundary, between the red boundary and the blue boundary
(see Figure 5a). After the candidate sets are identified, they
are checked against the true points existing in the section (the
true points include boundary points and inner points) as in 5b).
If an island contains true inner points it is declared valid, and
is marked with a one, so the decoder will know to add those
inner points in the reconstructed section (and consequently in
the reconstructed overall point cloud), as in 5c). This marking
cost is very small and pays off in adding very important group
of points to the reconstructed point cloud.

The process by which we added inner points to the section
at y = y0 +1 based on the boundary of the section at y = y0
can then be iterated also for adding inner points to y = y0+1,
based on the boundary of y = y0+2, when that boundary will
become available. Hence each section, say at y = y0 +1, can
be enriched and made closer to the true section, by using the

information about the boundary of the two sections, above and
below it.

Some interior points can still be missing after this phase of
Primitive Three, and they can be added in the next phases, if
the available bitrate allows transmitting additional information,
with transmission of new pairs of anchor points and of chains
of pixels formed from inner pixels.

Fig. 1. Stage 1: Encoding a front and a back depth map image. (Left) The two
depth images, shown in pseudocolor, can be represented in the most natural
way by encoding first the geodesic contours, and then for each region a value.
(Right) The resulting point cloud map, using only the two depth map images,
where points from the front depth map are shown in red and the points from
the back depth map are shown in blue. The outer surface is incomplete, which
can be seen well from the side views.

IV. EXPERIMENTAL RESULTS

The implementation of the method is illustrated for several
full-body point clouds. The datasets are from [16]. Each point
cloud is first decomposed in a number of “tubes” along the
Oy axis, so that each of their cross-sections is a single 2D-
connected component. For example, for “longdress” dataset,
the original number of points is 857966 and the first tube
covers 790833 points, the next largest covers 53795 points, so
together the two largest cover 844628 points. The algorithm
can be applied to each of the tubes, however we resorted to a
hybrid solution, where we encode with our algorithm only the
largest tube and collect all other points of the smaller tubes
into a point cloud which is encoded by G-PCC.

We tested the resulted scheme at more quantization points
than required in the CTC [17] and the evaluation of distortion
is done according to the CTC [17] [18].

In Fig. 7 and 8 is shown the performance of the proposes
bounding volume method. It exceeds the performance of the
G-PCC alone, and hence it is shown to capture in a more
efficient way the regularities of the point cloud surfaces.
Further refining of the method and experiments are underway

a) b) c)
Fig. 2. Section on the point cloud at the plane y = 50 (for a PC with resolution n = 8 bits. Stage 2: Analyzing the existing points from Stage 1 for
constraints on the occupied points of current section. a) True occupied points on this section; b) Points known to be occupied from Stage 1, after decoding
the two depth map images; c) Feasible region for the occupied points, drawn by uniting the vertical maximum and minimum points on each vertical at the
image in Panel b).

a) b)
Fig. 3. Stage 3: Encoding with Primitive One: a) Boundary of the feasible region marked in white; b) Encoding the incorrect pixels on the boundary of the
feasible region (the pixels marked in blue); The run length coding or Markov chain arithmetic coding of the long stretches of ones and zeros are very efficient.

a) b) c)
Fig. 4. Stage 4: Encoding with Primitive Two: a) True boundary points recovered after Stage 1 (Primitive Coding One) with their open ends marked as anchor
points. The boundary indexing starts at the bottom-leftmost pixel and goes clockwise around the boundary of Figure 3b), marking along when a recovered
stretch of ones ends (green circle) and when it restarts (red circle). b) Encoding the missing true boundary segments, marked in cyan, as chain codes. The
ends of each chain code are known, so its length does not need to be transmitted. c) The end of Stage 2, with the full true boundary recovered (marked in
red) and with the additional missing inner true points marked in green.

a) b) c)
Fig. 5. Stage 5: Encoding with Primitive Three: Two consecutive sections, at y = 143 and y = 144. a) True boundaries obtained at y = 143 and y = 144
with Primitive One and Two. The boundary at 143 is shown in blue and green, the boundary at 144 is shown in green and red (green are the common points).
All black points stranded between red (outer) and blue (inner) are candidates for interior points at y = 144; b) Indeed all the true points at y = 144 (shown
in red and green) include the candidate interior points, so they should be added to section y = 144 (in blue and green is shown the boundary at y = 143);
c) Finally the new interior points, shown in blue, are added to the boundary (shown in red) of the section at y = 144.

Fig. 6. A detail of encoding with Primitives One and Two for encoding the
outer boundary of a section at y = 360 at a higher resolution PC (n = 9).
Blue ‘x’ marks the feasible boundary obtained after transmitting the two depth
images; the red circle marks the true boundary pixels recovered after encoding
by Primitive One and the cyan circles mark the pixels recovered after encoding
by Primitive Two.

for improving the efficiency and for adding new features, able
to extract regularities from more complex point clouds.

V. DISCUSSION AND CONCLUSIONS

This proposal is intended for lossy compression of the
geometry of point clouds. Compared to the existing methods,
there are several new features, listed below.

The proposed scheme reconstructs the geometry from only
the two depth maps associated to a single projection direction.
Hence there is no need to organize an expanded pad or mosaic
image. Instead, one uses well defined anchor points, that are
recovered as side information of the progressive reconstruction
process.

The reconstruction from the two depth images follows
several primitives for analyzing and encoding, several of which
are only optional. The resulting bitstream is embeded, it can be
truncated at various levels of reconstruction of the bounding
volume.

The encoding tools for encoding the needed entities (for the
binary string representing the occupancy mask, for the chain
codes representing the anchor segments) are extremely simple
and elementary: run length coding, or Markov models of order
one with arithmetic coding, and finally chain coding which can
be implemented in many efficient ways.

The scheme can be combined with the G-PCC coding, for
reconstructing point clouds in a lossless way.

REFERENCES

[1] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou,
R. A. Cohen, M. Krivokuća, S. Lasserre, Z. Li et al., “Emerging mpeg
standards for point cloud compression,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 9, no. 1, pp. 133–148,
2018.

[2] T. Ebrahimi, S. Foessel, F. Pereira, and P. Schelkens, “Jpeg pleno:
Toward an efficient representation of visual reality,” Ieee Multimedia,
vol. 23, no. 4, pp. 14–20, 2016.

[3] C. L. Jackins and S. L. Tanimoto, “Oct-trees and their use in representing
three-dimensional objects,” Computer Graphics and Image Processing,
vol. 14, no. 3, pp. 249–270, 1980.

[4] D. Meagher, “Geometric modeling using octree encoding,” Computer
graphics and image processing, vol. 19, no. 2, pp. 129–147, 1982.

Fig. 7. Results of encoding full body point clouds using the proposed method,
compared against the G-PCC baseline and G-PCC tri-soup.

Fig. 8. Results of encoding full body point clouds using the proposed method,
compared against the G-PCC baseline and G-PCC tri-soup.

[5] Y. Huang, J. Peng, C.-C. J. Kuo, and M. Gopi, “Octree-based progressive
geometry coding of point clouds.” SPBG, vol. 6, pp. 103–110, 2006.

[6] R. Schnabel and R. Klein, “Octree-based point-cloud compression.”
[15] I. Tabus, I. Schiopu, and J. Astola, “Context coding of depth map

Spbg, vol. 6, pp. 111–120, 2006.
[7] R. Mekuria, K. Blom, and P. Cesar, “Design, implementation, and

evaluation of a point cloud codec for tele-immersive video,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 27,
no. 4, pp. 828–842, 2016.

[8] R. L. de Queiroz and P. A. Chou, “Motion-compensated compression
of dynamic voxelized point clouds,” IEEE Transactions on Image
Processing, vol. 26, no. 8, pp. 3886–3895, 2017.

[9] S. Milani, “Fast point cloud compression via reversible cellular automata
block transform,” in 2017 IEEE International Conference on Image
Processing (ICIP). IEEE, 2017, pp. 4013–4017.

[10] D. C. Garcia, T. A. Fonseca, R. U. Ferreira, and R. L. de Queiroz,
“Geometry coding for dynamic voxelized point clouds using octrees and
multiple contexts,” IEEE Transactions on Image Processing, vol. 29, pp.
313–322, 2019.

[11] M. Quach, G. Valenzise, and F. Dufaux, “Learning convolutional trans-
forms for lossy point cloud geometry compression,” in 2019 IEEE
International Conference on Image Processing (ICIP). IEEE, 2019,
pp. 4320–4324.

[12] A. F. R. Guarda, N. M. M. Rodrigues, and F. Pereira, “Deep learning-
based point cloud geometry coding: Rd control through implicit and
explicit quantization,” in 2020 IEEE International Conference on Mul-
timedia Expo Workshops (ICMEW), 2020, pp. 1–6.

[13] R. Rosário and E. Peixoto, “Intra-frame compression of point cloud
geometry using boolean decomposition,” in 2019 IEEE Visual Commu-
nications and Image Processing (VCIP). IEEE, 2019, pp. 1–4.

[14] E. Peixoto, “Intra-frame compression of point cloud geometry using
dyadic decomposition,” IEEE Signal Processing Letters, vol. 27, pp.
246–250, 2020.
images under the piecewise-constant image model representation,” IEEE
Transactions on Image Processing, vol. 22, no. 11, pp. 4195–4210, Nov
2013.

[16] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i voxelized full
bodies, version 2–a voxelized point cloud dataset,” ISO/IEC JTC1/SC29
Joint WG11/WG1 (MPEG/JPEG) input document m40059 M, vol.
74006, 2017.

[17] S. Schwarz, G. Martin-Cocher, D. Flynn, and M. Budagavi, “Com-
mon test conditions for point cloud compression,” Document ISO/IEC
JTC1/SC29/WG11 w17766, Ljubljana, Slovenia, 2018.

[18] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Geometric
distortion metrics for point cloud compression,” in 2017 IEEE Inter-
national Conference on Image Processing (ICIP). IEEE, 2017, pp.
3460–3464.

PUBLICATION

III

Refining The Bounding Volumes for Lossless Compression of Voxelized Point
Clouds Geometry

E. C. Kaya, S. Schwarz and I. Tabus

2021 IEEE International Conference on Image Processing (ICIP)2021, 3408–3412
DOI: 10.1109/ICIP42928.2021.9506767

© 2021 IEEE. Reprinted, with permission, from Emre Can Kaya, Sebastian
Schwarz and Ioan Tabus, Refining The Bounding Volumes for Lossless

Compression of Voxelized Point Clouds Geometry, International Conference
on Image Processing, September/2021

https://doi.org/10.1109/ICIP42928.2021.9506767

REFINING THE BOUNDING VOLUMES FOR LOSSLESS COMPRESSION OF VOXELIZED
POINT CLOUDS GEOMETRY

Emre Can Kaya? Sebastian Schwarz† Ioan Tabus?

? Tampere University, Tampere, Finland
† Nokia Technologies, Munich, Germany

ABSTRACT

This paper describes a novel lossless compression method for
point cloud geometry, building on a recent lossy compression
method that aimed at reconstructing only the bounding vol-
ume of a point cloud. The proposed scheme starts by par-
tially reconstructing the geometry from the two depthmaps
associated to a single projection direction. The partial recon-
struction obtained from the depthmaps is completed to a full
reconstruction of the point cloud by sweeping section by sec-
tion along one direction and encoding the points which were
not contained in the two depthmaps. The main ingredient is
a list-based encoding of the inner points (situated inside the
feasible regions) by a novel arithmetic three dimensional con-
text coding procedure that efficiently utilizes rotational invari-
ances present in the input data. State-of-the-art bits-per-voxel
results are obtained on benchmark datasets.

Index Terms— Point Cloud Compression, Context Cod-
ing, Lossless Compression, Arithmetic Coding

1. INTRODUCTION

The lossless compression of point clouds was thoroughly
studied and is currently under standardization under MPEG
[1],[2] and JPEG activities [3]. The research literature on
point cloud compression includes a lot of methods based
on octree representations, e.g., [4, 5, 6, 7, 8]. The current
GPCC lossless method [9] is also based on octree represen-
tations [10], where a point cloud is represented as an octree,
which can be parsed from the root to the leaves and at each
depth level in the tree, one obtains a lossy reconstruction
of the point cloud at a certain resolution, while the lossless
reconstruction is obtained at the final resolution level in the
octree. At each resolution level, an octree node corresponds
to a cube at a particular 3D location and the octree node is
labeled by one if within that cube there is at least one final
point of the point cloud. By traversing in a breadth-first way,
one can obtain a lossy reconstruction at each depth of the
tree, while the lossless reconstruction is obtained at the final
resolution. Octree-based approach is attractive for providing
a progressive-in-resolution reconstruction.

Recently, good lossless performance was achieved by
methods based on successive decomposition of the point
cloud data into binary images [11, 12], without using octree
representations.

This paper describes a novel lossless point cloud compres-
sion algorithm which is based on Bounding Volumes [13] for
G-PCC. In the Bounding Volumes, all reconstructed points
truly belonged to the point cloud, but some points, specifi-
cally inner points in the transversal sections of the point cloud,
were not encoded at all. In this work, a complete lossless pro-
cess, overlapping in the first stage with the Bounding Volumes
method (encoding a front and a back projection), but diverg-
ing from the previous method, already at the second stage,
that of encoding the true boundary of the feasible region and
making it less restrictive, getting rid of the requirement of de-
composing the point cloud into tubes having single connected
component sections.

Compared to the lossy Bounding Volume method, the
newly introduced encoding process includes an extensive
context coding scheme that can finally provide a lossless re-
construction of the point cloud. This novel scheme is based
on carefully selected context coding methods and intensively
uses exclusion to avoid unnecessary testing for the occupancy
of the locations which are already known.

2. PROPOSED METHOD

Consider a point cloud having the resolutions Nx, Ny , Nz
along the axes x, y, z, respectively. The points are encoded
in two stages. In Stage I, two projections of the points
cloud are encoded; the front and the back projections on xy
plane. These projections are two depthmap images, each with
NxxNy pixels. Then, the coding proceeds along the Oy axis
of the 3D coordinate system, drawing transverse sections of
the point cloud parallel to the zOx plane and encoding each
such section in Stage II. An overview of the method is pre-
sented on Fig. 1. The regularity of the geometric shapes,
including smoothness of the surface and the continuity of
the edges, are exploited by using context models, where the
probability of occupancy of a location is determined by the
occupancy of its neighbor locations in 3D space, by includ-
ing the causal (previously encoded) 3D neighbors from the

current and the past sections.

2.1. Stage I: Encoding a front and a back depthmap pro-
jection

The first encoding stage is intended for defining and encoding
the maximal and minimal depthmaps (representing heights
above the Oxy plane) resulting in exclusion sets containing
large parts of the space. The minimal depthmap, Zmin, has at
the pixel (x, y) the value, Zmin(x, y) equal to the minimum z
for which (x, y, z) is a point in the original point cloud. Sim-
ilarly, the maximal depthmap, Zmax has at the pixel (x, y)
the value, Zmax(x, y) equal to the maximum z for which
(x, y, z) is a point in the original point cloud. If no point with
(x, y) exists in the point cloud, then it is set Zmin(x, y) =
Zmax(x, y) = 0. The encoding of these depthmaps is per-
formed by CERV [14], which encodes the geodesic lines us-
ing contexts very rich in information.

