
Network Science (2022), 1–19
doi:10.1017/nws.2022.25

R E S E A R CH A RT I C L E

Connectivity-preserving distributed algorithms for
removing links in directed networks
Azwirman Gusrialdi

Faculty of Engineering and Natural Sciences, Tampere University, Pirkanmaa, Finland
Email: azwirman.gusrialdi@tuni.fi

Action Editor: Christoph Stadtfeld

Abstract
This article considers the link removal problem in a strongly connected directed network with the goal
of minimizing the dominant eigenvalue of the network’s adjacency matrix while maintaining its strong
connectivity. Due to the complexity of the problem, this article focuses on computing a suboptimal solu-
tion. Furthermore, it is assumed that the knowledge of the overall network topology is not available. This
calls for distributed algorithms which rely solely on the local information available to each individual node
and information exchange between each node and its neighbors. Two different strategies based on matrix
perturbation analysis are presented, namely simultaneous and iterative link removal strategies. Key ingre-
dients in implementing both strategies include novel distributed algorithms for estimating the dominant
eigenvectors of an adjacency matrix and for verifying strong connectivity of a directed network under
link removal. It is shown via numerical simulations on different type of networks that in general the iter-
ative link removal strategy yields a better suboptimal solution. However, it comes at a price of higher
communication cost in comparison to the simultaneous link removal strategy.

Keywords: link removal; strongly connected digraph; distributed algorithm; estimation; optimization; information
exchange; maximum consensus

1. Introduction
1.1 Motivation and problem description
Dominant (largest in module) eigenvalue of the adjacency matrix associated with a network plays
an important role in the dissemination of an entity such as disease or information in both unidi-
rectional and bidirectional networks. In particular, the dominant eigenvalue determines whether
a dissemination process will become an epidemic (Wang et al., 2003; Prakash et al., 2012; Chen
et al., 2016; Li et al., 2013; Van Mieghem & Van de Bovenkamp, 2013). Dissemination process of
an entity can be affected by several factors including the intrinsic property of the entity and the
network topology. In this article, it is assumed that one could modify only the network structure
where the entity spreads on. Specifically, this article focuses on the problem of removing a frac-
tion of links/edges from a network with the goal of containing the dissemination by minimizing
the dominant eigenvalue of the network’s adjacency matrix. This problem can be interpreted as
controlling the interaction between people or cities in a country in order to slow the spread of
disease when a vaccine is not yet available. In addition, in practice it is also desirable to preserve
the (strong) connectivity of a network. For example, strong connectivity of a network ensures that
important information can still be passed to all the users/nodes in the network or goods can still
be delivered between the cities.

C© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25
https://orcid.org/0000-0002-5659-1239
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/nws.2022.25

2 A. Gusrialdi

The problem of removing a fraction of links from a network to minimize the dominant eigen-
value of the adjacency matrix poses several challenges. First, the problem is NP-hard due to its
combinatorial nature (VanMieghem et al., 2011). Second, in practice the global network structure
may not be available or may be very hard to obtain in a centralized manner due to geographical
constraint or privacy concerns (McDaniel & McLaughlin, 2009; Li et al., 2011). The absence of
the overall network topology makes the design of an efficient algorithm for removing a fraction
of links very challenging. This article aims at developing link removal algorithms by addressing
simultaneously both challenges described previously.

1.2 Related literature
Since the link removal problem is NP-hard, most of the work focuses on heuristics and approxima-
tions of the problem. That is, they focused on developing strategies to approximate and compute
a suboptimal solution to this problem for both unidirectional and bidirectional networks, see for
example (Bishop & Shames, 2011; Van Mieghem et al., 2011; Chen et al., 2016; Milanese et al.,
2010; Yang et al., 2016; Wu et al., 2017). Among these work, an effective and scalable algorithm
based on eigenvalue sensitivity analysis is proposed in (Chen et al., 2016) to minimize the domi-
nant eigenvalue of an adjacencymatrix by removing a fraction of links from a directed network. To
this end, a suboptimal solution is computed by solving an optimization problem which involves
both the left and right eigenvectors associated with the dominant eigenvalue of the adjacency
matrix. However, all the previously mentioned work including (Chen et al., 2016) suffer from the
following limitations: (1) the global network structure is assumed to be available and known to
the designer; (2) the strong connectivity of the resulting network is not guaranteed. It is worth
to note that the authors in (Gusrialdi et al., 2019) proposed distributed algorithms based on
eigenvalue sensitivity analysis which do not require knowledge of the overall network structure
to remove a fraction of links from a network. Moreover, the distributed strategy also ensures the
connectivity of the resulting network. However, the application of the proposed strategy is only
limited to bidirectional or undirected network and its extension to directed network is highly
nontrivial.

1.3 Statement of contribution
The contribution of this article is the development of distributed algorithms to compute a sub-
optimal solution to the link removal problem in a directed network while preserving strong
connectivity of the resulting network. Specifically, with the help of matrix perturbation theory, the
problem of minimizing dominant eigenvalue of an adjacency matrix is reformulated as an opti-
mization problem involving both the left and right eigenvectors corresponding to the dominant
eigenvalue of the adjacency matrix. Novel distributed algorithms to estimate both the dominant
left and right eigenvectors are then presented which will be used to decide the candidate links to be
removed. In addition, distributed algorithm is proposed to verify whether the removal of a frac-
tion of links will destroy or maintain strong connectivity of the resulting directed network. This
article is an extensively extended version of the conference paper (Gusrialdi, 2021). Specifically,
in this article: (1) new distributed algorithms, including the one with reduced communication
cost, for estimating the dominant eigenvectors are proposed; (2) a formal proof of the proposed
distributed link removal algorithms is presented; (3) a new iterative link removal strategy is pre-
sented in details and its performance comparison with the simultaneous link removal strategy is
evaluated on different type of networks. It is worth to note that even though in this article we
focus on link removal problem, the proposed distributed algorithms can be readily applied to the
link addition problem whose goal is to maximize dominant eigenvalue of the network’s adjacency
matrix.

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

Network Science 3

1.4 Organization of the article
This article is organized as follows: preliminaries followed by the problem formulation are pre-
sented in Section 2. The proposed distributed link removal algorithms are presented in Section 3.
The proposed distributed algorithms are demonstrated and evaluated using several numerical
simulations in Section 4. Finally, Section 5 concludes the article.

2. Problem statement
In this section, we provide a brief overview of graph theory and maximum/minimum consensus
algorithms followed by the problem formulation.

