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23, Terho Lehtimäki21,22, Christel M. Middeldorp12,13,42, Jackob

M. NajmanID
43, Craig Pennell30, Chris Power37, Albertine J. Oldehinkel44, Robert Plomin16,
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Abstract

Substantial genetic correlations have been reported across psychiatric disorders and

numerous cross-disorder genetic variants have been detected. To identify the genetic vari-

ants underlying general psychopathology in childhood, we performed a genome-wide asso-

ciation study using a total psychiatric problem score. We analyzed 6,844,199 common

SNPs in 38,418 school-aged children from 20 population-based cohorts participating in the

EAGLE consortium. The SNP heritability of total psychiatric problems was 5.4% (SE = 0.01)

and two loci reached genome-wide significance: rs10767094 and rs202005905. We also

observed an association of SBF2, a gene associated with neuroticism in previous GWAS,

with total psychiatric problems. The genetic effects underlying the total score were shared

with common psychiatric disorders only (attention-deficit/hyperactivity disorder, anxiety,

depression, insomnia) (rG > 0.49), but not with autism or the less common adult disorders

(schizophrenia, bipolar disorder, or eating disorders) (rG < 0.01). Importantly, the total psy-

chiatric problem score also showed at least a moderate genetic correlation with intelligence,

educational attainment, wellbeing, smoking, and body fat (rG > 0.29). The results suggest

that many common genetic variants are associated with childhood psychiatric symptoms

and related phenotypes in general instead of with specific symptoms. Further research is

needed to establish causality and pleiotropic mechanisms between related traits.

Introduction

Psychiatric disorders are moderately heritable, on average about 30–50% of the variability in

symptoms can be explained by genetic differences between individuals [1]. The joint effect of

common single nucleotide polymorphisms (SNP heritability) explains 5% to 30% of the vari-

ance in psychiatric disorders in adults [2]. Similar levels have been reported for behavioral and

emotional symptoms in children, although there is large variability depending on child age

and informant [3, 4]. A focus on childhood problems is particularly important, as many adult

disorders can be traced back to problems in childhood [5].
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Recent family and molecular genetic studies demonstrated that much of the genetic effects

underlying psychiatric disorders are not unique to particular diagnoses, but rather shared

across several psychiatric diagnoses and symptoms [2, 6–10]. This phenomenon is known as

cross-phenotype association and suggests pleiotropy, i.e. the influence of a genetic variant on

multiple traits, [11] and may be an explanation for the extensive co-occurrence of mental dis-

orders [12]. Several lines of evidence support this notion. First, the SNP based genetic correla-

tions between disorders from different domains, such as major depression, attention-deficit/

hyperactivity disorder (ADHD), bipolar disorder and schizophrenia are moderate to high, [2]

averaging 0.41 [10]. Second, measures of global psychopathology in children showed a com-

mon SNP heritability between 16% and 38% [8, 13]. Third, a genome-wide association meta-

analysis (GWAS) of eight psychiatric disorders (ADHD, anorexia, autism, bipolar, depression,

obsessive compulsive disorder, schizophrenia and Tourette’s) identified 23 loci associated with

at least four of these disorders [14].

GWAS derived polygenic risk scores (PRS) for single disorders are good predictors of gen-

eral psychopathology. For instance, a PRS for ADHD was more strongly associated with a gen-

eral psychopathology factor than with specific hyperactivity or attention problems adjusted for

general psychopathology [15]. In another study a composite PRS based on eight GWAS was

associated with general psychopathology in childhood [16]. These cross-phenotype associa-

tions present a challenge in interpreting GWAS results that typically target a single disorder,

raising the question of whether a multi-disorder approach would be more informative.

Previous GWAS of childhood disorders, such as autism spectrum disorders, ADHD,

aggression and internalizing disorders, [4, 17–19] have provided insights into the genetic

architecture of child psychiatric problems and into the genetic correlations between childhood

psychiatric problems. However, with notable exceptions of a large recent ADHD study [20]

and a GWAS on autism spectrum disorder, [17] these studies mostly failed to identify individ-

ual genome-wide significant loci. Besides increasing the sample size, some researchers propose

the inclusion of related phenotypes in analyses to increase power [21, 22]. Genetic loci with

pleiotropic effects may be missed in a GWAS of single psychiatric disorders. If a variant only

modestly increases the risk of symptoms from different domains, any association with a spe-

cific disorder may be too weak to be detected. A focus on global psychopathology increases the

power to detect unspecific genetic loci, which are associated with global psychiatric vulnerabil-

ities. A previous GWAS [14] examined multiple disorder simultaneously, but analyses of mul-

tiple dimensional measures of psychiatric problems in childhood are lacking. This approach is

arguably particularly promising in childhood given the less clearly expressed symptoms and

the low homotypic but high heterotypic stability of problems, [23] i.e. the changing of symp-

toms from one domain to another.

Our aim was to identify genetic loci associated with a total psychiatric problem score repre-

senting a variety of psychiatric problems including internalizing, externalizing, attention, neu-

rodevelopmental and other psychiatric problems. To identify these genetic variants, we

performed a GWAS meta-analysis within the EArly Genetics and Lifecourse Epidemiology

(EAGLE) consortium (https://www.eagle-consortium.org/). Finally, we estimated genetic cor-

relations of the total psychiatric problem score with various single child and adult psychiatric,

psychological, neurological and lifestyle or educational characteristics.