2.2. Stage II: Encoding the remaining points

At Stage II, we sweep the point cloud along the y dimension,
stepping y0 from 0 toNy−1, and we reconstruct all the points
in the current section y0 in the (NzxNx) binary image R
(current reconstruction). At every y0, points projected to the
depthmaps are already known to the decoder and we initialize
the current reconstruction R with the projected points such
that, R(Zmax(x, y0), x) = 1 and R(Zmin(x, y0), x) = 1 for
every Zmax(x, y0) > 0 and Zmin(x, y0) > 0. R will be
updated whenever a new point is encoded or decoded. We
note that, in the binary image R, we know at each column x
which are the lowest and the highest occupied points (min-
imal and maximal depths). We consequently construct the
binary image F of feasible regions, i.e., of locations in the
plane that are possibly occupied (the magenta pixels in Fig.
2(b)). Formally, F (z, x) = 1 for all (z, x) pair satisfying
Zmin(x, y0) ≤ z ≤ Zmax(x, y0). Using R and F , we initial-
ize a binary imageK, where 1 denotes that the occupancy of a
location is known. For example, the locations outside the fea-
sible region are known to be unoccupied, hence, K(z, x) = 1
for those locations. The true points in the section, that we
need to losslessly encode, are marked in a binary image de-
noted T (see Fig. 2(a)), and the reconstructed points in the
past section (at y0 − 1, that is already known to the decoder)
are marked in a binary image P .

In the image R the already reconstructed true points be-
longing to depthmaps form a set φ of pixels. We perform
a morphological dilation of the set φ using as structural el-
ement the 3 × 3 element. This obtained set of locations is
traversed along the rows of the 2D image and is stored in a
list L. We also initialize a binary marker image M to mark
the pixels already in the list L. After this initialization step,
the list L is processed sequentially, starting from the top of
the list, processing a current pixel (z, x). Both encoder and
decoder check whether K(z, x) = 1, and if yes, the point is

Fig. 1. Overview of the proposed method: In Stage I, minimal
and maximal depthmaps Zmin and Zmax are generated by
projecting the point cloud along z axis. The depthmaps are
encoded by CERV[14]. In Stage II, the point cloud is swept
through y axis. The points that are not already encoded by
CERV (blue points) are encoded as described in Sections 2.2
and 2.3.

removed from the list, since its occupancy status is already
known. Otherwise, if K(z, x) = 0, we transmit the value
of T (z, x) using arithmetic coding with the coding distribu-
tion stored at the context ζ. After that, the counts of symbols
associated with the context ζ are updated. K is updated as
K(z, x) ← 1 , and the reconstructed image is updated as
R(z, x) ← T (z, x). If the value T (z, x) = 1, we include to
the list any neighbor (zn, xn) of (z, x), (in 8-connectivity) for
which K(zn, xn) = 0 and for which the marked status is 0,
M(zn, xn) = 0. After inclusion, the marked status is set to 1,
M(zn, xn) = 1. This procedure is repeated until the list be-
comes empty. At the end, we have encoded all the points that
are connected to the boundary of the feasible region by a path
of connected pixels (in 8-connectivity). After the final section
y0 = Ny − 1 is processed, all the points that are connected
to the points contained in the initial two depthmap images are
encoded. For the voxelized point clouds, this outer shell of
points contains the majority of the points in the point cloud.
The remaining points (if any) are encoded by processing ad-
ditional shells, as described in Section 2.4.

2.3. Normalized Contexts

One of the most efficient ways of utilizing the contextual
information that is needed in Stage II is described here. In
order to show the elements forming the context, it is illus-
trated in Fig. 2(c) the ground truth occupancies for the cur-

(a) (b)

(c) (d)

Fig. 2. (a) True current section; (b) The feasible region (ma-
genta), points from the depth maps (green), forbidden region
(khaki); (c) Details of the ground truth inside the blue rectan-
gle from (b); (d) Selection of the two part context for encoding
the blue marked pixel

rent section (y = y0) and the past section (y = y0 − 1),
showing in white the (true) occupied pixels in these sections.
On Fig. 2(d), we show the same area during the reconstruc-
tion process, which advances section by section such that, at
the moment of reconstructing the section y = y0, the section
y = y0 − 1 is fully known, and the second part of the con-
text, called matrix B, can be extracted and contains the true
occupancy status at section y = y0 − 1. The context A from
the current section for every candidate pixel (z, x) is extracted
from the 3 × 3 neighbourhood of the pixel (i.e., the pixels in
the red square).

When encoding the blue marked pixel, the pixels consid-
ered as the 3×3 A matrix part of context are those surrounded
by the red contour. Each pixel might be green (already en-
coded in Stage I), for which the status is known and occu-
pied (K(z, x) = 1 and R(z, x) = 1), khaki for forbidden
pixels with status known and unoccupied (K(z, x) = 1 and
R(z, x) = 0), and finally magenta for feasible i.e., not yet
known (K(z, x) = 0). The context extracted from the cur-
rent section forms the matrix A and that from the past section
forms the matrix B (which are later rotated for normalizing
and are combined to form the final contexts).

The procedure for encoding the points at a section y = y0
with normalized contexts is summarized in Algorithm 1. Con-

Algorithm 1 Stage II of encoding
Require: T : True section binary image at y = y0 (Nz x Nx)
P : True section binary image at y = y0 − 1 (Nz x Nx)
R: Current reconstruction at y = y0 − 1 (Nz x Nx)
F : Feasible Regions bin. image derived from R (Sect. 2.2)
K: Binary image of known locations K ← F +R
L: Pixels to be processed L← {(z, x) 3 R(z, x) = 1}
M : Binary image of pixels that has been to L. M ← R
while L 6= ∅ do

Read (z, x) from the top of L
Extract a 3x3 matrix R3x3 from R centered at (z, x)
Extract a 3x3 matrix B from P centered at (z, x)
Extract a 3x3 matrix K3x3 by cropping K around (z, x)
A← R3x3 +K3x3

Find normalizing rotation α∗(A) and form Aα∗

Use α∗(A) to rotate B as Bα∗

Form the context ζ = (I(Aα∗), J(Bα∗))
Encode T (z, x) using the context ζ
if T (z, x) == 1 then

Append to L every neighbor (zn, xn) of (z, x) for
which K(zn, xn) = 0 and M(zn, xn) = 0
If (zn, xn) is appended, M(zn, xn)← 1

end if
Update R: R(z, x)← T (z, x)
Update K: K(z, x)← 1
Remove (z, x) from L

end while

sider that we need to encode T (z, x). The first part of the con-
text uses the values of the already reconstructed pixels that are
8-neighbors of (z, x) and also the information about which of
the pixels were already known. The values of the pixels in
the ternary image Rk = R + K have the following signif-
icance: Rk(z, x) = 0 if the value of T (z, x) is not known
yet; Rk(z, x) = 1 if the value of T (z, x) was encoded and
T (z, x) = 0; Rk(z, x) = 2 if the value of T (z, x) was en-
coded, and T (z, x) = 1. We consider first the 3×3 square,
centered at (z, x), cropped from the image Rk, and we de-
note it as a 3×3 matrix A. The elements of A belong by con-
struction to 0, 1, 2. The second part of the context is the
3 × 3 binary matrix B formed from P at (z, x). The infor-
mation from A and B is used to form the context. For ex-
ample scanning by columns we get a one-to-one correspon-
dence between A and I(A) =

∑2
j=0

∑2
i=0Aij3

i+3j . Sim-
ilarly there is a one-to-one correspondence between B and
J(B) =

∑2
j=0

∑2
i=0Bij2

i+3j . We combine them to a con-
text label ζ = (I(A), J(B)).

The context information in A and B is further normal-
ized in the following way: We consider performing context
collapsing operations, such that if we would perform a ro-
tation by α ∈ {0, π/2, π, 3π/2} of each of the images R,
T and K around the pixel (z, x), the value of the resulting
normalized context is the same. We consider first the 3×3

Table 1. Average Rate for the first 200 frames from MVUB
[15] and 8i [16] datasets for the proposed Bounding Volume
Lossless (BVL) encoder compared to recent codecs.

Average Rate [bpv]
Sequence P(PNI)[8] TMC13[9] DD[12] BVL

Microsoft Voxelized Upper Bodies [15]
Andrew9 1.83 1.14 1.12 1.17
David9 1.77 1.08 1.06 1.10
Phil9 1.88 1.18 1.14 1.20

Ricardo9 1.79 1.08 1.03 1.05
Sarah9 1.79 1.07 1.07 1.08

Average 1.81 1.11 1.08 1.12
8i Voxelized Full Bodies [16]

Longdress 1.75 1.03 0.95 0.91
Loot 1.69 0.97 0.91 0.88

Redandblack 1.84 1.11 1.03 1.03
Soldier 1.76 1.04 0.96 0.96

Average 1.76 1.04 0.96 0.94

matrix A. Apply the α rotation around the middle pixel and
denote Aα the resulting 3 × 3 matrix. Compute for each
of α ∈ {0, π/2, π, 3π/2}, the matrix Aα and the weighted
score of it W (Aα) and pick as canonical rotation that α∗ for
which the weighted score W (Aα) is the largest. Hence, the
four rotated matrices Aα with α ∈ {0, π/2, π, 3π/2} will
be represented only by Aα∗. This process of collapsing the
four matrices into a single one is performed offline once, re-
sulting in a tabulated mapping α∗ ↔ A and another map-
ping I∗ ↔ A, which realize the mappings of the context
to the canonical one, stored in look-up tables. As an ex-
ample of the weighting score W (A), we consider the vector
v = [A00A01A10A02A11A20A12A21A22] and formW (A) =∑8
k=0 vk3

k, giving in this way a larger weight to those ele-
ments which are close to the corner (0, 0) of A. The normal-
ized context is found in the following way: At each point
(z, x) the matrix A is formed from R+K and the canonical
rotation index α∗ for this matrix is computed. Also the cor-
responding rotated matrix A0 is computed. The second part
of the context is the 3 × 3 matrix B formed from P around
(z, x). The matrix B is rotated by the previously determined
α∗ around its center, yielding a matrix B0. Now the context
to be used for encoding T (z, x) is constructed from A0 and
B0 as context ζ = (I(A0), J(B0)).

2.4. Repetitive peeling-off process for complete recon-
struction of more complex point clouds

After Stage II, the reconstruction contains all the points form-
ing the outer surfaces of the point cloud and all the inner
points connected to these outer surface points, i.e., all points

that are connected by a path in 3D space (in 26-voxel con-
nectivity), to the initial points recovered in Stage I from the
two depthmap images. However, there are complex point
clouds, for example those representing a building and objects
inside, where some objects are not connected by a 3D path to
the outermost points. In that case one can repeat the encod-
ing process shell by shell, in a peeling-off operation, where
we encode first the outermost shell, defined by the points
represented in the maximal and minimal depthmaps and all
points connected to these points, and then we reapply the
same process to the remaining un-encoded points. If needed,
this peeling-off process can be applied several times. In this
work, there are maximally 2 shells peeled-off and the remain-
ing points (if any) are simply written in binary representation
into the bitstream.

3. EXPERIMENTAL WORK

The algorithm is implemented in C and the experiments were
carried out on two point cloud datasets namely, 8i Voxelized
Full Bodies [16] and Microsoft Voxelized Upper Bodies [15].
The average bits per occupied voxel results (average rates)
are presented on Table 1. For each point cloud, all 6 possi-
ble permutations of the 3 dimensions are tried and the best
rate obtained is kept and reported here. It is observed that,
proposed method performs better than the other methods on
the 8i dataset. On the other hand, on MVUB dataset, our re-
sults are slightly worse than TMC13 [9] and Dyadic Decom-
position [12]. Additionally, we test BVL and TMC13 on all
the point clouds from the Cat1A MPEG Database [17] having
original resolutions of 10 and 11 bits. These were quantized
to 10, 9 and 8 bits as well to test the performance in lower res-
olutions. BVL outperformed TMC13 in average at 10 bits by
6.6%, at 9 bits by 5.2%, at 8 bits by 2%. At 11 bits, TMC13
outperformed BVL by 1.8%. For all of the point clouds men-
tioned in this work, the decoding resulted in a perfect lossless
reconstruction.

Encoding and decoding durations for BVL were measured
to be 7.3 sec and 7.8 sec, respectively. On the same machine,
encoding with TMC13 took 1.1 sec. All durations are mea-
sured on a single frame of the 10 bits longdress sequence by
running the algorithm 10 times and taking the median. While
the durations are not competitive with TMC13, it should be
noted that the execution time is not yet carefully optimized.

4. CONCLUSIONS

We proposed a lossless compression method where the first
stage is constructing a bounding volume for the point cloud
and the following steps succeed at adding all the remaining
points at a competitive bitrate, achieving state-of-the-art re-
sults for the full body datasets, and comparable results to the
current GPCC standard on the upper body dynamic datasets.

5. REFERENCES

[1] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Ce-
sar, P. A. Chou, R. A. Cohen, M. Krivokuća, S. Lasserre,
Z. Li, et al., “Emerging MPEG standards for point cloud
compression,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 9, no. 1, pp. 133–
148, 2018.

[2] L. Cui, R. Mekuria, M. Preda, and Eu. S. Jang, “Point-
cloud compression: Moving picture experts group’s new
standard in 2020,” IEEE Consumer Electronics Maga-
zine, vol. 8, no. 4, pp. 17–21, 2019.

[3] T. Ebrahimi, S. Foessel, F. Pereira, and P. Schelkens,
“JPEG Pleno: Toward an efficient representation of vi-
sual reality,” Ieee Multimedia, vol. 23, no. 4, pp. 14–20,
2016.

[4] R. L. De Queiroz and P. A. Chou, “Compression of 3d
point clouds using a region-adaptive hierarchical trans-
form,” IEEE Transactions on Image Processing, vol. 25,
no. 8, pp. 3947–3956, 2016.

[5] R. Mekuria, K. Blom, and P. Cesar, “Design, implemen-
tation, and evaluation of a point cloud codec for tele-
immersive video,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 27, no. 4, pp. 828–
842, 2016.

[6] S. Milani, “Fast point cloud compression via reversible
cellular automata block transform,” in 2017 IEEE Inter-
national Conference on Image Processing (ICIP). IEEE,
2017, pp. 4013–4017.

[7] Diogo C Garcia and Ricardo L de Queiroz, “Intra-frame
context-based octree coding for point-cloud geometry,”
in 2018 25th IEEE International Conference on Image
Processing (ICIP). IEEE, 2018, pp. 1807–1811.

[8] D. C. Garcia, T. A. Fonseca, R. U. Ferreira, and R. L.
de Queiroz, “Geometry coding for dynamic voxelized
point clouds using octrees and multiple contexts,” IEEE

Transactions on Image Processing, vol. 29, pp. 313–
322, 2019.

[9] “MPEG Group TMC13,” https://github.com/
MPEGGroup/mpeg-pcc-tmc13, Accessed: 2020-
03-20.

[10] D. Meagher, “Geometric modeling using octree encod-
ing,” Computer graphics and image processing, vol. 19,
no. 2, pp. 129–147, 1982.