2.1 Notation and preliminaries
Let R be the set of real numbers and vector 1n ∈Rn denote the column vector of all ones. The
number of the elements in the set V is denoted by |V |. The graph G = (V , E) is a directed graph
(digraph) with a set of nodes V = {1, 2, · · · , n} and a set of edges (links) E ⊂ V × V . Let (j, i) ∈ E
represents a directed edge from node j to node i. When the graph G represents a communica-
tion network topology, the edge (j, i) ∈ E denotes that node j can send information to node i or
node i can receive information from node j. The set of in-neighbors of node i is denoted byN in

G ,i =
{j|(j, i) ∈ E }. Similarly, the set of out-neighbors of node i is denoted by N out

G ,i = {j|(i, j) ∈ E }. The
directed graph G is strongly connected if every node can be reached from any other nodes by
following a set of directed edges.

For a matrix C ∈Rn×n, let us denote its dominant (i.e., largest in module) eigenvalue as λ(C).
The adjacency matrix associated with digraph G , denoted by A(G) ∈Rn×n is defined as

[A(G)]ij =
⎧⎨⎩ 1 if i �= j and (j, i) ∈ E ,

0, otherwise
(1)

where [A]ij denotes the element in the ith row and jth column of matrix A. Matrix C ∈Rn×n is
nonnegative (i.e., C≥ 0) if all its elements are nonnegative. A nonnegative matrix C is irreducible
if and only if (In + C)n−1 > 0 where In denotes an identity matrix of size n. Matrix C is primitive
if it is irreducible and has at least one positive diagonal element.

Finally, we review the maximum and minimum consensus algorithms which will be used in
development of the distributed link removal algorithms. Consider a digraph G with n nodes and
assume that each node maintains a state or variable xi(t) ∈R at discrete time t= {0, 1, 2, · · · }. Let
T denote the maximum of the shortest path length between any pair of nodes in G . Furthermore,
each node executes the following maximum consensus algorithm

xi(t+ 1)= max
j∈N in

G ,i∪{i}
xj(t). (2)

It is shown in Nejad et al. (2009) that xi(t)= xj(t)=maxk∈V xk(0) for all i, j ∈ V , ∀t≥ T, and
any initial conditions xi(0) if and only if the digraph G is strongly connected. Analogously, for the
minimum consensus algorithm, each node executes

xi(t+ 1)= min
j∈N in

G ,i∪{i}
xj(t) (3)

and as a result the states of all nodes converge to the value mini∈V xi(0) after T steps if and only if
the digraph G is strongly connected.

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

4 A. Gusrialdi

2.2 Problem formulation
Consider an n node network whose connection is given by an unweighted strongly connected
directed graph G0 = {V , E0}. It is known that the dominant eigenvalue λ(A(G0)) is real, strictly
positive, and simple (Bullo, 2018). Our objective is to remove at most me number of links
�E − from the set E0 such that dominant eigenvalue of the adjacency matrix of resulting graph
Gme = {V , E0 \�E −} is minimized while guaranteeingGme remains to be strongly connected. The
problem can be formally formulated as the following optimization problem:

min
�E −⊆E0

λ
(
A
(
Gme

))
,

s.t. |�E −| ≤me,
Gme is strongly connected.

(P1)

In general, the global knowledge on the network topology G0 is required to solve the optimiza-
tion (P1). However, the global network topology G0 is often unknown or not available in practice
due to geographical constraint or privacy reasons. Motivated by this limitation, the following
constraint is imposed for the remaining of the article.

Constraint 1. The overall network topology G0 is not available. Node i can receive information via a
communication network only from nodes in the set N in

G0,i. Furthermore, node i knows the set N out
G0,i .

In other words, node i only knows the ith row and column of matrix A.

The absence of information on the overall network topology prevents us from solving (P1) in a
centralized manner. In addition, optimization (P1) is a combinatorial problem whose complexity
increases exponentially with the network size. Therefore, in this article, we are interested in devel-
oping a distributed strategy to compute a suboptimal solution to (P1) as stated in the following
problem.

Problem 1. Assume that graph G0 is strongly connected. Find a suboptimal solution or an upper
bound to the solution to optimization (P1) under Constraint 1.

To this end, we assume that each individual node is equipped with both computational and
data storage capabilities in addition to communication via a network whose structure is similar to
G0. Furthermore, for the sake of simplicity, it is assumed that the nodes know the network’s size
n. Alternatively, the network’s size can be estimated distributively using the methods proposed in
the literature, see for example (Shames et al., 2012).

It is worth to note that one possible strategy to overcome Constraint 1 is by passing local infor-
mation of each node (e.g., N in

G0,i) to the rest of the network so that in the end each node can
construct the global network topology G0. However, this flooding strategy is not locally adaptable
to the changes in the network topology. More importantly, this strategy will also reveal the global
network topology to all the nodes in the network, which is not desirable due to privacy concerns.

3. Main results: proposed distributed link removal algorithms
A suboptimal solution to optimization problem (P1) can be computed using the matrix perturba-
tion theory presented in e.g., (Chen et al., 2016; Gusrialdi et al., 2019). Specifically, for a graph
with a large spectral gap (i.e., difference between the largest and second largest eigenvalue in
magnitude), the dominant eigenvalue λ

(
A
(
Gme

))
can be written as

λ
(
A
(
Gme

))= λ(A(G0))− νT0 �A−w0

νT0 w0
+O

(‖�A−‖2) (4)

where�A− denotes the adjacency matrix corresponding to the graph whose links are given by the
set �E −. Furthermore, ν0,w0 denote the dominant left and right eigenvectors corresponding to

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

Network Science 5

eigenvalue λ(A(G0)), respectively. Since the spectral gap of the graph G0 is large, the higher order
term in Equation (4) can be neglected and thus minimizing λ

(
A
(
Gme

))
is equivalent to maximiz-

ing the term νT0 �A−w0/
(
νT0 w0

)
. Therefore, a suboptimal solution to optimization problem (P1)

is given by the set of edges �E − which solves the following optimization problem

max
�E −⊆E0

1
νT0 w0

∑
(j,i)∈�E −

ν0,iw0,j

s.t. |�E −| ≤me,
Gme is strongly connected,

(P2)

where ν0,i and w0,i, respectively, denote the ith element of left eigenvector ν0 and w0 associ-
ated with λ(A(G0)). Analysis of the optimality gap between the solutions obtained by solving
optimization problems (P2) and (P1) are discussed in Chen et al. (2016).

Optimization problem (P2) involves the dominant left and right eigenvectors associated with
the graph G0. However, since the global network topology G0 is not available, the dominant eigen-
vectors ν0,w0 cannot be directly computed and similarly, strong connectivity of the resulting
directed graph Gme also cannot be directly verified. Therefore, as a first step in solving (P2), it
is necessary to develop distributed algorithms performed at each node to estimate the dominant
eigenvectors ν0,w0 under Constraint 1. To this end, let us define the primitive matrix Q0 as

Q0 = cIn +A(G0), c ∈R+. (5)

For simplicity, in the remaining of the article we choose c= 1 . Since matrixQ0 is primitive, it is
known that there exists a real dominant and simple eigenvalue of Q0, denoted by λ(Q0) satisfying
λ(Q0)> |μ| for all the other eigenvalues μ of Q0 (Bullo, 2018). Hence, we have the following
relationship:

λ(Q0)= 1+ λ(A(G0)). (6)

Furthermore, it can also be seen that both matrices Q0 and A(G0) share the same set of left and
right eigenvectors (i.e., ν0,w0) which are both positive, up to rescaling (Bullo, 2018). In order to
distributively estimate the dominant eigenvectors ν0,w0, we will work with matrix Q0 instead of
A(G0). The proposed strategy can be summarized as follows:

1. estimate in a distributed manner the dominant eigenvalue λ(Q0)
2. using the estimated dominant eigenvalue λ(Q0), the dominant right and left eigenvectors

are then computed by solving distributively the following linear equations

(Q0 − λ(Q0)In)w0 = 0,(
QT
0 − λ(Q0)In

)
ν0 = 0.

(7)

Details of the proposed strategy are described below.

3.1 Distributed algorithm for estimating dominant eigenvalue
In order to distributively estimate the dominant eigenvectors, each node is first required to esti-
mate the dominant eigenvalue λ(Q0). To this end, let us assign to each node a scalar variable hi ∈R
with initial value hi(0)> 0. Each node then updates their variables hi according to the following
rule

hi(t+ 1)=
∑

j∈N in
G0,i
∪i
[Q0]ijhj(t). (8)

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

6 A. Gusrialdi

In addition, let us define

λ(t)= min
1≤i≤n

hi(t+ 1)
hi(t)

, λ(t)= max
1≤i≤n

hi(t+ 1)
hi(t)

. (9)

We then have the following relations between scalars λ(t), λ(t), and dominant eigenvalue
λ(Q0).

λ(0)≤ λ(1)≤ . . .≤ λ(Q0)≤ . . .≤ λ(1)≤ λ(0). (10)

Since matrix Q0 is non-negative and primitive, it is known that λ(t) and λ(t) will converge to
λ(Q0) (Wood & O’Neill, 2004).

It can be observed that the update law (8) can be performed at each node in a distributed man-
ner using only local information available to individual node. Furthermore, the scalar variables
λ(t) (resp. λ(t)) can also be computed in a distributed manner using minimum (resp. maximum)
consensus algorithm (3) (resp. (2)). For example, in order to compute λ(1) distributively, each
node maintains a variable xi(t) which is the local estimate of λ(1) and sets its initial value as
xi(0)= hi(2)

hi(1) . The local estimate xi(t) is then updated according to Equation (2) and after n steps,
all the local estimates are equal to λ(1).

It is worth to note that the update rule given in Equation (8) is a power method and it is shown
that hi(t) will converge to the right dominant eigenvectorw0 fromwhich the dominant eigenvalue
can be computed (Golub & Van Loan, 1996). However, instead of estimating the dominant right
eigenvector directly using the power method, in this article we first estimate the dominant eigen-
value since, as can be observed from Equation (10), both the estimates λ(t) and λ(t) provide a
bound on the estimation error of λ(Q0). By taking advantage of this error bound, the designer can
then provide a desired accuracy which will be used as a stopping criteria for the estimation of the
dominant eigenvalue λ(Q0). That is, for a sufficiently small threshold ε > 0, the nodes computes
(8), (9) until

|λ(t)− λ(t)|< ε. (11)

3.2 Distributed algorithm for estimating dominant left and right eigenvectors
Given the estimated dominant eigenvalue λ(Q0), the next step is to distributively estimate the right
and left dominant eigenvectors by solving linear equations (7) in a distributed manner. Before
proceeding, let us define the following matrices:

Q=Q0 − λ(Q0)In,
Q̃=QT

0 − λ(Q0)In.

Hence, linear equations in (7) can be written as

Qw0 = 0, (12a)

Q̃ν0 = 0. (12b)

The matrices Q and Q̃ can be partitioned as

Q=

⎡⎢⎢⎢⎢⎢⎢⎣
Q1

Q2
...

Qn

⎤⎥⎥⎥⎥⎥⎥⎦ , Q̃=

⎡⎢⎢⎢⎢⎢⎢⎣
Q̃1

Q̃2
...

Q̃n

⎤⎥⎥⎥⎥⎥⎥⎦ (13)

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

Network Science 7

where Qi ∈R1×n, Q̃i ∈R1×n for i ∈ {1, 2, · · · , n}. Since the dominant eigenvalue λ(Q0) has been
estimated and from the Constraint 1, the ith node knows both vectors Qi and Q̃i.

First, let us look at the distributed estimation of the right dominant eigenvector w0 using only
local information available to each node. To this end, each node maintains a variable ŵi

0(t) ∈Rn

which is a local estimate ofw0 at node i. The local estimate of each node is then updated according
to the following rule by exchanging information with its in-neighbors set N in

G0,i:

ŵi
0(t+ 1)= ŵi

0(t)− Pi

⎛⎜⎝ŵi
0(t)−

1
|N in

G0,i|
∑

j∈N in
G0,i

ŵj
0(t)

⎞⎟⎠ (14)

where matrix Pi is defined as

Pi = In −QT
i (QiQ

T
i)
−1Qi

and the initial condition ŵi
0(0) is chosen to satisfy Qiŵi

0(0)= 0 and ŵi
0(0) �= 0. Under update rule

(14), all the local estimates ŵi
0 will converge exponentially fast to the same solution to Qw0 = 0,

i.e., the right dominant eigenvector w0 as shown in Mou et al. (2015).
Similarly, in order to estimate the dominant left eigenvector by solving distributively lin-

ear equations (12b), each node maintains a local estimate ν̂i0(t) ∈Rn updated according to the
following rule

ν̂i0(t+ 1)= ν̂i0(t)− P̃i

⎛⎜⎝ν̂i0(t)−
1

|N in
G0,i|

∑
j∈N in

G0,i

ν̂
j
0(t)

⎞⎟⎠ (15)

where matrix P̃i is defined as

P̃i = In − Q̃T
i (Q̃iQ̃T

i)
−1Q̃i

and the initial condition ν̂i0(0) is chosen to satisfy Q̃iŵi
0(0)= 0 and ν̂i0(0) �= 0. Note that both

distributed algorithms (14), (15) can be performed using the same strongly connected commu-
nication network topology G0.