[11] R. Rosário and E. Peixoto, “Intra-frame compression of
point cloud geometry using boolean decomposition,” in
2019 IEEE Visual Communications and Image Process-
ing (VCIP). IEEE, 2019, pp. 1–4.

[12] E. Peixoto, “Intra-frame compression of point cloud ge-
ometry using dyadic decomposition,” IEEE Signal Pro-
cessing Letters, vol. 27, pp. 246–250, 2020.

[13] I. Tabus, E. C. Kaya, and S. Schwarz, “Successive re-
finement of bounding volumes for point cloud coding,”
in 2020 IEEE 22nd International Workshop on Multime-
dia Signal Processing (MMSP). IEEE, 2020, pp. 1–6.

[14] I. Tabus, I. Schiopu, and J. Astola, “Context coding
of depth map images under the piecewise-constant im-
age model representation,” IEEE Transactions on Image
Processing, vol. 22, no. 11, pp. 4195–4210, 2013.

[15] C. Loop, Q. Cai, S. O. Escolano, and P. A. Chou,
“Microsoft voxelized upper bodies - a voxelized point
cloud dataset,” ISO/IEC JTC1/SC29 Joint WG11/WG1
(MPEG/JPEG) input document m38673/M72012, 2016.

[16] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i
voxelized full bodies - a voxelized point cloud dataset,”
ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG)
input document WG11M40059/WG1M74006, 2017.

[17] S. Schwarz, G. Martin-Cocher, D. Flynn, and M. Buda-
gavi, “Common test conditions for point cloud compres-
sion,” Document ISO/IEC JTC1/SC29/WG11 w17766,
Ljubljana, Slovenia, 2018.

https://github.com/MPEGGroup/mpeg-pcc-tmc13
https://github.com/MPEGGroup/mpeg-pcc-tmc13

102

PUBLICATION

IV

Neural Network Modeling of Probabilities for Coding the Octree
Representation of Point Clouds

E. C. Kaya and I. Tabus

2021 IEEE 23rd International Workshop on Multimedia Signal Processing (MMSP)2021, 1–6
DOI: 10.1109/MMSP53017.2021.9733658

©2021 IEEE. Reprinted, with permission, from Emre Can Kaya and Ioan
Tabus, "Neural Network Modeling of Probabilities for Coding the Octree
Representation of Point Clouds", International Workshop on Multimedia

Signal Processing, October/2021

https://doi.org/10.1109/MMSP53017.2021.9733658

Neural Network Modeling of Probabilities for
Coding the Octree Representation of Point Clouds

Emre Can Kaya
Computing Sciences Unit

Tampere University
Tampere, Finland
emre.kaya@tuni.fi

Ioan Tabus
Computing Sciences Unit

Tampere University
Tampere, Finland
ioan.tabus@tuni.fi

Abstract—This paper describes a novel lossless point cloud
compression algorithm that uses a neural network for estimating
the coding probabilities for the occupancy status of voxels,
depending on wide three dimensional contexts around the voxel
to be encoded. The point cloud is represented as an octree, with
each resolution layer being sequentially encoded and decoded
using arithmetic coding, starting from the lowest resolution, until
the final resolution is reached. The occupancy probability of
each voxel of the splitting pattern at each node of the octree
is modeled by a neural network, having at its input the already
encoded occupancy status of several octree nodes (belonging to
the past and current resolutions), corresponding to a 3D context
surrounding the node to be encoded. The algorithm has a fast
and a slow version, the fast version selecting differently several
voxels of the context, which allows an increased parallelization by
sending larger batches of templates to be estimated by the neural
network, at both encoder and decoder. The proposed algorithms
yield state-of-the-art results on benchmark datasets. The imple-
mentation will be available at https://github.com/marmus12/nnctx

Index Terms—Lossless Compression, Context Coding, Point
Cloud, Arithmetic Coding, Point Cloud Compression

I. INTRODUCTION

In the recent years, point cloud compression (PCC) has
became a very active field of study, in an effort to provide
efficient coding solutions for the very large point clouds
available nowadays. The major contributions to the area are
the standardization projects initiated by JPEG [1] and MPEG
[2], from which the video PCC (V-PCC) and the geometry
PCC (G-PCC) standards are already finalized. Meanwhile,
several contributions have appeared in the technical literature,
showing improvements over the standardized solutions, for
some specific classes of point clouds. Encoding the geometry
of voxelized point clouds is a first task, solved both in V-
PCC and G-PCC, and for which several recent publications
provided alternative solutions, see e.g.: the lossless codec
using dyadic decomposition [3]; the bounding volumes by
depthmap projections BVL [4]; and more recently, VoxelDNN
[5] and MSVoxelDNN [6], based on deep neural networks for
providing the arithmetic coder with coding probabilities.

We propose a neural network based lossless coder for
voxelized point clouds. In the algorithm, the internal repre-
sentation for point clouds is selected to be the octree model,
offering multiresolution reconstructions, where at resolution r

all points are given with a precision of r bits per dimension.
In the octree model each point from the resolution r − 1 is
split into 8 candidate points at resolution r, and specifying
for each of these 8 points the occupancy status by 1 bit, one
can retrieve all points at resolution r. Iteratively in the same
way, one obtains all resolutions up to the final resolution R.
Hence, the octree representation recursively constructs the set
of points, by specifying an octet for each node at the current
resolution. What needs to be encoded for transmitting the point
cloud is the octet that represents the splitting pattern at each
node, for each resolution level, starting from resolution 0 up
to resolution r − 1.

Encoding of the splitting octet can be done in several
ways. For example, G-PCC encodes the splitting (octet) pattern
[b1, b2, . . . , b8] at a voxel nk at resolution r−1, by considering
for each bit bi a context defined based on the following: the
occupancy status of the neighbors of the current voxel nk to be
splitted, the location i of the bit bi inside the octet, the values
of the already encoded bits b1, . . . , bi−1, and some already en-
coded splitting patterns at some neighbor voxels of nk. These
contexts are further merged, e.g., based on rotation invariance,
in order to obtain the most relevant probability models at each
context. In here we do not use the context construction of G-
PCC, specifically we do not use the probability distribution
p(bi|b1, . . . , bi−1, C) conditional at some collapsed context C,
but instead we associate each bi to the corresponding voxel at
resolution r, and establish the context C in the same way,
uniformly for all i, based on spatially neighbor voxels in the
resolution r−1 and r, as we explain below. This has the effect
of using a single conditional distribution p(bi|C) instead of 8
distinct conditional distributions.

VoxelDNN [5], a recent DNN-based method, generated
probabilities for the occupancy of voxels, using a wider
conditional template than in the octree model, by splitting
the space in very large cubes, e.g. 64 × 64 × 64, and gen-
erating conditional probabilities p(bi|b1, . . . , bi−1) for each of
i = 1, . . . , 643, hence for each voxel inside the large cube.
Each such specific distribution leads to an equivalent template
with variable 3D shape, handled during the training process
by masked convolutions. The equivalent template becomes
asymmetrical with respect to the voxel bi to be encoded,
especially near the facets of the 64 × 64 × 64 cube. In our

Fig. 1. The proposed lossless encoding scheme.

approach we keep the template of the context the same for
most voxels to be encoded, with asymmetries in the template
occurring only at the boundary of the overall bounding cube
for the point cloud.

II. PROPOSED METHOD

The proposed method, which we dub NNOC, is illustrated in
Fig. 1. When encoding a point cloud with r bits resolution, the
encoder encodes additionally all the (r − 1) lower resolution
versions. Initially, the 2 bits resolution point cloud, having
4× 4× 4 voxels, is simply encoded in 64 bits where each bit
represents the occupancy of a voxel. Then, the encoding and
decoding proceeds by inferring, from the voxels of the point
cloud at 2 bits resolution, the possibly occupied (candidate)
locations in 3 bits resolution. In general, for every voxel in
a resolution level r − 1, there are 8 possibly occupied voxels
in resolution r. Hence, if the 2 bits resolution point cloud
has np points, there are 8np candidate locations for the 3 bits
resolution. The locations other than the candidate locations are
known to be unoccupied.

After marking all candidate voxels at resolution r starting
from the known voxels at resolution r − 1, the encoder
and decoder proceed to encoding the occupancy status of
these candidate voxels, by scanning the candidate locations
in a given scanning order (explained below), and at every
candidate location a context is constructed, identically at
encoder and decoder, encompassing voxels from resolution
r that are either candidates or that have their occupancy
status known (since they were already scanned). The scanning
order of the candidate pixels at resolution r is defined by
considering the regular lexicographic one, considering one-
by-one the sections across the point cloud at planes z = z0,
and in each section scanning is done row-wise (interpreting
the section as an image with row index x and column index
y). The scanning order establishes the causality status for the
voxels in the considered contexts. A neural network (NN)

Fig. 2. Context definition in the proposed NNOC. Black locations are
unoccupied voxels and those that fall into the red bordered windows are
represented each by a 0 in the context vector. White and gray locations are
occupied and candidate voxels, respectively. Each of those that are contained
in the red bordered windows are represented by a 1 in the context vector. The
currently encoded/decoded voxel is shown with a green border.

model is employed to estimate the probability of occupancy
of a candidate voxel given the voxel’s context. Then, the
occupancy of the candidate voxel is encoded by 2-symbol
arithmetic coding using the probability distribution generated
by the network. The procedure described above is repeated
for all the resolutions starting from 3 bits octree depth until
the final resolution of the input point cloud is encoded. Apart
from the occupancies of voxels, a necessary side information
is the binary occupancy status of each section, stating whether
the section contains any points. This is expressed in a binary
vector having each element associated to one section, which
is encoded with run-length encoding.

A. Collecting the contexts of candidate voxels

Our approach is based on the octree structure and hence
we need to encode each bit of the splitting pattern at each
node. What first distinguishes our approach is that at each
resolution r − 1, we traverse the existing nodes and encode
their splitting patterns in a two-pass manner as explained
next. Suppose we have all nodes at resolution r − 1, and
need to transmit the splitting patterns to reconstruct reso-
lution r. For each node (x

[r−1]
0 , y

[r−1]
0 , z

[r−1]
0), we have 8

possibly occupied children voxels at resolution r, namely
(2x

[r−1]
0 + α, 2y

[r−1]
0 + β, 2z

[r−1]
0 + γ), with α, β, γ ∈ {0, 1},

and we store all these points in a sorted list (in the sorting, key
z has the highest priority). Having the candidate voxels sorted
by section enables us to fetch the section points efficiently.
We then reconstruct the points at resolution r, plane by plane,
by keeping a 4 sections buffer (two already encoded sections,
the current one, and the next one not encoded yet) to which
we associate 4 binary images as depicted in Fig. 2. After the
status of all candidates in the section z = z0 is encoded, the
buffer slides upwards by 1 section, to encode the occupancies
of the section z = z0 + 1.

In terms of the octree coding, what is peculiar in our
approach is that we transmit at each resolution r − 1 the
occupancy patterns of the nodes lying in the plane z = z

[r−1]
0 ,

but in two phases: First we transmit the 4 bits of the splitting
pattern having γ = 0 (corresponding to the lower plane in the
resolution r), and after we finish transmitting all these half-
splitting patterns for all nodes, we continue transmitting the
remaining half-splitting patterns, having γ = 1 (corresponding
to the higher plane in the resolution r). The process is repeated
for the plane z = z

[r−1]
0 + 1. In G-PCC for instance, the

scanning order is different, since one transmits at once the
eight bits corresponding to the occupancy of the children of
(x

[r−1]
0 , y

[r−1]
0 , z

[r−1]
0), and only then the process moves to a

different node at resolution r − 1.

In the four sections of the buffer, we mark the current state
in the reconstruction process: For the past two sections we
know the true occupancy status of all the candidate points, so
we mark in the past two sections the true occupancy of voxels
at resolution r. In the next section z = z0 + 1, we do not yet
know any occupancy status, but we know the status of being a
candidate, which is marked on the binary image of the section.

We therefore have organized in a convenient way the
scanning order for traversing the candidate voxels at each
resolution level, in the following order: section-by-section
(traversing all voxels lying on a section z = z0), and in each
such 2D section taking the scanning order to be row-by-row.
Using such a scanning order, the current candidate (x0, y0, z0)
whose occupancy needs to be encoded, has some of its 3D
neighbors already encoded (they are at those voxels belonging
to sections z = z0 − 1 and z = z0 − 2, and from the section
z = z0 the voxels having the row index x < x0, and finally
those voxels having x = x0, y < y0 and z = z0). The other
neighbor voxels either are not candidates (they are not children
of some existing point in the resolution r − 1), or are known
to be unoccupied or they are candidates but their occupancy
is not known yet.

We define the context as a cuboid with 5 × 5 × 4 3D
neighbors of (x0, y0, z0) at resolution r as shown in Fig. 2. We
note that this cuboid changes its position at each encoding of
a candidate occupancy, because we place it such that it keeps
its alignment with the current candidate. Due to the selected
scanning order, the status of being already encoded or not for
each pixel remains the same, so the contexts’ elements keep
the same type of information or significance. For example,
the neighbor (x0−2, y0−2, z0−2) has always its occupancy
known (either because it was not a candidate for testing i.e.,
not being a child of an existing node at r − 1), or because it
was a candidate and we have transmitted its occupancy status.
So the state of (x0 − 2, y0 − 2, z0 − 2) can be either 0, if
it is not occupied, or 1 if it is occupied. On the other hand,
(x0, y0 + 2, z0) is not encoded yet. We already can know its
occupancy, if it was not a candidate then for sure it is not
occupied) but if it was a candidate, its occupancy is not known
yet. So the state that can be associated to (x0, y0 +2, z0) is 1
if it is a candidate, and 0 if it is not.

Algorithm 1 Encoding with NNOC
Require: A point cloud PR with resolution R bits/dimension

1. Construct lower resolution point clouds PR−1, . . . ,P2

representing the nodes at octree depth level R− 1, . . . , 2.
2. Encode P2 in 64 bits
3. Encode iteratively P3 to PR as follows:
for r = 3, . . . , R do

3.1 Generate for each point P ∈ Pr−1 the eight candidate
voxels in the resolution r, resulting in the set of candidate
points PCr
3.2 Traverse candidates PCr section-by-section and en-
code occupancies as follows:
for z0 = 0, . . . , 2r − 1 do

3.2.1 Construct 4 binary images as in Fig. 2
3.2.2 Traverse the candidates for which z = z0 as
described in Section II.A.
for all (xc, yc, z0) ∈ PCr do

3.2.2.1 Extract the context vector C from 4 images
3.2.2.2 Obtain the coding distribution NN(C)
3.2.2.3 Encode the occupancy O(xc, yc, z0) using
NN(C)
3.2.2.4 Save the true occupancy in the image z = z0

end for
end for

end for

To conclude, in NNOC we consider a 100-element binary
context vector C, where each element corresponds to the binary
status of one location in the 5× 5× 4 template and this status
means different things for different voxels: For the already
encoded voxels it means occupancy, for not yet encoded voxels
it means candidacy.

Due to practical reasons, the context vector contains the
candidacy of also the currently encoded voxel (x0, y0, z0)
which is always 1. It is experimentally found that accessing a
block of voxels in the current section altogether and writing
them to context vector is running faster than going through the
positions inside the block one by one to exclude the currently
encoded position.

The significance of the neighbors within the context remains
the same for all contexts, and for all resolutions. So we decide
to define the probability distribution for the voxel (x0, y0, z0)
being occupied (O(x0, y0, z0) = 1, or not, O(x0, y0, z0) = 0,
p(O(x0, y0, z0) = 1) = NN(C) and propose to implement
this function using a neural network, having parameters ob-
tained in a training process. The structure of the algorithm is
presented in Algorithm 1.

B. Generating the coding distribution by a NN having the
context C at its input

The input to the neural network is a binary vector consisting
of occupancies or candidancies (as explained in II.A) in the
causal context of the location being encoded/decoded. We
employ a 3 dimensional context such that the number of inputs
elements to the NN is nC = 5 × 5 × 4 = 100. In order to

ensure a reasonable encoding and decoding speed, the neural
network structure is kept simple, adopting here a Multilayer
Perceptron consisting of 2 fully connected layers. The first
layer has 2nC = 200 neurons with ReLU activations and the
2nd layer has 2 neurons, with outputs α1 and α2, and finally
there is a softmax activation giving as output

p(O(x0, y0, z0) = 1) =
eα1

eα1 + eα2
. (1)

The output of the neural network is interpreted as an
estimation of the probability distribution of occupancy of the
current location given its causal context. This floating point
estimation provided by the network is multiplied by 214 and
rounded to yield integer counts which are used in arithmetic
coding.

The training set for the neural network consists of causal
contexts that have occurred at least once in the point clouds
selected for training. Let no0i and no1i denote the number
of occurences of the i’th context in a training batch of
contexts (including b.size such contexts), where the current
”true” location’s occupancy was 0 or 1, respectively. Let
p1i = p(O(x0, y0, z0) = 1) be the output of the NN and
p0i = 1− p1i. The neural network is trained to minimize the
following criterion:

Loss = −
b.size∑
i=1

no0i log2 p0i + no1i log2 p1i. (2)

Note that, if the batch would contain all the causal con-
texts with corresponding number of occurrences in one point
cloud, Loss would be equal to the codelength obtained
when compressing that point cloud with arithmetic coding
using the estimated probabilities p0i and p1i. Therefore, Loss
reflects our goal to minimize the codelength in the most
natural way. Although the loss formulation looks quite similar
to the commonly used cross entropy loss function that is
encountered in supervised classification schemes, there are
important distinctions worth pointing out: The contexts that
occur in the training set are only a small portion of the
set of all possible contexts. However, what is expected from
the network is to generate a probability distribution for any
input context, whether seen or not. Another distinction is
that the number of occurrences shouldn’t be perceived as a
ground truth information. They are obtained from a number
of point clouds which are likely to have different number of
occurrences than the input point cloud to be compressed.

The network is trained with batches formed by randomly
selected contexts possibly coming from different training point
clouds.

C. Parallelization and the fast model

Parallelization can be utilized efficiently at the encoder,
where all the contexts at one section z = z0, can be collected
and fed to the network to obtain the probability distributions
for all section candidates at once. For high resolutions, this
may result in efficient computation of probabilities in GPU in
large batches.

Fig. 3. Context definition in fNNOC (the faster version of the proposed
NNOC). Black locations are unoccupied voxels and those that fall into red
bordered windows are represented each by a 0 in the context vector. White
and gray locations are occupied and candidate voxels, respectively. Each of
those that are contained in the red bordered windows are represented by a
1 in the context vector. Currently encoded/decoded voxel is denoted with a
green window.

However, at the decoder the situation is different. NNOC
requires for forming the context at (x0, y0, z0) the knowledge
about the occupancy of (x0, y0 − 1, z0), which needs to be
decoded by arithmetic coding. The only possible sequencing
of operations at the decoder is: The decoding of the occupancy
of (x0, y0 − 1, z0) is done and it is used to define the context
C(x0, y0, z0). This context is fed to the network which gener-
ates the coding distribution of p(O(x0, y0, z0) = 1) = NN(C)
that is used to decode the occupancy of (x0, y0, z0) and so
on. In this manner, the network operates with batches of size
1, which is simply sequential, with no parallelism. In order
to accelerate the process and to be able to utilize batches of
contexts at the decoder, we modify the context in NNOC so
that it does not need to make use of the current resolution
occupancies at section z = z0. This is realized in the faster
version of NNOC called fNNOC. The collection of the context
in fNNOC is depicted in Fig. 3. This new type of context is
for sure less informative and fNNOC performs worse than
NNOC in terms of bpov. In fNNOC, the decoder collects
all candidates from the current section at once, and then it
feeds them to the GPU implementation of the NN, in a batch
having the size equal to the number of candidate voxels in
section z = z0. As a consequence, durations of encoding and
decoding with fNNOC are similar.

III. EXPERIMENTAL RESULTS

Training and tests are performed on two publicly available
datasets: Microsoft voxelized upper bodies (MVUB) [8] and 8i
voxelized full bodies (8i) [9]. The method is implemented in
Python and Tensorflow. Arithmetic coding is adapted from an
open source Python implementation [11]. The neural network
is trained with contexts collected from 18 randomly chosen
frames in Andrew10, David10, Sarah10 sequences (6 from

TABLE I
COMPARING VOXELDNN [5] AND NNOC (PROPOSED) IN TERMS OF AVERAGE RATE [BPOV] AND GAINS OVER G-PCC [7]

Single Frame Average over all frames
Point Cloud(s) Number of G-PCC VoxelDNN Gain over G-PCC NNOC Gain over

frames G-PCC G-PCC
Microsoft Voxelized Upper Bodies [8]

Phil9 245 1.2284 0.9201 25% 1.1785 0.8095 31%
Phil10 245 1.1617 0.8307 28% 1.135 0.7817 31%

Ricardo9 216 1.0422 0.7173 31% 1.0836 0.6805 37%
Ricardo10 216 1.0672 0.7533 29% 1.0723 0.7006 35%
Average - 1.1248 0.8053 28% 1.1173 0.7431 33%

8i Voxelized Full Bodies [9]
Loot10 300 0.9524 0.6387 33% 0.9801 0.5904 40%

Redandblack10 300 1.0889 0.7317 33% 1.1047 0.723 35%
Boxer9 1 1.0815 0.756 30% 0.9683 0.6439 34%
Boxer10 1 0.9 0.59 34% 0.9619 0.5507 43%

Thaidancer9 1 1.0677 0.8078 24% 1.1253 0.7309 35%
Thaidancer10 1 - - - 1.0061 0.6839 32%

Average - 1.0476 0.7334 30% 1.0244 0.6538 36%

TABLE II
COMPARING MSVOXELDNN [6] AND FNNOC (PROPOSED) IN TERMS OF AVERAGE RATE [BPOV] AND GAINS OVER G-PCC [7]

Single Frame Average over all frames
Point Cloud(s) Number of G-PCC MSVoxelDNN Gain over G-PCC fNNOC Gain over

frames G-PCC G-PCC
Microsoft Voxelized Upper Bodies [8]

Phil9 245 - - - 1.1785 0.9974 15%
Phil10 245 1.1617 1.02 12% 1.135 1.0206 10%

Ricardo9 216 - - - 1.0836 0.861 21%
Ricardo10 216 1.0672 0.95 11% 1.0723 0.941 12%
Average - 1.1249 0.985 11% 1.1174 0.955 14%

8i Voxelized Full Bodies [9]
Loot10 300 0.9524 0.73 23% 0.9801 0.7427 24%

Redandblack10 300 1.0889 0.87 20% 1.1047 0.8661 22%
Boxer9 1 - - - 0.9683 0.7466 23%

Boxer10 1 0.9 0.7 22% 0.9619 0.6815 29%
Thaidancer9 1 - - - 1.1253 0.8672 23%

Thaidancer10 1 1.00 0.85 15% 1.0061 0.8069 20%
Average - 0.9853 0.7875 20% 1.0244 0.78517 23.5%

TABLE III
AVERAGE RATE [BPOV] RESULTS ON POINT CLOUDS FROM CAT1A [10]

NNOC Other codecs Fast versions of NNOC
Bitdepth G-PCC BVL [4] fNNOC fNNOC1 fNNOC2 fNNOC3 fNNOC4 fNNOC5

Input context size 100 100 75 50 36 100 100
of neurons by layer (200,2) (200,2) (150,2) (100,2) (72,2) (200,1) (200,200,2)

basketball player 11 0.5934 0.885 0.852 0.6908 0.8924 1.2689 0.9098 0.6945 0.7083
dancer 11 0.5751 0.876 0.826 0.6907 0.8874 1.2443 0.8931 0.6936 0.7037

facade 00064 11 1.1053 1.1969 1.3331 1.2216 1.3888 1.4973 1.3102 1.2098 1.2291
queen 10 0.6897 0.7817 0.7883 0.9196 1.1327 1.4814 1.1773 0.9309 0.9390

redandblack 10 0.7353 1.1055 1.0418 0.8854 1.107 1.514 1.1009 0.8932 0.8738
loot 10 0.5989 0.9818 0.8991 0.7615 0.975 1.3785 0.9798 0.7761 0.7557

Average 0.7163 0.971 0.957 0.8616 1.0639 1.3974 1.0619 0.8663 0.8683

each) from MVUB and 18 randomly chosen frames in Long-
dress and Soldier sequences (9 from each) from 8i. All of
the training contexts are collected from the original resolution
of the point clouds (10 bits). The training and validation
sequences are not used for tests. Our selection of training data
is similar to the recently introduced VoxelDNN [5] and its fast
version MSVoxelDNN [6].

For NNOC, the training set contains around 40 million
unique contexts with number of occurences ranging from 1
to 278000 whereas for fNNOC, there are 31 million training

contexts with number of occurences ranging from 1 to 135000.
These are relatively small training sets considering that the
number of possible different contexts with 100 elements is
about 2100. During training we also employ validation sets
through which we decide when to stop training. The validation
sets consist of randomly chosen frames from Andrew10 and
Soldier sequences. Training was performed using ADAM [12]
optimizer with batches of 30k contexts.

Average bpov results of the proposed NNOC and fNNOC
on sequences and individual point clouds from MVUB and 8i

TABLE IV
DURATIONS OF ENCODING AND DECODING WITH NNOC AND FNNOC

NNOC fNNOC
P. Cloud B.depth ENC DEC ENC DEC

phil (1st fr.) 9 1m 17s 8m 53s 42s 46s
loot (1st fr.) 10 3m 11s 19m 31s 1m 46s 1m 53s

basket. player 11 10m 37s 3hrs 21m 42s 5m 44s 6m 7s

datasets are presented in Tables I and II. In Tables I and II, we
also show the bpov results obtained with G-PCC, VoxelDNN
and MSVoxelDNN. Since the VoxelDNN and MSVoxelDNN
bpovs are for single frames from the sequences, they are not
fully comparable with the bpovs for the whole sequences. For a
better comparison basis, we show the respective gains in bpov
over G-PCC. It should be noted that, Boxer and Thaidancer are
in fact individual point clouds (single frames) with bitdepths
of 12. We present results for their downsampled versions with
bitdepths 9 and 10.

In Table III, left side, we compare the average rates obtained
for some of the CAT1A [10] point clouds with G-PCC, BVL
[4] which is a recent lossless method, the proposed NNOC
and fNNOC. It is observed that NNOC outperforms all the
other methods on all point clouds. fNNOC outperforms BVL
on 4 out of 6 point clouds and G-PCC on 5 out of 6 point
clouds. A future study might look more into better ways to
consider point clouds for training, so that more of the typical
existing datasets can be encoded in an efficient way.

A. Ablation Study

In order to investigate the effects of the selection of context
and network structure, we have performed an ablation study
where we train 5 fNNOC variants. Variants fNNOC1-3 have
smaller input contexts. fNNOC1 has the same context elements
as fNNOC, except removing the voxels coming from the future
section (z0+1), hence it has 75 context bits. The second variant
called fNNOC2 has the same context elements as fNNOC1
except those coming from the section z0−2, so it has a context
vector of length 50. The third variant fNNOC3 has the same
4 context sections as in fNNOC but the context window size
is 3 × 3 instead of 5 × 5, so it contains 3 × 3 × 4 = 36
context elements in total. fNNOC4 has a single output neuron
representing the occupancy probability, followed by sigmoid
instead of 2 neurons and softmax. Finally, fNNOC5 has 2
hidden layers instead of 1. The average rates obtained with
the variants are presented in Table III (right side).

Comparing fNNOC, fNNOC1, fNNOC2 and fNNOC3, one
can see that the currently selected context 5 × 5 × 4 = 100
is justified, improving consistently and significantly over the
less complex versions. Moreover, comparing fNNOC and
fNNOC4, it is observed that having 2 output neurons with
softmax instead of 1 with sigmoid yields a slightly better
performance. Comparing fNNOC and fNNOC5, it is seen that
adding one extra hidden layer does not have a major impact
on the bitrate performance.

B. Encoding and Decoding Times

The encoding and decoding times of NNOC and fNNOC
for point clouds with three different bitdepths are presented in
Table IV. While the reported times are not comparable with
G-PCC, which can encode and decode in the order of seconds,
it might be worth emphasizing that the implementation is done
in a high-level environment which is not ideal for speed.

IV. CONCLUSIONS

We proposed a lossless compression method that utilizes
octree representation and neural network estimation of occu-
pancy probability distributions for splitting the octree nodes,
based on contexts obtained through combining information
from current and past resolutions. The method has a fast and a
slow version and is shown to provide much better compression
results than G-PCC, however at a complexity cost which is
currently very high. The proposed method compares favorably
with other recently proposed neural network solutions. Further
study is needed for expanding the solutions to larger classes
of point clouds and for higher ranges of resolutions.

REFERENCES

[1] T. Ebrahimi, S. Foessel, F. Pereira, and P. Schelkens, “JPEG Pleno:
Toward an efficient representation of visual reality,” IEEE Multimedia,
vol. 23, no. 4, pp. 14–20, 2016.

[2] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou,
R. A. Cohen, M. Krivokuća, S. Lasserre, Z. Li, et al., “Emerging MPEG
standards for point cloud compression,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 9, no. 1, pp. 133–148, 2018.

[3] E. Peixoto, “Intra-frame compression of point cloud geometry using
dyadic decomposition,” IEEE Signal Processing Letters, vol. 27, pp.
246–250, 2020.

[4] E.C. Kaya, S. Schwarz, and I. Tabus, “Refining the bounding volumes
for lossless compression of voxelized point clouds geometry,” arXiv
preprint arXiv:2106.00828, 2021.

[5] D. T. Nguyen, M. Quach, G. Valenzise, and P. Duhamel, “Learning-
based lossless compression of 3d point cloud geometry,” in 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2021, pp. 4220–4224.

[6] D. T. Nguyen, M. Quach, G. Valenzise, and P. Duhamel, “Multiscale
deep context modeling for lossless point cloud geometry compression,”
arXiv preprint arXiv:2104.09859, 2021.

[7] Moving Picture Experts Group, “TMC13,”
https://github.com/MPEGGroup/mpeg-pcc-tmc13, Accessed: 2020-
03-20.