In contrast to distributed estimation algorithms presented in (Gusrialdi & Qu, 2017) which
requires each node to send n2 number of values to its neighbors, using distributed algorithms
(14), (15) each node only needs to send n number of values, that is the local estimate ŵ0(t) or ν̂0(t)
to its neighbors. However, when the network’s size n is large, it either will be communication-
costly for individual node to send the entire estimate vector ŵi

0(t) or ν̂i0(t) to its neighbors at each
time or it is not possible to do so if the node has limited communication capacity. To address this
issue, we next present an alternative distributed algorithm based on the method proposed in (Liu
& Anderson, 2020) to solve linear equations (12b), (12a) with a reduced communication cost.

First, the local estimate ŵi
0(t) and ν̂i0(t) are partitioned as

ŵi
0(t)=

⎡⎢⎢⎢⎢⎢⎢⎣
yi1(t)

yi2(t)
...

yi�(t)

⎤⎥⎥⎥⎥⎥⎥⎦ , ν̂i0(t)=

⎡⎢⎢⎢⎢⎢⎢⎣
zi1(t)

zi2(t)
...

zi�(t)

⎤⎥⎥⎥⎥⎥⎥⎦ , (16)

where � > 1 is a positive integer and yiσ (t), ziσ (t) with σ ∈ {1, 2, · · · , �} are vectors. Note that
the local estimates can be partitioned in an arbitrary manner, that is � can be chosen to be any

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

8 A. Gusrialdi

positive integer and yiσ (t), ziσ (t) can have arbitrary size depending on the node’s communication.
Furthermore, each discrete-time time t≥ 1 can be uniquely written in the following form

t= k�+ σ (t), k ∈ {0, 1, 2, · · · }, σ (t) ∈ {1, 2, · · · , �}.
Next, let us define

ŵiσ (t)
0 (t)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

yiσ (t)(t)

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ν̂

iσ (t)
0 (t)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...

0

ziσ (t)(t)

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

At each time t≥ 1, each node broadcasts the vectors yiσ (t)(t) and ziσ (t)(t) to its neighbors and
updates its local estimates according to

ŵi
0(t+ 1)= ŵi

0(t)− Pi

⎛⎜⎝ŵiσ (t)
0 (t)− 1

|N in
G0,i|

∑
j∈N in

G0,i

ŵjσ (t)
0 (t)

⎞⎟⎠ (17)

and

ν̂i0(t+ 1)= ν̂i0(t)− P̃i

⎛⎜⎝ν̂
iσ (t)
0 (t)− 1

|N in
G0,i|

∑
j∈N in

G0,i

ν̂
jσ (t)
0 (t)

⎞⎟⎠ . (18)

It is shown in (Liu & Anderson, 2020) that under update law (17) (resp. (18)), the local estimate
ŵi
0(t) (resp. ν̂

i
0(t)) for all nodes converge exponentially fast to the same solution to linear equations

(12a) (resp. (12b)), that is the dominant eigenvector w0 (resp. ν0).
Intuitively, distributed algorithms (14), (15) converge faster to the solution to linear equations

(12a) and (12b) compared to distributed algorithms (17), (18) since the full entries of vectors
ŵi
0(t) and ν̂i0(t) are being exchanged in Equations (14), (15) at each time t. Therefore, the designer

could choose the size of vectors yiσ (t), ziσ (t) and integer � > 1 by taking into account the trade-
off between the communication capacity and convergence speed. In addition, under distributed
algorithms (17) and (18), each node can exchange the vectors yiσ (t)(t) and ziσ (t)(t) at the same
time so that the dominant right and left eigenvectors can be estimated simultaneously.

3.3 Distributed algorithm for verifying digraph’s strong connectivity
After developing distributed algorithms for estimating both the right and left dominant eigen-
vectors, the next step is to develop distributed algorithm to verify the strong connectivity of a
digraph when a link (j∗, i∗) ∈ E0 is being removed. In other words, given a candidate link to be
removed (j∗, i∗) ∈ E0, we want to verify in a distributed manner whether the resulting network
G1 = {V , E0\(j∗, i∗)} remains to be strongly connected.

To this end, all the nodes execute maximum consensus protocol (2) on the graph G1 =
{V , E0\(j∗, i∗)}, i.e., node j∗ does not send its information to node i∗ when executing the update
law (2). The initial values of xi(t) are chosen as

xj∗(0)= 1 and xm(0)= 0 for all nodesm �= j∗. (19)

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

Network Science 9

Algorithm 1. Distributed connectivity verification for G1 = (V , E0 \ (j∗, i∗))
Require: G0 = (V , E0) is strongly connected and a link to be removed (j∗, i∗) ∈ E0
1: set the initial values of protocol (2) as in Equation (19)
2: execute maximum consensus (2) for n iterations on graph G1 = (V , E0 \ (j∗, i∗))
3: if xi(n)= 1 for all i ∈ V then
4: the graph G1 is strongly connected
5: else
6: G1 is not strongly connected
7: end if
8: execute again maximum consensus (2) for n iterations on graph G0 with initial values in

Equation (20)
9: if xj∗(n)= 1 then
10: node j∗ knows that the graph G1 is strongly connected
11: else
12: node j∗ knows that the graph G1 is not strongly connected
13: end if

The following result reveals the relationship between the final values of xi(t) and the strong
connectivity of graph G1.

Proposition 1. Given a strongly connected digraph G0 and a link (j∗, i∗) ∈ E0. Each node executes
max-consensus protocol (2) on the graph G1 = {V , E0\(j∗, i∗)} with initial values xj∗(0)= 1 and
xm(0)= 0 for all m �= j∗. The graph G1 = {V , E0\(j∗, i∗)} is strongly connected if and only if xi(n)=
1 for all i ∈ V .

Proof. For showing the necessity (=⇒), observe that since the graph G1 = {V , E0\(j∗, i∗)} is
strongly connected, that max-consensus protocol (2) makes all the states xi(t) converge (after
n steps) to maxi xi(0) which is equal to 1. In order to show the sufficiency (⇐=), note that the
removal of link (j∗, i∗) may result in that there exists no direct or indirect path from node j∗ to
node i∗. However, since we have xi(n)= 1 under update law (2) for all nodes i in the network, this
means that there exists at least one indirect path from node j∗ to i∗. Hence, it can be concluded
that the resulting graph G1 = {V , E0\(j∗, i∗)} remains to be strongly connected. �

After each node executes update law (2) for n iterations with initial values described in
Proposition 1, node i∗ then checks whether xi∗(n)= 1. If xi∗(n)= 1, it needs to notify node j∗
that the network remains to be strongly connected after removing link (j∗, i∗). This can be done
by again executing the maximum consensus algorithm (2) on graph G0 whose initial values are
chosen as

xi∗(0)=
{
1 if G1 is strongly connected
−1 if otherwise

, xm(0)= 0 for allm �= i∗. (20)

If xj∗(n)= 1 (resp. xj∗(n)= 0) then node j∗ will know that the graph G1 remains to be
strongly connected (resp. will not be strongly connected) when the link (j∗, i∗) is being removed.
Algorithm 1 summarizes distributed verification of the link removal. Note that the strong connec-
tivity of the resulting graph under multiple links removal can be verified by applying iteratively
Algorithm 1 for each individual candidate link to be removed.

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

10 A. Gusrialdi

Algorithm 2. Distributed algorithm for findingme links with largest value of ν0,iw0,j whose
removal preserves graph’s strong connectivity

Require: G0 is strongly connected connected, number of nodes n, number of links to be removed
me, estimated dominant eigenvectors w0, ν0 using distributed algorithms (14) (or (17)) and
(15) (or (18)), Each edge is label by �j,i in a descending order according to the value ν0,iw0,j
using similar steps as below and by ignoring the steps 6–14.

1: normalize the estimated dominant eigenvectors w0, ν0
2: initialize p= 0
3: while p≤me − 1 do
4: node j independently computes (j, ic)= argmax ν̂

j
0,iŵ

j
0,j for i ∈N out

Gp,j
5: all nodes compute (j∗, i∗)= argmax ν̂

j
0,ic ŵ

j
0,j with (j, ic) obtained in the previous step

using max-consensus (2) with xj(0)= ν̂
j
0,ic ŵ

j
0,j

6: check strong connectivity of Gp+1 = (V , Ep \ (j∗, i∗)) using Algorithm 1
7: if Gp+1 is not strongly connected then
8: back to steps 4–6 where node j∗ excludes the link (j∗, i∗) which destroys strong

connectivity of the resulting graph
9: if N out

Gp,i =∅ for all i then
10: break
11: end if
12: else
13: continue to step 18
14: end if
15: p← p+ 1
16: update Gp = {V , Ep−1 \ (j∗, i∗)}
17: I1← �(j∗,i∗)
18: end while
19: Set of links withme largest value of v0,iw0,j which preserves connectivity is I1

3.4 The complete distributed algorithms for link removal
In this subsection, we present distributed algorithms for solving optimization problem (P2) using
the ingredients developed in the previous subsections. Before proceeding, let us introduce the
following notation. For a given set Ii, its smallest and largest elements, denoted, respectively, by
ki and ki, are defined as

ki =min
k∈Ii

k, ki =max
k∈Ii

k. (21)

Furthermore, let �(j,i) ∈ {1, 2, · · · , |E0|} be the label of the edges (j, i) of graph G0 in a descending
order according to the value ν0,iw0,j of the edges. That is, if ν0,iw0,j > ν0,pw0,q then �(j,i) < �(q,p) and
if two edges have the same value of ν0,iw0,j, e.g., ν0,iw0,j = ν0,pw0,q, then the label can be assigned as
�(j,i) = �(q,p) + 1 or �(q,p) = �(j,i) + 1. Hence, an edge with label �(j,i) also means that the edge (j, i)
has the �(j,i)th largest value of ν0,iw0,j. First, it can be observed that the solution to optimization
problem (P2) in the absence of connectivity preserving constraint is given by a set of links withme
largest value of ν0,iw0,j labeled by �(j,i) = 1, 2, · · · ,me. The solution can be easily obtained using
Algorithm 2 and by ignoring steps 6–14 in it. However, the introduction of additional constraint

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

Network Science 11

Algorithm 3. Distributed algorithm for solving optimization problem (P2)

Require: G0 is strongly connected connected, number of nodes n, number of links to be removed
me, estimated dominant eigenvectors w0, ν0 using distributed algorithms (14) (or (17)) and
(15) (or (18))

1: compute the set I1 using Algorithm 2
2: compute the link label �∗(j,i) from Equation (22)
3: initialize d= 2
4: while d≤ �

1
(j,i) do

5: set ν0,iw0,j = 0 for the links labeled by �s(j,i) with s= 1, · · · , d− 1
6: find set of links withme largest value of v0,iw0,j which preserves graph’s connectivity

using similar method to Algorithm 2. Store the solution in Id
7: if �d(j,i) > �∗(j,i) then
8: break
9: end if
10: d← d+ 1
11: end while
12: The solution to optimization (P2), that is �E − equals to Ii∗ = argmax Is

∑
(j,i)∈Is v0,iw0,j

to preserve strong connectivity of the network makes solving optimization problem (P2) more
challenging.

In the following we describe in a less-formal way the idea of the proposed distributed algo-
rithms for solving optimization problem (P2). Details of the algorithms are summarized in
Algorithm 3. Broadly speaking, the algorithms aim at finding link candidate sets Ii for i=
1, 2, · · · , where |Ii| =me and one of the sets Ii is the solution to (P2). This strategy is simi-
lar to a brute-force search, but instead of looking at all possible link combinations we only look at
a small number of combinations. Specifically, the distributed algorithms consist of the following
main steps.

1. Find links given by the setI1 withme largest value of ν0,iw0,j whose removal do not destroy
strong connectivity of the network

2. Compute the edge’s label �∗(j,i) which is the solution to the following optimization

min
�(j,i)∈I1

�(j,i)

s.t.
∣∣∣�(j,i) − �

1
(j,i)

∣∣∣≤me,
(22)

where the labels �
1
(j,i) is defined according to (21).

3. After finding the first link candidate set I1, the other link candidate sets Ik with
k= 2, 3, · · · are computed by repeating step 1 as long as the resulting �k(j,i) of the set Ik,
defined according to (21), satisfies �k(j,i) ≤ �∗(j,i) and for each k= 2, 3, · · · we set the value of
ν0,iw0,j equal to zero for the links labeled by �s(j,i) with s= 1, · · · , k− 1. This step in prin-
ciple provides information on how far we should explore the possible candidates of the
optimal links.

4. The solution to optimization (P2) is then given by the set Ii∗ whose links have the largest
value of

∑
(j,i)∈Ik

ν0,iw0,j

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

12 A. Gusrialdi

The following theorem shows that the set of links computed by Algorithm 3 is the solution to
optimization problem (P2).