[8] C. Loop, Q. Cai, S. O. Escolano, and P. A. Chou, “Microsoft voxelized
upper bodies - a voxelized point cloud dataset,” ISO/IEC JTC1/SC29
Joint WG11/WG1 (MPEG/JPEG) input document m38673/M72012,
2016.

[9] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i voxelized
full bodies - a voxelized point cloud dataset,” ISO/IEC
JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document
WG11M40059/WG1M74006, 2017.

[10] S. Schwarz, G. Martin-Cocher, D. Flynn, and M. Budagavi, “Common
test conditions for point cloud compression,” Document ISO/IEC
JTC1/SC29/WG11 w17766, Ljubljana, Slovenia, 2018.

[11] Project Nayuki, “Reference arithmetic coding,”
https://github.com/nayuki/Reference-arithmetic-coding, Accessed:
2021-04-03.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

PUBLICATION

V

Lossless Compression of Point Cloud Sequences Using Sequence Optimized
CNN Models

E. C. Kaya and I. Tabus

IEEE Access 10.(2022)
DOI: 10.1109/ACCESS.2022.3197295

Publication reprinted with the permission of the copyright holders

https://doi.org/10.1109/ACCESS.2022.3197295

Received 17 July 2022, accepted 1 August 2022, date of publication 8 August 2022, date of current version 12 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3197295

Lossless Compression of Point Cloud Sequences
Using Sequence Optimized CNN Models
EMRE C. KAYA AND IOAN TABUS , (Senior Member, IEEE)
Computing Sciences Unit, Tampere University, 33720 Tampere, Finland

Corresponding author: Emre C. Kaya (emre.kaya@tuni.fi)

ABSTRACT In this paper we propose a new paradigm for encoding the geometry of dense point cloud
sequences, where a convolutional neural network (CNN), which estimates the encoding distributions,
is optimized on several frames of the sequence to be compressed. We adopt lightweight CNN structures,
we perform training as part of the encoding process and the CNN parameters are transmitted as part of
the bitstream. The newly proposed encoding scheme operates on the octree representation for each point
cloud, consecutively encoding each octree resolution level. At every octree resolution level, the voxel grid
is traversed section-by-section (each section being perpendicular to a selected coordinate axis), and in each
section, the occupancies of groups of two-by-two voxels are encoded at once in a single arithmetic coding
operation. A context for the conditional encoding distribution is defined for each two-by-two group of voxels
based on the information available about the occupancy of the neighboring voxels in the current and lower
resolution layers of the octree. The CNN estimates the probability mass functions of the occupancy patterns
of all the voxel groups from one section in four phases. In each new phase, the contexts are updated with the
occupancies encoded in the previous phase, and each phase estimates the probabilities in parallel, providing
a reasonable trade-off between the parallelism of the processing and the informativeness of the contexts. The
CNN training time is comparable to the time spent in the remaining encoding steps, leading to competitive
overall encoding times. The bitrates and encoding-decoding times compare favorably with those of recently
published compression schemes.

INDEX TERMS Convolutional neural networks, lossless geometry compression, octree coding, point cloud
compression.

I. INTRODUCTION
The compression of the voxelized point clouds recently
became a hot research topic, owing to the need to develop
immersive technologies, underlined, e.g., in the programs
launched by the MPEG [1] and JPEG [2] standardiza-
tion bodies, which have already resulted in two well-
engineered standards, V-PCC [3] and G-PCC [4] (having the
test model TMC13 [5]). The scientific literature has wit-
nessed a strong interest in improving the compression perfor-
mance of G-PCC, with many scholarly contributions in recent
years, e.g., [6]–[22]. These methods differ in several aspects,
such as the representation used for the point cloud (e.g., octree
[15]–[20], dyadic decomposition [6], [7], [12] or projections

The associate editor coordinating the review of this manuscript and

approving it for publication was Gulistan Raja .

onto 2D planes [13], [23]), the selection of the context used
for the conditional probability model for arithmetic coding
and the method to define the symbols to be encoded.

The probability model can be based on adaptively main-
tained counts for various contexts [4], [7] or on a neural
network (NN) model [11], [17], having a binary context at
the input and the probability mass function of the symbol at
the output.

In the last few years, machine learning approaches using
neural networks have been proven to be competitive for both
lossy [14], [16], [20]–[22] and lossless [11], [17], [20], [24]
point cloud geometry compression. A comprehensive survey
of the recent methods with a focus on the learning-based
approaches is provided in [25].

In [14], an autoencoder architecture involving 3D convo-
lutional layers is employed to generate a latent representation

83678 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

FIGURE 1. Overview of the proposed Specifically Trained Model (STM) compression method for encoding a point cloud sequence.

of the point cloud, which is further compressed using
range coding. In [21], a variational autoencoder model is
employed in an end-to-end learning scheme. In [22], adaptive
octree-based decomposition of the point cloud is performed
prior to encoding with a multilayer perceptron-based end-to-
end learned analysis-synthesis architecture. VoxelDNN [11]
uses 3D masked convolutional filters to enforce the causal-
ity of the 3D context from which the occupancy of 64 ×
64 × 64 blocks of voxels are estimated. VoxelContext-
Net [20] employs an octree-based deep entropy model for
both dynamic and static LIDAR point clouds. NNOC [17]
operates on the octree representation, where hybrid contexts
are formed by combining the information from two consec-
utive resolution levels. In [24], a deep generative model is
employed for lossless geometry compression.

As a variation from the previous approaches that uti-
lize neural networks, we optimize a specific neural network
model for the sequence to be encoded. In the proposed
scheme, the optimization (training) of the network is a part of
the encoding stage, and the optimizedCNNmodel parameters
are transmitted as a header to the decoder, being then used for
decoding any point cloud from the sequence.

We consider here two distinct paradigms for using a neural
network as a coding probability model. In the first, which
we dub Generically Trained Model (GTM), some generic
training set is selected and is used for optimizing an NN
model to be used by both the encoder and decoder for all the
compression tasks that will be required in the future [8], [11],
[14], [16], [17], [20]–[22], [24], [26], [27]. The compression
performance of the methods involving this approach depends
on the selection of a suitable training set. The model is an
integral part of the encoding program, and an identical copy
is assumed to exist in the decoding program, so the NNmodel
is not considered as a part of the encoded data. Hence, the
model can be made as complex as needed, since its size does
not contribute to the size of the bitstream. Additionally, the

training time of themodel is not accounted for in the encoding
time, although it can be rather important, of the order of
hours.

Here, we propose a second paradigm, Specifically Trained
Model (STM), where the NN model to be used for the
compression of a sequence of point clouds (PC) is opti-
mized for the sequence and is transmitted as a part of the
encoded stream. One cannot simply adhere to this paradigm
by selecting the same model structure as in the GTM case and
train it on the sequence, because the complexity-compression
ratio trade-off needs to be different. The model needs to
be trained quickly, and the cost of transmitting the model
parameters needs to be sufficiently low. Using the specifically
trained model paradigm as a basis for the compression of a
point cloud sequence has the advantage that the NN model
that generates the coding distribution at each context can be
trained to match very closely the real distributions found in
the point clouds that form the sequence, even with a less
complex NN structure than in the general trained model case.
Another advantage is that the point clouds in a sequence
are similar, one to another, from the point of view of their
real probability distributions at the contexts. Whereas in the
case of a general trained model, the distributions gener-
ated by the model at each context can differ quite signifi-
cantly from the distributions learned from the generic training
data.

In this paper, we propose a solution that belongs to the STM
paradigm and has the following main features: It uses the
octree representation [28]; encodes the occupancy of groups
of 2× 2 voxels at each arithmetic encoding operation; uses a
context based on the occupancies of lower resolution voxels
(translated as candidate voxels at the current resolution) and
on sets of voxels already encoded at the current resolution;
computes the probability using a CNN model having at the
input a multivalued context (which becomes gradually more
relevant along the four phases).

VOLUME 10, 2022 83679

E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

FIGURE 2. Encoding of the occupancy image Oz0 (the section z = z0 through the point cloud Pr at resolution r) at phase ϕ using an arithmetic
encoder (AE) for 16-valued symbols. ‘‘Construct the Input Stack’’ is detailed in Fig. 3, CNN is detailed in Fig. 4 and ‘‘Select and Serialize’’ is detailed in
Fig. 5.

FIGURE 3. Construction of the Input Stack Sz0 (ϕ). Mz0 (ϕ) is formed by
combining the available information from the current and the lower
resolution (candidates PC). For more detail on how Mz0 (ϕ) is formed, see
Fig. 7 and Eqn. (3).

The structure of the paper is as follows. We introduce our
method in Section II and present the experimental results in
Section III, and we present the conclusions in Section IV.

II. PROPOSED METHOD
A. ENCODING A SEQUENCE OF FRAMES BY OPTIMIZING
A CNN MODEL ON A FEW FRAMES
We consider lossless compression of the geometry of dense
point clouds forming a sequence. Each point cloud in the

sequence is referred to as a frame. An overview of the
proposed lossless sequence encoding scheme is provided in
Fig. 1. The lossless encoding scheme consists of three stages.
In the first stage, we collect the contexts and corresponding
histograms from a small number of frames. For example,
we show in the Experimental Work section the performance
when selecting different numbers of training frames at equal
temporal distances to each other. More elaborate selection
strategies might be considered but we noticed that the overall
performance does not improve significantly for the sequences
that we experiment with. Each context is associated with
a 16-element histogram where each element corresponds to
an occupancy pattern as described in Section II-C in detail.
This first stage is shown as a block called ‘‘Collect Context-
Histogram Pairs’’ in Fig. 1. In the second stage, we train
a fixed structure CNN model using the contexts and corre-
sponding histograms that were collected in the first stage (see
‘‘Train CNN’’ in Fig. 1). We emphasize that the structure of
the CNN is fixed to make it clear that it is not subject to
optimization in the algorithm, however it is chosen a priori
from a set of possible structures, given the intended perfor-
mance: for better compression performance one can use a
heavier model, while for low overhead of the model bitstream
a lighter structure is preferable (e.g., in the case of short
sequences). In Section III we illustrate four choices of CNN
model structures of different complexities and report their
performance. The set of possible structure choices should be
known to the decoder and the choice made at the encoder
needs to be signaled (by a couple of bits) to the decoder.

83680 VOLUME 10, 2022

E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

FIGURE 4. Structure of the sequence optimized CNN used for estimating
the occupancy probabilities. For the convolutional layers, K denotes the
2D kernel size, C denotes the number of output channels and S denotes
the 2D stride.

The optimal parameters (weights and biases) of the CNN
resulting from the training stage, are losslessly transmitted,
consuming 32 bits for each floating point parameter. This
corresponds to the ‘‘Encode the CNN Parameters’’ block in
Fig. 1. The decoder has available the structure parameters
of the CNN (number of layers, number of channels, strides),
and by reading the header transmitted by the encoder, it can
reconstruct the CNN model to be exactly the same as the one
used by the encoder. The CNN model is used for indepen-
dently encoding/decoding each frame of the sequence, and
since the encoding is done only intraframe, the starts and ends
of the bitstream for each frame can be stored (incurring a little
overhead) so that each frame can be decoded without the need
of decoding the previous frames. In the final stage, we encode
the entire sequence frame-by-frame using the same CNN
for each frame. The frames can be encoded independently
from one another; hence, they can be decoded in any order,
independently from one another, resulting in random access
to the point clouds of the sequence. We note that the methods
using interframe coding do not possess this random access
property.

B. ENCODING OF A FRAME
At each frame, the octree representation of the point cloud
is processed iteratively at the resolution r , starting from the

resolution (octree depth level) r = 2 and eventually reaching
the original resolution r = R, thus enabling lossless recon-
struction. First, the PC at r = 2 is written to the bitstream in
64 bits, where each bit represents the occupancy of a voxel.

The encoding steps at resolutions higher than 2 are illus-
trated in Fig. 2. Let PR denote the input point cloud, where
Pr with 2 ≤ r < R is a lower resolution version of PR.
At each resolution level r ≤ R, we have available at both
the encoder and the decoder the point cloud Pr−1, and we
create from it an upsampled version called PC

r by splitting
each occupied voxel of Pr−1 into eight candidate voxels in
PC
r , now having a resolution of r bits per dimension. The

point cloud Pr is a subset of PC
r . For encoding Pr , we need

to encode and transmit the occupancy status of each candidate
voxel in PC

r . This is performed sequentially by sweeping
z0 along the sweeping dimension z and at each z0 considering
the sectioning by the plane z = z0 of the point cloud PC

r and
for each candidate voxel transmitting the occupancy status.

To use suggestive geometric interpretation, when encoding
the voxels at the section z = z0 in Pr , we refer to the plane in
the x and y coordinates as a binary (W×H)-occupancy image
Oz0 , where Oz0 (x, y) = 1 indicates that (x, y, z0) ∈ Pr (see
Fig. 2). The occupancies of the candidate voxels in the current
section z = z0 are encoded in four phases such that, at each
phase, only some of the candidate voxels in the current section
are encoded. The context used at a phase ϕ for encoding
the candidate voxels is constructed using the most up-to-date
information, containing the occupancies that are encoded in
the previous phases 1, . . . , ϕ − 1. Thus, having four phases
instead of a single phase provides more informative contexts
for the candidates that are not encoded in the first phase.

Section z = z0 through the upsampled candidate point
cloud PC

r is called the (W × H)-candidate image, Cz0 (see
Fig. 2). During the decoding process, the reconstructed occu-
pancy image Rz0 (ϕ) (a binary (W ×H)-image) is maintained
for each of the four phases ϕ = 1, 2, 3, and 4, as described in
Subsection II-C. After phases ϕ = 1, 2, 3, Rz0 (ϕ) is a partial
reconstruction of Oz0 , and after phase ϕ = 4, Oz0 is fully
reconstructed. In Rz0 (ϕ), the decoded occupied voxels (true
points) are represented as pixels with a value of 1, and all the
remaining pixels have a value of 0. When encoding the pixels
of Oz0 , the planes Oz0−1 and Oz0−2 were already encoded,
and we rely, when building conditioning distributions by the
CNN, on the most relevant available information, namely,
the images Cz0+1,Cz0 ,Oz0−1,Oz0−2, and for the information
in the current plane z = z0 reconstructed as Rz0 (ϕ). The
information from the candidate image Cz0 and the recon-
structed image Rz0 are combined into a four-level mixed
image,Mz0 (ϕ), as described in Subsection II-C.

The mixed image Mz0 (ϕ) together with the three binary
images Cz0+1, Oz0−1 and Oz0−2 are used to construct a 4 ×
W × H array called Input Stack Sz0 (ϕ). Input Stack Sz0 (ϕ)
is constructed by the block ‘‘Construct the Input Stack’’ in
Fig. 2, which is detailed in Fig. 3, and it is input to a CNN
for estimating the probabilities of occupancy of the voxels at
z = z0.

VOLUME 10, 2022 83681

E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

FIGURE 5. The structure of the block ‘‘Select and Serialize’’ from Fig. 2. The candidate voxels encoded in the current phase (ϕ) are determined by the
phase candidate image Cϕ , which is obtained by multiplying the two binary images Cz0 and �ϕ . By downsampling Cϕ , we obtain the so-called block
picker CB

ϕ , which is a binary image where CB
ϕ (m, n) = 1 corresponds to a 2× 2 block of occupancies Bm,n that needs to be encoded in phase ϕ.