Theorem 1. A set of links obtained from Algorithm 3 is the solution to optimization problem (P2).

Proof. Assume that the link candidate sets computed from Algorithm 3 is given by Ik with
k= 1, 2, · · · , α. The set of links, denoted by Iα+1 withme largest value of ν0,iw0,j whose smallest
label equals to �∗(j,i) + 1 is given by

Iα+1 =
{
�∗(j,i) + 1, �∗(j,i) + 2+ · · · , �∗(j,i) +me

}
. (23)

Hence, it is sufficient to prove that∑
(j,i)∈I1

ν0,iw0,j ≥
∑

(j,i)∈Iα+1
ν0,iw0,j (24)

for the set I1 with smallest value of
∑

(j,i)∈I1 ν0,iw0,j. This is because∑
(j,i)∈Ii∗

ν0,iw0,j ≥
∑

(j,i)∈I1

ν0,iw0,j

for the optimal solution set of links Ii∗ as can be seen in step 12 of Algorithm 3. To this end,
for a given label �

1
(j,i) the set I1 with possible smallest value

(
i.e., when

∣∣∣�∗(j,i) − �
1
(j,i)

∣∣∣=me and

�1(j,i) = �∗(j,i)
)
of

∑
(j,i)∈I1 ν0,iw0,j is given by

I1 =
{
�∗(j,i), �

∗
(j,i) + 2, �∗(j,i) + 3, · · · , �∗(j,i) +me − 1, �∗(j,i) +me

}
. (25)

Recalling that an edge with label �(j,i) also means that the edge (j, i) has the �(j,i)th largest value
of ν0,iw0,j, it can be seen that (24) is satisfied for the sets given in (23) and (25). This completes the
proof. �

4. Numerical simulations
In this section, the proposed distributed algorithms are demonstrated and evaluated using several
simulations.

4.1 Comparison with the optimal solution
First, we are interested in evaluating the optimality gap between the proposed distributed algo-
rithms and the brute-force search. To this end, we consider a strongly connected graph consisting
of 10 nodes as shown in Figure 1. Choosing a small size network allows us to compare the solu-
tions obtained by the proposed distributed algorithms with the ones obtained from the brute-force
search (given that the global network topology is available) which is in general NP-hard. Interested
reader is referred to (Chen et al., 2016) for the performance evaluation of Algorithm 3 on real large
graphs without connectivity constraint.

The number of links to be removed me in the numerical simulation is varied between
1 and 6. We then apply Algorithm 3 to solve optimization problem (P2). First, each node dis-
tributively estimates the dominant eigenvalue of matrix Q0 in Equation (5) based on update rule
(8), (9) whose estimation is depicted in Figure 2.

It can be observed that the estimation converges to the dominant eigenvalue within few time
steps. Using the estimated dominant eigenvalue, the nodes then distributively estimate both the
dominant right and left eigenvectors using update rule (14) (or (17) for reduced communication

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

Network Science 13

Figure 1. Distributed estimation of dominant eigenvalue λ(Q0) using (8), (9).

0 2 4 6 8 10
time (t)

2.5

3

3.5

4

4.5

5

5.5

6

do
m

in
an

t e
ig

en
va

lu
e

Figure 2. Distributed estimation of dominant eigenvalue λ(Q0) using (8), (9).

time (t)

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 0 200 400 600 800 1000
time (t)

0

1

2

3

4

5

6

7

Figure 3. Distributed estimation of dominant right eigenvector by node 1 (left) and node 2 (right) using update law (14).

cost with �= 5) and (15) (or (18) for reduced communication cost with �= 5), respectively.
Estimation of the dominant eigenvectors by nodes 1 and 2 are illustrated in Figures 3–6. It can
be observed that the nodes could successfully estimate both dominant eigenvectors. Furthermore,
the estimation based on update rule (14) and (15) converge faster in comparison to the ones based

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

14 A. Gusrialdi

time (t)

0

1

2

3

4

5

0 200 400 600 800 1000 0 200 400 600 800 1000
time (t)

0

1

2

3

4

5

Figure 4. Distributed estimation of dominant left eigenvector by node 1 (left) and node 2 (right) using update law (15).

time (t)

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 0 200 400 600 800 1000
time (t)

0

1

2

3

4

5

6

7

Figure 5. Distributed estimation of dominant right eigenvector with reduced communication cost by node 1 (left) and
node 2 (right) using update law (17).

time (t)

0

1

2

3

4

5

0 200 400 600 800 1000 0 200 400 600 800 1000
time (t)

0

1

2

3

4

5

Figure 6. Distributed estimation of dominant left eigenvector with reduced communication cost by node 1 (left) and node 2
(right) using update law (18).

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

Network Science 15

Table 1. Comparison of solutions using different strategies

Simultaneous removal Iterative removal Brute-force search
Algorithm 3 Algorithm 4 Optimization (P1)

me �E − λ(A(Gme)) �E − λ(A(Gme)) �E − λ(A(Gme))

1 (3,9) 2.4715 (3,9) 2.4715 (3,9) 2.4715
.. .

2 (3,9), (8,3) 2.3404 (3,9), (4,9) 2.2520 (3,9), (4,9) 2.2520
.. .

3 (3,9), (8,3), (4,9) 2.1320 (3,9), (4,9), (6,5) 2.0582 (3,9), (3,10), (4,9) 2.0414
.. .

4 (3,9), (8,3), (4,9),
(6,5)

1.9239 (3,9), (4,9), (6,5),
(8,3)

1.9239 (3,4), (3,9), (3,10),
(6,5)

1.9194

.. .

5 (3,9), (8,3), (4,9),
(6,5), (9,8)

1.8939 (3,9), (4,9), (6,5),
(8,3), (2,3)

1.8142 (2,3), (3,9), (4,9),
(6,5), (8,3)

1.8142

.. .

6 (3,9), (8,3), (4,9),
(6,5), (9,8), (3,4)

1.8291 (3,9), (4,9), (6,5),
(8,3), (2,3), (9,10)

1.7090 (2,3), (3,9), (4,9),
(6,5), (8,3), (9,10)

1.7090

on update rule (17) and (18) where only two elements of the estimated eigenvectors are being
exchanged with the other nodes at each time step.

After distributively estimating the dominant eigenvectors, the nodes then solve optimization
problem (P2) using Algorithm 3. The solutions to optimization (P2) obtained from Algorithm 3
and the ones obtained by solving optimization (P1) using the brute-force search (assuming the
knowledge of overall network topology) for different values of me are summarized in Table 1. As
can be observed, when me = 1 both Algorithm 3 and brute-force search result in the same solu-
tion, i.e., zero optimality gap. However, as me increases the gap between the solutions obtained
from Algorithm 3 and brute-force search becomes larger. It is demonstrated in (Gusrialdi et al.,
2019) for the case of undirected network that iteratively solving optimization (P2), i.e., removing
one link at a time followed by re-estimating the dominant eigenvectors of the resulting network to
compute the next link to be removed, may result in a better performance in comparison to remov-
ing me simultaneously as done in Algorithm 3. Motivated by this observation, next we apply the
iterative link removal strategy to solve optimization (P2) whose details are given in Algorithm 4.
The results are summarized in Table 1. It can be observed that for me = 1, 2, 5, 6 the iterative link
removal strategy result in the same solution to the ones obtained from the brute-force search, i.e.,
the optimality gap is zero. In addition, forme = 3, 4 the gap with the optimal solution is smaller for
the iterative link removal strategy (i.e., Algorithm 4) compared to the simultaneous link removal
strategy (i.e., Algorithm 3). It should be noted that in contrast to simultaneous link removal, the
iterative link removal strategy requires a longer time and higher communication cost for com-
puting the solutions as the dominant eigenvectors need to be re-estimated after removal of each
individual link from the network.

4.2 Comparison between simultaneous and iterative link removal strategies
Next, we compare the performance of both simultaneous and iterative link removal strategies for
different types of network. To this end, we consider four types of networks illustrated in Figure 7,
namely: (a) modular small-world network which is a random, directed network with a specified
number of fully connected modules linked together by randomly distributed between-module
connections; (b) random network with specified number of nodes and edges; (c) ring lattice net-
work (with toroidal boundary conditions); and (d) non-ring lattice network (without toroidal
boundary conditions). For the simulations, the number of links to be removed is varied between
1 and 20% of the total number of links.

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

16 A. Gusrialdi

Algorithm 4. Distributed algorithm for iterative link removal

Require: G0 is strongly connected connected, number of nodes n, number of links to be
removedme

1: initialize p= 0
2: while p≤me − 1 do
3: each node estimates and normalizes wp using (14) or (17) whose estimation is given

by ŵi
p

4: each node estimates and normalizes νp using (15) or (18) whose estimation is given by ν̂ip
5: node j independently computes (j, ic)= argmax ν̂

j
p,iŵ

j
p,j for i ∈N out

Gp,j
6: all nodes compute (j∗, i∗)= argmax ν̂

j
p,ic ŵ

j
p,j with (j, ic) obtained in the previous step

using max-consensus (2) with xj(0)= ν̂
j
p,ic ŵ

j
p,j

7: check strong connectivity of Gp+1 = (V , Ep \ (j∗, i∗)) using Algorithm 1
8: if Gp+1 is not strongly connected then
9: back to steps 5–7 where node j∗ excludes the link (j∗, i∗) which destroys strong

connectivity of the resulting graph
10: if N out

Gp,i =∅ for all i then
11: break
12: end if
13: else
14: continue to step 16
15: end if
16: p← p+ 1
17: update Gp = {V , Ep−1 \ (j∗, i∗)}
18: �E −← (j∗, i∗)
19: end while

The results of applying Algorithm 3 and Algorithm 4 to the networks described previously are
summarized in Figures 8–11. From the results, we can make the following observations:

• For the cases of random, ring lattice and nonring lattice networks, the iterative link removal
strategy yields better performance (i.e., lower value of λ(A(Gme)) means better perfor-
mance) compared to simultaneous link removal strategy. Furthermore, the performance
gap between both strategies tend to increase as the value of me increases. Note that for
random and ring-lattice networks, both strategies performed similarly when the number
of links to be removed is less than 5% as can be seen in Figure 9 and Figure 10.

• For nonring lattice network, the simultaneous link removal strategy could not reduce the
dominant eigenvalue that much even though around 20% of total links have been removed
from the network, see Figure 11. Hence, for this type of network, it is recommended to use
iterative link removal strategy which comes at a price of higher communication cost.

• For the modular small-world network, the performance of both algorithms depend on the
cluster size for a fixed number of nodes and edges. As can be observed in Figure 8, when
the cluster size is small the iterative link removal strategy performed better compared to
simultaneous link removal strategy. However, as the cluster size increases, the simultane-
ous link removal strategy outperformed the iterative link removal strategy for some values
ofme.

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

Network Science 17

Figure 7. Examples of networks used in the simulation: (a)modular small-world network; (b) randomnetwork; (c) ring lattice
network; (d) nonring lattice network.

20

25

30

number of nodes: 64
number of links: 2000
cluster size: 8

simultaneous (Algorithm 3)

iterative (Algorithm 4)

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
25

26

27

28

29

30

31

number of nodes: 64
number of edges: 2000
cluster size: 32

simultaneous (Algorithm 3)

iterative (Algorithm 4)

Figure 8. Comparison between simultaneous and iterative link removal strategies onmodular small-world network.

5. Conclusions
This article proposed two novel distributed algorithms, namely simultaneous and iterative link
removal strategies to compute a suboptimal solution to link removal problem while maintain-
ing network’s strong connectivity whose objective is to minimize the dominant eigenvalue of
the adjacency matrix associated with the network’s structure. Key ingredients include distributed
algorithms for estimating the dominant eigenvectors of an adjacency matrix together with dis-
tributed algorithm to verify network’s strong connectivity after the removal of a fraction of links.
It was shown in simulations on different type of networks that there was a trade-off between the

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

18 A. Gusrialdi

2

3

4

5

6

7

8

simultaneous (Algorithm 3)

iterative (Algorrithm 4)

number of nodes: 128
number of edges: 1024

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2

8

10

12

14

16

number of nodes: 128
number of edges: 2048

simultaneous (Algorithm 3)

iterative (Algorithm 4)

Figure 9. Comparison between simultaneous and iterative link removal strategies on random network.

5

5.5

6

6.5

7

7.5

8

number of nodes: 128
number of edges: 1024

simultaneous (Algorithm 3)

iterative (Algorithm 4)

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
11

12

13

14

15

16 simultaneous (Algorithm 3)

iterative (Algorithm 4)

number of nodes: 128
number of edges: 2048

Figure 10. Comparison between simultaneous and iterative link removal strategies on ring lattice network.