Occupancies image Oz0 is convolved with a 2× 2 kernel to generate the block occupancies image OB
z0

, which contains numbers from 0 to 15 that

symbolize the occupancy patterns of 2× 2 blocks. Block Picker’s shape is consistent with both OB
z0

and the output stack Gz0 (ϕ) coming from the CNN. The

element OB
z0

(m, n) for which CB
ϕ (m, n) = 1 and the corresponding column G(m, n) in the output stack Gz0 (ϕ) are picked and form a (symbol, pmf) pair.

These pairs are serialized in a certain scanning order, which is also obeyed by the decoder.

We encode the occupancy of candidate voxels in section
z = z0 in blocks of 2 × 2 voxels, such that a block of
occupancies at a position m, n is defined as

Bm,n =
[

Oz0 (2m, 2n) Oz0 (2m, 2n+ 1)
Oz0 (2m+ 1, 2n) Oz0 (2m+ 1, 2n+ 1)

]
.

We define the occupancy pattern of a block Bm,n as Qm,n =
Oz0 (2m, 2n) + 2Oz0 (2m, 2n + 1) + 22Oz0 (2m + 1, 2n) +
23Oz0 (2m+1, 2n+1). The entireW×H image is covered by
nonoverlapping blocks by settingm = 0, 1, . . . ,W/2−1 and
n = 0, 1, . . . ,H/2− 1 (W and H are enforced to be even).

For encoding with arithmetic coding the occupancy pattern
Qm,n of a generic (2 × 2)− block of pixels Bm,n, we uti-
lize a probability mass function (pmf), denoted as a 16-
length vectorG(m, n), specifying at element q the probability
Gq(m, n) = Prob(Qm,n = q|Cm,n), for each q ∈ {0, . . . , 15},
conditioned on a context Cm,n (see Fig. 6). We implement the
probability model by a CNN with the set of parameters W
and 16 output channels, which will output at every location
(m, n) the pmf vector denoted

G(m, n) = CNNW (Cm,n) = g(W, Cm,n). (1)

Hence, the output of the CNN is an array of size 16×W/2×
H/2, called the output stack, denoted Gz0 . At location (m, n)
and channel q, Gz0 (q,m, n) = Gq(m, n).

FIGURE 6. The context Cm,n (the 4× 6x6 block of voxels marked in red)
for computing the 16-element probability mass function
Prob(Qm,n = q|Cm,n) for q = 0, . . . , 15, needed for encoding and
decoding the occupancy pattern Qm,n for the 2× 2 block Bm,n (the block
marked by the yellow square). The CNN computes in parallel all these
probabilities at all (m,n) locations. At the training stage, for each context
observed in the training set, a 16-element histogram h(q|Cm,n),
q = 0, . . . , 15, is collected and used in the loss function from (5).

The conditioning is done on a context Cm,n, which is
defined by the receptive field of the CNN, i.e., by the set of

83682 VOLUME 10, 2022

E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

FIGURE 7. Constructing the mixed quaternary image Mz0 (ϕ) at each phase ϕ by combining the available information from the already encoded parts of
the binary occupancy image Oz0 and the binary candidates image Cz0 . The quaternary value for each pixel (i, j) is obtained by setting either
Mz0 (i, j) = 2Oz0 (i, j)+ 1 or Mz0 (i, j) = 2Cz0 (i, j) depending on whether Oz0 (i, j) is known in the current phase (i.e., �s

ϕ−1(i, j) = 1). Each phase is
associated with a different phase selector image �ϕ , which are binary images. The already processed voxels at the beginning of each phase ϕ are
expressed as a binary image �s

ϕ−1. The mixed image, Mz0 (ϕ), which is to be used in the input stack at phase ϕ, is obtained by applying
Mz0 (ϕ) = Cz0 ◦ (2+ (2Oz0 − 1) ◦�s

ϕ−1) (3) (which rephrases the mechanism of constructing the quarternary values described above). A pixel in Mz0 (ϕ)
can have one of the four values 0,1,2,3. If it was not yet encoded, it can be 0 (if it is not a candidate, Cz0 (i, j) = 0) or 2 (if it is a candidate, Cz0 (i, j) = 1).
If it is already encoded, it can be 1 (if it is not occupied, Oz0 (i, j) = 0) or 3 (if it is occupied, Oz0 (i, j) = 1). At each phase, we show in Mz0 (ϕ) one example
context window as a red bounding box around its corresponding 2× 2-block to be encoded.

pixels from the Input Stack Sz0 , which affects the computation
of G(m, n). For the selected structure of the CNN shown
in Fig. 4, the receptive field Cm,n can be seen to be the
4 × 6 × 6 subblock from the input stack Sz0 , ranging on x
coordinates from 2m−2 to 2m+3 and on y coordinates from
2n− 2 to 2n+ 3. In Fig. 3 and Fig. 6, the context of 4× 6×
6 pixels from the images Oz0−2, . . . ,Cz0+1, corresponding to
the 2 × 2− candidate block marked in yellow on the mixed
imageMz0 (ϕ), are shown by the red contours.
The CNN consists of four 2D convolutional stages where

the convolutions operate along the W and H dimensions and
the number of input channels is four (the number of 2D
images in Sz0 (ϕ)). As a nonlinear activation function at the
hidden stages, we employ LeakyReLU [29] with a constant
slope α for the negative inputs so that

LeakyReLU(x) = max(0, x)+ α ∗min(0, x). (2)

We set the negative region slope as α = 0.01 following
[29]–[31]. The output layer activation is chosen as softmax

to ensure the output G(m, n) to be valid probability mass
functions.

C. ENCODING THE VOXELS IN A 2D SECTION
IN FOUR PHASES
To improve the informativeness of the contexts, we split the
encoding process into four phases such that in each phase, the
CNN is called once, having at the input a different input stack,
Sz0 (ϕ), which gradually becomes more informative at each
phase. In all four phases, we employ the same CNN model
which is trained with context-histogram pairs collected from
all four phases. We do not devote different CNN models to
each phase because in such a scenario, the CNN bitstream
would be four times longer and the CNN training time would
also increase significantly. Moreover, running four different
CNNs would significantly increase the consumption of GPU
memory during encoding and decoding. Thus, having a single
model which handles all the four phases is advantageous in
terms of the bitrate, the execution times and the memory

VOLUME 10, 2022 83683

E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

FIGURE 8. Decoding of the occupancy image Oz0 (the section
z = z0 through the point cloud Pr at resolution r) at a phase ϕ. The block
‘‘Select (symbol,pmf) pairs’’ provides the arithmetic decoder (AD) with the
pmf vectors of the blocks to be decoded and it inserts the decoded block
occupancies into the reconstructed Rz0 (ϕ). In the next phase, Rz0 (ϕ) is
used to form the Mz0 (ϕ + 1) in the input stack Sz0 (ϕ + 1).

consumption. Associated with each phase ϕ is a different
phase selector image �ϕ that selects the candidate blocks to
be encoded in the current phase (the selected candidate blocks
are called the phase candidates blocks) (see Fig. 5 and 7).

Phase selector images �ϕ are visualized in Fig. 7. In each
phase ϕ, a quarter of the 2×2 blocks, all located in a squared
grid, are selected for possible encoding by setting �ϕ(i, j) =
1 for every pixel (i, j) belonging to a selected 2 × 2 block
(see the four phase selectors�1, . . . , �4 at the top of Fig. 7).
The elements of �1 are 1 for all pairs (i, j) with i = 4k, i =
4k + 1, j = 4l, j = 4l + 1, where k, l are integers, so that
the elementwise product Oz0 ◦ �1 (◦ denotes element- wise
multiplication) forces to zero all the pixels that do not belong
to blocks B2k,2l .

Similarly, the selector image �2 selects in Oz0 ◦�2 all the
blocks B2k,2l+1, �3 selects all the blocks B2k+1,2l , and �4
selects all the blocks B2k+1,2l+1.

In each phase, the CNN uses the Input Stack Sz0 (ϕ) and
generates pmf vectorsG(m, n) = CNNW (Cm,n) for all blocks
Bm,n, with m = 0, 1, . . .W/2 − 1 and n = 0, 1, . . .H/2 −
1, hence covering all blocks of the (W × H) images. The
candidate imageCz0 specifies which of the blocks are already
known to be zero and hence do not need to be encoded.

In the first phase, out of all 2× 2− blocks of Cz0 and Oz0 ,
only a quarter of the blocks are selected by using�1; namely,
from Oz0 , only the blocks B2k,2l , with k = 0, . . . ,W/4 −
1 and l = 0, . . . ,H/4 − 1. The pmf corresponding to
each block is read from the pmf vector G(2k, 2l) and is
used by the arithmetic encoder. The encoder and the decoder
are now accounting that one quarter of the image Oz0 was

reconstructed, and those values can be inserted for the next
phase into Sz0 .

Phases 2, 3 and 4 proceed in a similar way, after which
the entire Oz0 pixels can be reconstructed so that Rz0 = Oz0 ,
and the algorithmmoves to the processing of the next section,
z = z0 + 1.

Fig. 7 shows how the candidate image Cz0 and the occu-
pancy image Oz0 (or equivalently the reconstructed image
Rz0) are combined differently at each phase, resulting in the
mixedW×H -imageMz0 (ϕ). Initially, since fromOz0 nothing
is encoded yet,Mz0 contains only the candidacy information.
The already processed part of the current section after phase
ϕ is denoted with a binary image �s

ϕ = �1 ∨ . . . ∨ �ϕ
(elementwise OR), where �s

0 is all-zeros. The mixed image
Mz0 (ϕ) at the beginning of phase ϕ is obtained at the encoder
as

Mz0 (ϕ) = Cz0 ◦ (2+ (2Oz0 − 1) ◦�s
ϕ−1), (3)

where ◦ is pixelwise multiplication, by the process of obtain-
ing the quaternary values out of the two binary values,
as described in the caption of Fig. 7. Equivalently, at the
decoder, we have

Mz0 (ϕ) = Cz0 ◦ (2+ (2Rz0 (ϕ)− 1) ◦�s
ϕ−1), (4)

since Oz0 ◦ �
s
ϕ−1 = Rz0 (ϕ) ◦ �

s
ϕ−1. Eqn. (3) is the mathe-

matical expression for the block ‘‘Construct the Mixed Image
Mz0 (ϕ)’’ in Fig. 3, whereas (4) is the decoder version of the
same block.

The ‘‘Select and Serialize’’ block, which appears in Fig. 2,
carries out the operations required to feed the occupancy
symbols and the corresponding probability mass functions to
the arithmetic encoder. ‘‘Select and Serialize’’ operations are
schematized in Fig. 5. The two binary images Cz0 and �ϕ
are element-wise multiplied to yield the so-called phase can-
didates Cϕ . Occupancies image Oz0 is convolved with a 2D
kernel having elements [1, 2; 4, 8] to yield the so-called block
occupancies OBz0 . O

B
z0 is a 16-level image with dimensions

(W/2,H/2), and each pixel corresponds to the occupancy
pattern of a 2 × 2 block in Oz0 . In phase ϕ, only those
candidate blocks that are indicated in Cϕ need to be encoded.
Cϕ is downsampled to the so-called block picker CB

ϕ , which
has the same shape (W/2,H/2) as OBz0 . Finally, the ‘‘Pick
and Serialize’’ block in Fig. 5 picks the relevant elements
from OBz0 and from the output stack Gz0 and serializes them
such that for each block Bm,n for which CB

ϕ (m, n) = 1,
the 16-element pmf vector G(m, n) is extracted from the
output stack, and the corresponding block occupancy symbol
OBz0 (m, n) is extracted from the block occupancy image. Then,
the (symbol,pmf) pairs are sent to the encoder in a predefined
scanning order.

Fig. 8 shows the decoder’s flow diagram using the same
probability modeling and the same CNN as the encoder.
The decoder counterpart of the ‘‘Select and Serialize’’ block
in the encoder is called the ‘‘Select (symbol,pmf) pairs’’
block. It performs perfectly aligned with the encoder. First,

83684 VOLUME 10, 2022

E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

it provides the arithmetic decoder with the pmf of the block
to be decoded, and second, it reads from the output of the
arithmetic decoder the decoded 2× 2 block occupancies and
inserts them into the correct locations in Rz0 (ϕ). The essential
difference from the way the input to the CNN is constructed
at the encoder is the replacement of Oz0 by Rz0 .

D. OPTIMIZATION OF THE CNN
The CNN is trained using the data collected from a number
of frames, which we call the training frames. The training set
consists of (4× 6× 6)-shaped contexts that have occurred in
the training frames at least once. Each context is associated
with a 16-element histogram h containing the number of
occurrences of 16 possible occupancy patterns of 2× 2 can-
didate blocks. The training data are collected from the final
resolution only.

During training, the contexts from the collected set are fed
in batches of size Nb, and the loss is expressed as

Loss = −
1
Nb

Nb∑
i=1

15∑
q=0

h(q|Ci) log2 gq(W, Ci), (5)

where h(q|Ci) is the number of occurrences of the q’th occu-
pancy pattern in the training set for the i’th context, Ci, of the
batch and gq(W, Ci) is the corresponding output of the CNN;
see (1).

III. EXPERIMENTAL WORK
We have performed experiments with sequences from
Microsoft Voxelized Upper Bodies (MVUB) [33] and 8i
Voxelized Full Bodies [34] datasets, which are dense point
cloud datasets. MVUB sequences have a resolution of 9 bits,
whereas 8i sequences have a resolution of 10 bits per
dimension.

In our default CNN architecture (shown in Fig. 4), the total
number of optimized parameters is 15116. Each parameter
is transmitted in 4 bytes, leading to a model codelength of
CLm=̃60.5 kB. Thus, for a frame with 500k points in a
100-frame sequence, the model’s contribution to the bitrate
is less than 1%. Due to this small size, we did not con-
sider, in this paper, the problem of entropy coding the CNN
parameters, which will not significantly improve the cur-
rently achieved bitrates.

In all the experiments, training is performed using the
ADAM optimizer with batch size Nb = 104 and an initial
learning rate of 0.001. Since the training time is counted as
part of the encoding time, the training phase is kept short.
When no improvement in loss is observed for 20 epochs for
the first time, the learning rate is halved. When no improve-
ment in loss is observed once again, the training ends. The
number of training frames is by default set to 5. To maximize
parallelism, the sweeping axis Oz is selected as the shortest
dimension of the bounding box, tightly enclosing all the
points of the first frame. The algorithm is implemented using

PyTorch and TorchAC [35] on an NVIDIA RTX 2080. The
implementation is made available on Github.1

The bitrate br for the sequence is measured as the average
of the bitrates brf over F consecutive frames, where the
bitrate brf for a frame f is measured as bits-per-point (bpov)

brf = (CLf + CLm/F)/np,f , (6)

and CLf is the codelength for encoding frame f , CLm is
the codelength for encoding the CNN model and np,f is the
number of points in frame f .