4

5

6

7

8

number of nodes: 128
number of edges: 1024

simultaneous (Algorithm 3)

iterative (Algorithm 4)

0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
10

11

12

13

14

15

16

simultaneous (Algorithm 3)

iterative (Algorithm 4)

number of nodes: 128
number of edges: 2048

Figure 11. Comparison between simultaneous and iterative link removal strategies on nonring lattice network.

performance and communication cost of both strategies. Specifically, in general the iterative link
removal strategy yields a better performance in comparison to simultaneous link removal strategy.
Furthermore, the performance gap becomes larger as the number of links to be removed increases.
However, the iterative link removal comes at a price of a higher communication cost in contrast
to the simultaneous link removal strategy. As a future work, it is desirable to develop distributed
estimation algorithms which converge in finite time in order to effectively apply the proposed idea
to large-size networks.

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.25

Network Science 19

Funding. The work was supported by the Academy of Finland under academy project decision number 330073.

Competing interests. None.

References
Bishop, A. N., & Shames, I. (2011). Link operations for slowing the spread of disease in complex networks. Europhysics Letters,

95, 18005.
Bullo, F. (2018). Lectures on network systems (1st ed.). Scotts Valley, CA: CreateSpace. With contributions by J. Cortes,

F. Dorfler, and S. Martinez.
Chen, C., Tong, H., Prakash, B. A., Eliassi-Rad, T., Faloutsos, M., & Faloutsos, C. (2016). Eigen-optimization on large graphs

by edge manipulation. ACM Transactions on Knowledge Discovery from Data, 10(4), 49.
Golub, G. H., & Van Loan, C. F. (1996).Matrix computations (3rd ed.). Baltimore, MD: Johns Hopkins University Press.
Gusrialdi, A. (2021). Distributed algorithm for link removal in directed networks. In: R. M. Benito, C. Cherifi, H. Cherifi,

E. Moro, L. M. Rocha, & M. Sales-Pardo (Eds.), Complex networks & their applications ix (pp. 505–521). Cham: Springer
International Publishing.

Gusrialdi, A., & Qu, Z. (2017). Distributed estimation of all the eigenvalues and eigenvectors of matrices associated with
strongly connected digraphs. IEEE Control Systems Letters, 1(2), 328–333.

Gusrialdi, A., Qu, Z., & Hirche, S. (2019). Distributed link removal using local estimation of network topology. IEEE
Transactions on Network Science and Engineering, 6(3), 280–292.

Li, C., Wang, H., & Van Mieghem, P. (2013). Epidemic threshold in directed networks. Physical Review E, 88(6), 062802.
Li, N., Zhang, N., & Das, S. (2011). Preserving relation privacy in online social network data. IEEE Internet Computing, 15(3),

35–42.
Liu, J., & Anderson, B. D. O. (2020). Communication-efficient distributed algorithms for solving linear algebraic equations

over directed graphs. In Proceedings of the 59th iEEE conference on decision and control (pp. 5360–5365).
McDaniel, P., & McLaughlin, S. (2009). Security and privacy challenges in the smart grid. IEEE Security & Privacy Magazine,

7(3), 75–77.
Milanese, A., Sun, J., & Nishikawa, T. (2010). Approximating spectral impact of structural perturbations in large networks.

Physical Review E, 81(4), 046112.
Mou, S., Liu, J., & Morse, A. S. (2015). A distributed algorithm for solving a linear algebraic equation. IEEE Transactions on

Automatic Control, 60(11), 2863–2878.
Nejad, B. M., Attia, S. A., & Raisch, J. (2009). Max-consensus in amax-plus algebraic setting: The case of fixed communication

topologies. In International symposium on information, communication and automation technologies (pp. 1–7).
Prakash, B. A., Chakrabarti, D., Valler, N. C., Faloutsos, M., & Faloutsos, C. (2012). Threshold conditions for arbitrary cascade

models on arbitrary networks. Knowledge and Information Systems, 33(3), 549–575.
Shames, I., Charalambous, T., Hadjicostis, C. N., & Johansson, M. (2012). Distributed network size estimation and average

degree estimation and control in networks isomorphic to directed graphs. In Proceedings of annual allerton conference on
communication, control, and computing (pp. 1885–1892).

Van Mieghem, P., & Van de Bovenkamp, R. (2013). Non-markovian infection spread dramatically alters the susceptible-
infected-susceptible epidemic threshold in networks. Physical Review Letters, 110(10), 108701.

Van Mieghem, P., Stevanović, D., Kuipers, F., Li, C., van de Bovenkamp, R., Liu, D., & Wang, H. (2011). Decreasing the
spectral radius of a graph by link removals. Physical Review E, 84(Jul), 016101.

Wang, Y., Chakrabarti, D., Wang, C., & Faloutsos, C. (2003). Epidemic spreading in real networks: An eigenvalue viewpoint.
In Proceedings of the 22nd international symposium on reliable distributed systems (pp. 25–34).

Wood, R. J., & O’Neill, M. J. (2004). An always convergent method for finding the spectral radius of an irreducible non-
negative matrix. Australian and New Zealand Industrial and Applied Mathematics Journal, 45, C474–C485.

Wu, Y., Zhang, T., Chen, S., & Wang, T. (2017). The minimum spectral radius of an edge-removed network: A hypercube
perspective. Discrete Dynamics in Nature and Society, 2017, 1–8.

Yang, X., Li, P., Yang, L.-X., Wu, Y., & Deng, Y. (2016). Reducing the spectral radius of a torus network by link removal. Plos
One, 11(5), e0155580.

A preliminary version of this paper appeared as Gusrialdi, A. (2021). Distributed Algorithm for Link Removal in
Directed Networks. In International Conference Complex Networks & Their Applications (pp. 509–521). Cham: Springer.
https://doi.org/10.1007/978-3-030-65347-7_42

Cite this article: Gusrialdi A. Connectivity-preserving distributed algorithms for removing links in directed networks.
Network Science https://doi.org/10.1017/nws.2022.25

https://doi.org/10.1017/nws.2022.25 Published online by Cambridge University Press

https://doi.org/10.1007/978-3-030-65347-7_42
https://doi.org/10.1017/nws.2022.25
https://doi.org/10.1017/nws.2022.25

	
	Introduction
	Motivation and problem description
	Related literature
	Statement of contribution
	Organization of the article
	Problem statement
	Notation and preliminaries
	Problem formulation
	Main results: proposed distributed link removal algorithms
	Distributed algorithm for estimating dominant eigenvalue
	Distributed algorithm for estimating dominant left and right eigenvectors
	Distributed algorithm for verifying digraph"2019`s strong connectivity
	The complete distributed algorithms for link removal
	Numerical simulations
	Comparison with the optimal solution
	Comparison between simultaneous and iterative link removal strategies
	Conclusions