In addition to the bitrates, we also report the average
encoding and decoding times per frame, where the encoding
time per frame te includes the time spent collecting training
data and training the CNN divided by the number of frames.
That is,

te =
1
F
(ttr +

F∑
f=1

te,f), (7)

where ttr is the total time spent training the CNN (including
the training data collection time) and te,f is the time spent
encoding frame f . For our default configuration, the average
ttr over all 9 sequences used in our experiments is 348 sec-
onds.

In Table 1, we compare the bitrates br obtained with the
proposed SeqNOC (default model) and with some recently
published algorithms. The methods on the left side of the
table have to resort to optimization (as in our method) or
adaptively track the count numbers in each context to build
efficient coding probability distributions. The right side of
Table 1, under the header ‘‘Methods using models trained
on a generic dataset’’ contains methods following the GTM
paradigm [11], [17], [24], [26]. We note that for the gener-
ically trained models, there are no results listed for some
sequences because some frames of those sequences were
part of the training data; therefore, the cited publications
did not include results for them. TMC13 [4], S3D [6],
P(Full) [18], S4DCS [12] and SeqNOC results are the average
bitrates over the 100 frames starting from the 2nd frame,
whereas the results for NNOC, fNNOC [17] are for the
entire sequence. VoxelDNN [11], MSVoxelDNN [26] and
DGM [24] results are for certain representative frames taken
from the sequences.

To investigate the effect of model complexity, we experi-
ment with CNN models with different complexities. To that
end, we devise three additional CNNmodel structures having
the same number of convolutional layers as our default model,
which is illustrated in Fig. 4 but with a different number of
output channels at the hidden layers. These models are named
SNLM, SNLM2 and SNHM (the first two of them being
lighter than the default model and the last one being heavier),
and their structures are summarized in Table 2, where nw is
the number of CNN parameters to be transmitted and nhidden,l
is the number of output channels at the l’th hidden layer.

1https://github.com/marmus12/seqnoc

VOLUME 10, 2022 83685

E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

TABLE 1. Comparing the average bitrates of the proposed SeqNOC with those of the other recent methods.

TABLE 2. Structure of CNN models having different complexities.

The bitrates and per-frame encoding-decoding times obtained
with four different models are presented in Table 3, where the
sequence length is F = 100. From Table 3, one can observe
that the default model yields the best bpov results for the
9-bit MVUB sequences, whereas for the 10-bit 8i sequences,
SNHM performs the best in bitrates. This is because, for the
9-bit sequences, the number of points at each point cloud is
much less than the 10-bit point clouds so that the average
bpov model cost of the heavy model (SNHM) is much more
significant than the 10-bit case. A more complex model is
more suitable when the number of points is high. On the other
hand, the best decoding time is obtained with the lightest
model (SNLM2); however, the bitrates of SNLM2 are the
worst. Regarding the encoding time, there does not seem to be
a clear-cut winner, but on average, SNLM performs the best.
This is because the per-frame encoding time te is composed
of both the time spent training the CNN ttr (divided by the
number of frames F) and the time spent encoding one frame.
The time spent encoding one frame is shorter for the lighter
models, whereas the CNN training time can sometimes be
shorter when the model is more complex. Note that for all
the experimental models, we employ the same training policy,
which decides to end the training when the training loss stops
to improve.

In Table 4, we compare the results obtained with different
numbers of training frames. In our default configuration, the
number of training frames is set to 5. Since the number of
training frames does not affect the decoding times, we only
present the encoding times in Table 4. According to Table 4,
the per-frame encoding time te increases dramatically with
the increasing number of training frames since the CNN
training takes longer and the best encoding times are obtained

in the single training frame case. For MVUB, the best bitrates
are obtained with 20 training frames, whereas for the 8i
dataset, the best bitrates are obtained with 10 training frames,
yet the bitrate differences between the 10 and 20 training
frame scenarios are rather small.

In Table 5, the results obtained with the default SeqNOC
are compared with the single phase version of SeqNOC,
which is called SeqNOC-SP. In SeqNOC-SP, we do not
employ the four-phase strategy; instead, there is a single
phase in which the probability of occupancies for a section
z = z0 is estimated. The SeqNOC-SP operates on less infor-
mative contexts, yet it has the advantage of speed.We perform
this comparison mainly to show the improvement brought by
the usage of phases.

Since the algorithms run at different speeds on different
hardware, we compare the speed performance of different
algorithms by comparing the ratios between the runtime of
an algorithm and the runtime of TMC13 (reported in the
publication describing the algorithm). The ratios between the
average (per-frame) encoding/decoding times of the differ-
ent methods and the average (per-frame) encoding/decoding
times of TMC13 for PCs from MVUB and the 8i sequences
are presented in Table 6. The encoding time ratio for FRL
is taken from [32]. The runtimes for DGM, NNOC, fNNOC,
MSVDNN, VoxelDNN and SeqNOC were measured on an
NVIDIA RTX 2080, and the runtimes for TMC13 were
measured as 2.9 seconds for encoding and 2.8 seconds
for decoding on an Intel(R) Xeon(R) Silver 4110 CPU @
2.10 GHz [24]. From Table 6, it is evident that FRL [32] is
the fastest method, whereas SeqNOC-SP and SeqNOC are
the third and fourth fastest, respectively. We note that the
remaining methods are significantly slower than SeqNOC,
and out of the NN-based methods, only the SeqNOC and
SeqNOC-SP encoding times include the time spent for CNN
training.

In Figure 9, we plot the average per-frame bitrate of sev-
eral methods vs. the encoding time ratios to the TMC13
encoding time. Such 2D visualization allows us to roughly
demonstrate the trade-off between bitrates and runtimes for
different algorithms. In Fig. 9, the convex hull formed by

83686 VOLUME 10, 2022

E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

TABLE 3. Bitrates [bpov], encoding times (te[s]) and decoding times (td [s]) obtained with four different CNN models.

TABLE 4. Bitrates [bpov] and encoding times (te[s]) for SeqNOC obtained with different numbers of training frames.

TABLE 5. Bitrates [bpov], encoding times (te[s]) and decoding times
(td [s]) obtained with the default (4-phase) model vs. the single phase
model.

the datapoints corresponding to various algorithms is also
drawn as a blue dashed line. The bitrates are averaged over
4 sequences, namely, phil, ricardo, loot and redandblack, for
which the bitrates were available for all of the plotted meth-
ods. Similarly, in Fig. 10 are plotted the bitrates vs ratios of
decoding times. From Figures 9 and 10, it is evident that both
the default SeqNOC and its single-phase version SeqNOC-
SP provide good trade-offs between encoding/decoding times
and bitrates.

A. COMPRESSING A SINGLE POINT CLOUD WITH SeqNOC
Although the SeqNOC scheme is intended for the compres-
sion of sequences, it can also be used to compress a single

point cloud, where the CNN optimization is performed with
the context-histogram pairs extracted from the single point
cloud. In the single point cloud case, the cost of transmitting
the CNN parameters becomes quite significant; therefore,
we choose to employ a CNN model with a small number of
parameters. The model we use for the single point cloud case
is SNLM2. The encoding time for a single PC is on the order
of minutes since the time spent for optimization (ttr) is on
the order of minutes, whereas the decoding time is still on
the order of seconds for a single point cloud. This property
makes encoding of single frames by the STM strategy well
suited for ‘‘encoding once decoding many times’’ scenarios
(i.e., for broadcasting).

The bitrates obtained for the point clouds from Cat1A [36]
are presented in Table 7. The point clouds with resolutions
higher than 10 bits are downsampled to 10 bits. The bitrates
reported in the SNLM2 column include the model cost (the
cost of transmitting the model). Since the model costs for the
single point cloud case are much more significant than those
for the sequence case, the model costs for each PC are also
shown separately in the Model Cost column. Note that for all
of the PCs, the model structure and thus the model codelength
CLm = 32 × nw are exactly the same, and the model cost
in bpv (CLm/np, where np is the number of points) varies
due to the differences in the number of points in each PC.
From Table 7, one can see that SNLM2 outperforms TMC13
for all the point clouds except three of them. Furthermore,
SNLM2 offers significantly better bitrates on average when

VOLUME 10, 2022 83687

E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

TABLE 6. Ratios between the average (per-frame) runtime of different methods and the average (per-frame) runtime of TMC13.

FIGURE 9. Average bitrate vs. encoding time ratio to TMC13 encoding
time.

FIGURE 10. Average bitrate vs. decoding time ratio to TMC13 decoding
time.

compared to TMC13. On the other hand, DGM [24] performs
significantly better on shiva and frog.

IV. DISCUSSION
Our proposed scheme SeqNOC is a follow-up version of the
schemes NNOC and fNNOC proposed in [17], with many
architectural changes made with the main goal of achieving

a reasonable per-frame decoding time. Additionally, from the
encoder point of view, the structure of the neural network was
changed and chosen to obtain a reasonable time for the opti-
mal design of the CNN model based on several frames of the
sequence. In a nutshell, we changed the schemes from [17] to
allow a specific design of the CNN for each sequence with a
faster encoding time (including even the time for optimizing
a specific CNN for each sequence) and a faster decoding
time, retaining almost as good lossless coding performance as
in [17]. The similarities and differences are reviewed below in
detail.

First, we discuss the similarities. The encoding of the
occupancies of the voxels is performed in a multi-resolution
fashion, sequentially encoding the octree representation at
increasing resolutions. As with any context-based compres-
sion scheme, we tried to ensure the most informative contexts
around the voxels to be encoded, using the voxels at the pre-
vious resolution (all of them being already encoded) and the
voxels that are already encoded from the current resolution.
In all SeqNOC and NNOC versions, we scan the voxels at
a current resolution plane-by-plane (with each plane perpen-
dicular on a chosen coordinate axis). Looking at the 4×L×L
(L = 5 for NNOC) neighbors of the voxel to be encoded
in the current resolution, we see in the planes below it, z =
z0−2 and z = z0−1, voxels for which the occupancy status is
known, providing good contextual information. In the plane
above, at z = z0+1, the current resolution status is not known,
but the previous resolution level pixels are already encoded,
so we can create the candidate voxels at the current resolution
(those that resulted from the split of an occupied voxel at the
previous resolution). This is still useful contextual informa-
tion but less useful than the information at z = z0 − 2 and
z = z0 − 1.

In the current plane, z = z0, one can use the voxels
from the current resolution that have been already encoded
(i.e., b(L × L − 1)/2c voxels), as is done in NNOC, which
results in a good coding performance, but this implies that
the computation of the occupancy probabilities must be done
at the decoder, one-by-one sequentially, for all the voxels in
a plane z = z0, resulting in very slow decoding. The fNNOC
did not use all the voxels that have been already encoded
from the current resolution at z = z0, instead using only the
candidate status at z = z0, which resulted in faster decoding
than NNOC, but with a lower compression performance.
In SeqNOC, we use in a similar way the occupancy status
of the neighbor voxels at z = z0 − 2 and z = z0 − 1 and the
candidacy status of the voxels at z = z0 + 1; however, the
main change is in forming the context from the neighboring
voxels at z = z0.

83688 VOLUME 10, 2022

E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

TABLE 7. Bitrates [bpov] for TMC13, DGM, and for SNML2 (the lighter
complexity version of SeqNOC, see Table 2) for the point clouds from
Cat1A [36] in 10 bits resolution. The bitrate costs of transmitting the CNN
parameters are included in the SNLM2 column but are also shown
separately in the model cost column.

Some of the differences are listed next. To make a scheme
even faster than fNNOC at the decoder and to improve
the compression performance, in SeqNOC, we made two
changes. First, we defined the element to be encoded at each
arithmetic coding operation to be a block of 2 × 2 vox-
els (leading to a context of 4 × 6 × 6 voxels around the
2 × 2 voxel block), instead of a single voxel in NNOC
and fNNOC (for which the context had 4 × 5 × 5 vox-
els). The prediction capabilities of the enhanced contexts
in SeqNOC were shown in the ablation study to be better,
not being affected too much by the dilution effect of the
larger contexts. Another consequence of having a different
symbol definition is the change in the shape of the context
window.

The second change was to use a convolutional neural net-
work instead of the multilayer neural network, which allowed
us to compute all the probabilities at all the voxels very
fast in parallel from a plane z = z0. In NNOC, a two-
layer MLP was employed, whereas in SeqNOC, a four-layer
CNN, having fewer parameters than the MLP of NNOC,
was employed. The CNN formulation enables faster exe-
cution, which helps to reduce the encoding/decoding times
significantly.

Additionally, to further improve the compression perfor-
mance, the pass of the encoding through plane z = z0 was
divided into four phases so that in each phase, the computa-
tion of the encoding probabilities can be performed in parallel
but the contexts from the available voxels in z = z0 are more
informative, including the voxels z = z0 already encoded in
the previous phases.

The training stage is different. First, NNOC is a generically
trained model, and therefore, the results obtained with NNOC
are dependent on the training data. If the test data are not
similar to the training data, the bitrate performance may
deteriorate. In SeqNOC, the entropymodel adapts to the input

sequence itself. Since the symbols are defined in a different
way than it was in NNOC, the loss function is also formulated
in a different way.

In NNOC, during decoding, NN was executed for each
candidate location in the current section; hence, the num-
ber of phases was as high as the number of candidates in
the current section, resulting in very slow decoding. The
four-phase approach in SeqNOC provides a good balance
between bitrates and decoding speed.

Compared to the current state-of-the-art, our method is
distinguished by two main features. First, the selection of the
encoding unit (a 2× 2 block of voxels) and its context (in the
neighborhood of the block, utilizing the already encoded vox-
els at both the current resolution and the previous resolution
of the octree), which allows encoding and decoding with rich
contextual information in a parallel fashion along the plane-
by-plane scanning of the point cloud at each resolution, which
reaches competitive encoding and decoding speeds. Second,
the introduction of lightweight CNN models, which can be
trained quickly at the encoder and can be attached as a header
to the bitstream for the full sequence without greatly affecting
the overall bitrate, ensuring a very specific CNN model for
the task at hand and alleviating the question of whether
a generically trained CNN is suitable for the sequence
at hand.

V. CONCLUSION
We have introduced a lossless geometry encoding scheme
for sequences of dense point clouds using CNN models that
are designed in a new paradigm, named specifically trained
models, which has not been used until now. The learning
of the CNN model can be done fast enough at the encoder,
so that the learning plus sequence encoding time divided
by the number of frames, gives very competitive per frame
encoding times, at a bitrate performance better than that
obtained in the competing paradigm of generically trained
models. The coding probability models at each 2 × 2 block
are computed in parallel by the convolutional neural network
at each section z = z0 through the point cloud, contributing to
a fast encoding and decoding performance. To improve the
decoding time, which has unreasonably large values for the
published solutions [11], [17], [26], we adopt a four-phase
encoding at each section, such that the content of the contexts
improves from one phase to another, including the recently
encoded/decoded voxels inside the context after each phase.
Several variations of the method were proposed that cov-
ered various interesting trade-offs (e.g. compression ratio vs.
time complexity). We discussed the performance of the pro-
posed solution compared to the recently published schemes
and found that the introduced features produce significant
improvements.

REFERENCES
[1] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou,

R. A. Cohen, M. Krivokuća, S. Lasserre, and Z. Li, ‘‘Emerging MPEG
standards for point cloud compression,’’ IEEE J. Emerg. Sel. Topics Cir-
cuits Syst., vol. 9, no. 1, pp. 133–148, Mar. 2018.

VOLUME 10, 2022 83689

E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

[2] T. Ebrahimi, S. Foessel, F. Pereira, and P. Schelkens, ‘‘JPEG Pleno: Toward
an efficient representation of visual reality,’’ IEEE Multimedia, vol. 23,
no. 4, pp. 14–20, Oct./Dec. 2016.

[3] E. S. Jang, M. Preda, K. Mammou, A. M. Tourapis, J. Kim, D. B. Graziosi,
S. Rhyu, and M. Budagavi, ‘‘Video-based point-cloud-compression stan-
dard in MPEG: From evidence collection to committee draft [standards
in a nutshell],’’ IEEE Signal Process. Mag., vol. 36, no. 3, pp. 118–123,
May 2019.

[4] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and
A. Tabatabai, ‘‘An overview of ongoing point cloud compression standard-
ization activities: Video-based (V-PCC) and geometry-based (G-PCC),’’
APSIPA Trans. Signal Inf. Process., vol. 9, no. 1, pp. 1–15, 2020.

[5] Moving Picture Experts Group. TMC13. Accessed: Mar. 20, 2020.
[Online]. Available: https://github.com/MPEGGroup/mpeg-pcc-tmc13

[6] E. Peixoto, ‘‘Intra-frame compression of point cloud geometry using
dyadic decomposition,’’ IEEE Signal Process Lett., vol. 27, pp. 246–250,
2020.

[7] E. Peixoto, E. Medeiros, and E. Ramalho, ‘‘Silhouette 4D: An inter-frame
lossless geometry coder of dynamic voxelized point clouds,’’ inProc. IEEE
Int. Conf. Image Process. (ICIP), Oct. 2020, pp. 2691–2695.

[8] J.Wang, D. Ding, Z. Li, and Z.Ma, ‘‘Multiscale point cloud geometry com-
pression,’’ in Proc. Data Compress. Conf. (DCC), Mar. 2021, pp. 73–82.

[9] H. Liu, H. Yuan, Q. Liu, J. Hou, and J. Liu, ‘‘A comprehensive study and
comparison of core technologies forMPEG 3-D point cloud compression,’’
IEEE Trans. Broadcast., vol. 66, no. 3, pp. 701–717, Sep. 2020.

[10] S. Milani, E. Polo, and S. Limuti, ‘‘A transform coding strategy
for dynamic point clouds,’’ IEEE Trans. Image Process., vol. 29,
pp. 8213–8225, 2020.

[11] D. T. Nguyen, M. Quach, G. Valenzise, and P. Duhamel, ‘‘Learning-based
lossless compression of 3D point cloud geometry,’’ inProc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Jun. 2021, pp. 4220–4224.

[12] E. Ramalho, E. Peixoto, and E. Medeiros, ‘‘Silhouette 4D with context
selection: Lossless geometry compression of dynamic point clouds,’’ IEEE
Signal Process. Lett., vol. 28, pp. 1660–1664, 2021.

[13] E. C. Kaya, S. Schwarz, and I. Tabus, ‘‘Refining the bounding volumes for
lossless compression of voxelized point clouds geometry,’’ in Proc. IEEE
Int. Conf. Image Process. (ICIP), Sep. 2021, pp. 3408–3412.

[14] M. Quach, G. Valenzise, and F. Dufaux, ‘‘Learning convolutional trans-
forms for lossy point cloud geometry compression,’’ in Proc. IEEE Int.
Conf. Image Process. (ICIP), Sep. 2019, pp. 4320–4324.

[15] D. C. Garcia and R. L. de Queiroz, ‘‘Context-based octree coding for point-
cloud video,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2017,
pp. 1412–1416.

[16] L. Huang, S. Wang, K. Wong, J. Liu, and R. Urtasun, ‘‘OctSqueeze:
Octree-structured entropy model for LiDAR compression,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 1310–1320.

[17] E. C. Kaya and I. Tabus, ‘‘Neural network modeling of probabilities
for coding the octree representation of point clouds,’’ in Proc. IEEE
23rd Int. Workshop Multimedia Signal Process. (MMSP), Oct. 2021,
pp. 1–6.

[18] D. C. Garcia, T. A. Fonseca, R. U. Ferreira, and R. L. de Queiroz,
‘‘Geometry coding for dynamic voxelized point clouds using octrees and
multiple contexts,’’ IEEE Trans. Image Process., vol. 29, pp. 313–322,
2019.

[19] R. L. de Queiroz, D. C. Garcia, P. A. Chou, and D. A. Florencio, ‘‘Distance-
based probability model for octree coding,’’ IEEE Signal Process. Lett.,
vol. 25, no. 6, pp. 739–742, Jun. 2018.

[20] Z. Que, G. Lu, and D. Xu, ‘‘VoxelContext-Net: An octree based framework
for point cloud compression,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 6042–6051.

[21] J.Wang, H. Zhu, H. Liu, and Z.Ma, ‘‘Lossy point cloud geometry compres-
sion via end-to-end learning,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 31, no. 12, pp. 4909–4923, Dec. 2021.

[22] X. Wen, X. Wang, J. Hou, L. Ma, Y. Zhou, and J. Jiang, ‘‘Lossy geom-
etry compression of 3D point cloud data via an adaptive octree-guided
network,’’ in Proc. IEEE Int. Conf. Multimedia Expo (ICME), Jul. 2020,
pp. 1–6.

[23] D. E. O. Tzamarias, K. Chow, I. Blanes, and J. Serra-Sagristà, ‘‘Compres-
sion of point cloud geometry through a single projection,’’ in Proc. Data
Compress. Conf. (DCC), Mar. 2021, pp. 63–72.

[24] D. T. Nguyen, M. Quach, G. Valenzise, and P. Duhamel, ‘‘Lossless
coding of point cloud geometry using a deep generative model,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 31, no. 12, pp. 4617–4629,
Dec. 2021.

[25] M. Quach, J. Pang, D. Tian, G. Valenzise, and F. Dufaux, ‘‘Survey on
deep learning-based point cloud compression,’’ Frontiers Signal Process.,
vol. 2, pp. 1–15, Feb. 2022.

[26] D. T. Nguyen, M. Quach, G. Valenzise, and P. Duhamel, ‘‘Multiscale
deep context modeling for lossless point cloud geometry compression,’’ in
Proc. IEEE Int. Conf. Multimedia Expo Workshops (ICMEW), Jul. 2021,
pp. 1–6.

[27] A. F. R. Guarda, N. M. M. Rodrigues, and F. Pereira, ‘‘Adaptive deep
learning-based point cloud geometry coding,’’ IEEE J. Sel. Topics Signal
Process., vol. 15, no. 2, pp. 415–430, Feb. 2021.

[28] D. Meagher, ‘‘Geometric modeling using octree encoding,’’
Comput. Graph. Image Process., vol. 19, no. 2, pp. 129–147,
Jun. 1982.

[29] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve
neural network acoustic models,’’ in Proc. ICML, 2013, vol. 30, p. 3.

[30] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rec-
tifiers: Surpassing human-level performance on ImageNet classifica-
tion,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 1026–1034.

[31] M. Alzantot, Z. Wang, and M. B. Srivastava, ‘‘Deep residual neural net-
works for audio spoofing detection,’’ 2019, arXiv:1907.00501.

[32] D. E. O. Tzamarias, K. Chow, I. Blanes, and J. Serra-Sagrista, ‘‘Fast run-
length compression of point cloud geometry,’’ IEEE Trans. Image Process.,
vol. 31, pp. 4490–4501, 2022.

[33] C. Loop, Q. Cai, S. O. Escolano, and P. A. Chou,Microsoft VoxelizedUpper
Bodies—A Voxelized Point Cloud Dataset, document ISO/IEC JTC1/SC29
Joint WG11/WG1 (MPEG/JPEG) Input document m38673/M72012,
2016.

[34] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, 8I Voxelized
Full Bodies—A Voxelized Point Cloud Dataset, document ISO/IEC
JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) Input document
WG11M40059/WG1M74006, 2017.

[35] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van
Gool, ‘‘Practical full resolution learned lossless image compression,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 10629–10636.

[36] S. Schwarz, G. Martin-Cocher, D. Flynn, and M. Budagavi, Com-
mon Test Conditions for Point Cloud Compression, document ISO/IEC
JTC1/SC29/WG11 w17766, Ljubljana, Slovenia, 2018.

[37] R. Mekuria, K. Blom, and P. Cesar, ‘‘Design, implementation, and
evaluation of a point cloud codec for tele-immersive video,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 27, no. 4, pp. 828–842,
Apr. 2017.

[38] C. Cao, M. Preda, V. Zakharchenko, E. S. Jang, and T. Zaharia, ‘‘Compres-
sion of sparse and dense dynamic point clouds—Methods and standards,’’
Proc. IEEE, vol. 109, no. 9, pp. 1537–1558, Sep. 2021.

[39] R. L. de Queiroz and P. A. Chou, ‘‘Motion-compensated compression of
dynamic voxelized point clouds,’’ IEEE Trans. Image Process., vol. 26,
no. 8, pp. 3886–3895, Aug. 2017.

[40] D. C. Garcia and R. L. de Queiroz, ‘‘Intra-frame context-based octree
coding for point-cloud geometry,’’ in Proc. 25th IEEE Int. Conf. Image
Process. (ICIP), Oct. 2018, pp. 1807–1811.

[41] S. Milani, ‘‘Fast point cloud compression via reversible cellular automata
block transform,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),
Sep. 2017, pp. 4013–4017.

[42] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and
E. Steinbach, ‘‘Real-time compression of point cloud streams,’’ in Proc.
IEEE Int. Conf. Robot. Autom., May 2012, pp. 778–785.

[43] D. Lazzarotto, E. Alexiou, and T. Ebrahimi, ‘‘On block prediction for
learning-based point cloud compression,’’ in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2021, pp. 3378–3382.

[44] T. Huang and Y. Liu, ‘‘3D point cloud geometry compression on
deep learning,’’ in Proc. 27th ACM Int. Conf. Multimedia, Oct. 2019,
pp. 890–898.

[45] L. Gao, T. Fan, J. Wan, Y. Xu, J. Sun, and Z. Ma, ‘‘Point cloud geometry
compression via neural graph sampling,’’ in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2021, pp. 3373–3377.

83690 VOLUME 10, 2022

E. C. Kaya, I. Tabus: Lossless Compression of Point Cloud Sequences Using Sequence Optimized CNN Models

[46] H. Roodaki, M. Dehyadegari, and M. N. Bojnordi, ‘‘G-Arrays: Geo-
metric arrays for efficient point cloud processing,’’ in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Jun. 2021,
pp. 1925–1929.

[47] Y. Xu, W. Zhu, Y. Xu, and Z. Li, ‘‘Dynamic point cloud geom-
etry compression via patch-wise polynomial fitting,’’ in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019,
pp. 2287–2291.

EMRE C. KAYA was born in Edirne, Türkiye,
in 1990. He received the B.S. and M.S. degrees
from the Department of Electrical and Electronics
Engineering, Middle East Technical University,
Ankara, Türkiye, in 2015 and 2018, respectively.
He is currently pursuing the Ph.D. degree with
the Computing Sciences Unit, Tampere Univer-
sity, under the supervision of Prof. I. Tabus.
His research interests include point cloud com-
pression, image compression, and visual object
detection.

IOAN TABUS (Senior Member, IEEE) received
the Ph.D. degree (Hons.) from the Tampere Uni-
versity of Technology, Finland, in 1995.

He held teaching positions with the Department
of Control and Computers, Politehnica University
of Bucharest, from 1984 to 1995. Since 1996,
he has been a Senior Researcher, and since January
2000, he has been a Professor with the Depart-
ment of Signal Processing, Tampere University
of Technology, which was merged into Tampere

University, in 2019. He is the coauthor of two books and more than 250 pub-
lications in the fields of signal compression, image processing, bioinfor-
matics, and system identification. His research interests include light field
image processing, plenoptic image compression, point cloud compression,
audio, image, data compression, genomic signal processing, and statistical
signal processing. He was a co-recipient of the 1991 Train Vuia Award
of Romania, the 2001 NSIP Best Paper Award, the 2004 NORSIG Best
Paper Award, the 2016 3DTV Best Paper Award, and the ICIP 2017 Light
Field Image Coding Challenge Award. He is an Associate Editor of the
IEEE TRANSACTIONS ON IMAGE PROCESSING. He served as an Associate Editor
for the IEEE TRANSACTIONS ON SIGNAL PROCESSING and EURASIP Journal
on Advances in Signal Processing. He has served as a Guest Editor for
special issues for the IEEE Signal Processing Magazine, EURASIP Journal
on Advances in Signal Processing, and the IEEE JOURNAL OF SELECTED TOPICS

IN SIGNAL PROCESSING. He was the Editor-in-Chief of the EURASIP Journal
on Bioinformatics and Systems Biology, from 2006 to 2014.

VOLUME 10, 2022 83691

Tampere University Dissertations 687

687/2022
EM

R
E C

A
N

 K
AYA

 Visual and G
eom

etric D
ata C

om
pression for Im

m
ersive Technologies

Visual and Geometric
Data Compression for

Immersive Technologies

EMRE CAN KAYA

TUNI_Kaya_Emre_kansi.indd 1TUNI_Kaya_Emre_kansi.indd 1 30.9.2022 12:40:4230.9.2022 12:40:42

	TUNI_Kaya_Emre_kansi
	TUNI_Kaya_Emre_sisus
	Titlepages_Kaya
	phdTEZ_afterreview
	Introduction
	Motivation of the thesis
	Objectives of the thesis
	Outline of the thesis

	Preliminaries on Compression Methodologies
	General Data Compression Concepts
	Dictionary-Based Methods
	Entropy Coding
	Context Coding
	Run-Length Encoding

	Performance Evaluation for Lossy and Lossless Compression

	Point Cloud Representation and Compression
	Octree Representation
	An Initial Look at the Benchmark Datasets
	Literature on Point Cloud Geometry Compression

	 Contributions to Light Field Disparity Estimation and Light Field Compression
	Disparity Estimation from Light Field
	Lossless Light Field Coding Using Estimated Disparities
	Experimental Results

	 Contributions to Point Cloud Geometry Compression
	Geometry Compression using Bounding Volumes
	Lossy Compression using Bounding Volumes
	Quantization and Unquantization
	Experimental Results

	Lossless Compression using Bounding Volumes
	Experimental Results

	NNOC: Neural Networks and Octrees
	Parallel NN execution and the fast model
	Neural Network Structure and Training
	Additional Details on NNOC and fNNOC Algorithms
	Experimental Results

	SeqNOC: Optimizing a CNN Model for Compressing a Sequence of Point Clouds
	Experimental Results

	 Conclusions and Summary
	References
	Publications
	Publication I
	Publication II
	Publication III
	Publication IV
	Publication V

	Blank Page
	Blank Page
	article3.pdf
	1 Introduction
	2 Proposed Method
	2.1 Stage I: Encoding a front and a back depthmap projection
	2.2 Stage II: Encoding the remaining points
	2.3 Normalized Contexts
	2.4 Repetitive peeling-off process for complete reconstruction of more complex point clouds

	3 Experimental Work
	4 Conclusions
	5 References