Methods and materials

Participants

Cohorts from the EAGLE consortium with parent-rated measures of psychiatric symptoms in

the age range 5–16 years were invited to participate in the project Twenty cohorts from
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Europe, the US and Australia contributed data to this meta-analysis. See Table 1 and S1 File

for cohort descriptions. Parents provided written informed consent for their children’s partici-

pation and the study was approved by the Ethics Committee of Erasmus MC, as well as by

local ethics committees at each site, see S1 File for full ethics statements per participating

cohort. The study was performed in accordance with the Declaration of Helsinki. We

restricted the analysis to children of European ancestry to avoid population stratification bias.

In total data from 38,418 participants with a mean age of 9.9 years (SD = 2.02) were meta-ana-

lyzed. This study was originally planned with a discovery-replication design. However, the

obtained sample-size was not sufficiently large to split the sample, and we opted for maximiz-

ing power in discovery analyses.

Outcome

Psychiatric problems were assessed with parent-rated questionnaires at the assessment wave

closest to age 10 years. All items of a broad psychiatric questionnaire were summed into a sin-

gle total psychiatric sum score. In all cohorts internalizing, externalizing and attention prob-

lems were assessed; in some questionnaires items on sleep, thought, eating problems, and

pervasive developmental disorders were included in the total problem score (Table 1). Instru-

ments included the Child Behavior Checklist (CBCL), [24] Strengths and Difficulties Ques-

tionnaire (SDQ), [25] parental version of the Multidimensional Peer Nomination Inventory

Table 1. Phenotype characteristics.

Cohort n Instrument Domains Informant Age years Age SD Score Mean Score SD % Female

1958BC-T1DGC 2170 Rutter Int,Ext Maternal 11.3 0.1 6.2 3.4 51

1958BC-WTCCC 2261 Rutter Int,Ext Maternal 11.3 0.2 6.2 3.4 48

ALSPAC 5461 SDQ Int,Ext Maternal 9.6 0.1 6.7 4.8 49

BREATHE 1618 SDQ Int,Ext Both 8.3 3.9 8.1 5.1 48

CADD 358 CBCL 4–18 Int,Ext,Sleep,TP,EP,PDD Both 13.0 2.6 16.2 21.9 28

CATSS 6498 A-TAC Int,Ext,EP,PDD Both 12.0 0.0 5.4 7.5 49

COPSAC2010 547 SDQ 4–10 Int,Ext Both 6.0 0.3 7.1 4.7 48

FinnTwin12 959 MPNI Int,Ext Both 11.4 0.3 11.3 6.8 53

GenR 1847 CBCL 6–18 Int,Ext,Sleep,TP,EP,PDD Maternal 9.7 0.3 17.3 15.2 51

Gini-Lisa 1389 SDQ Int,Ext Maternal 10.0 0.2 7.3 5.2 48

Glaku 312 CBCL 6–18 Int,Ext,Sleep,TP,EP,PDD Maternal 12.1 1.0 21.7 16.8 52

INMA 745 SDQ Int,Ext Both 5.1 0.8 8.9 5.0 38

MUSP 1156 CBCL 6–18 Int,Ext,Sleep,TP,EP,PDD Maternal 13.9 0.3 30.5 19.8 61

NFBC1986 3346 Rutter Int,Ext Maternal 7.8 0.2 2.6 2.1 51

NTR I 2563 CBCL 6–18 Int,Ext,Sleep,TP,EP,PDD Maternal 9.9 1.0 19.3 15.9 52

NTR II 2960 CBCL 6–18 Int,Ext,Sleep,TP,EP,PDD Maternal 9.6 1.0 19.1 16.6 53

RAINE 1366 CBCL 4–18 Int,Ext,Sleep,TP,EP,PDD Both 10.6 0.2 21.1 18.6 48

TCHAD 2111 CBCL 6–18 Int,Ext,Sleep,TP,EP,PDD Both 13.0 0.0 11.7 12.5 51

TEDS 2707 SDQ Int,Ext Both 11.3 0.7 7.0 5.0 54

TRAILS 1283 CBCL 6–18 Int,Ext,Sleep,TP,EP,PDD Maternal 11.1 0.6 0.2 0.2 52

YFS 1352 HES Int,Ext Maternal 10.6 3.3 14.7 6.8 54

n sample size

Domains covered by instrument: Internalizing (Int), Externalizing (Ext), Sleep, Thought Problems (TP), Eating Problems (EP), Pervasive Developmental Disorder

Score (PDD)

Informant questionnaire filled in by only mothers (maternal) or by either father or mother (both)

SD standard deviation

https://doi.org/10.1371/journal.pone.0273116.t001
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(MPNI), [26] Rutter Children’ Behaviour Questionnaire, [27] the Autism–Tics, AD/HD and

other Comorbidities inventory (A-TAC) [28], and items derived from the Health Examination

Survey [29].

We applied a log transformation plus 1 to avoid bias due to non-normal residuals and influ-

ential observations. Because different scales were used, the log-transformed scores were con-

verted to a z-score within cohorts to make units comparable across cohorts.

Genotyping and QC

Genotyping was performed using genome-wide arrays. Cohort-specific pre-imputation

quality control (QC) was performed using established protocols. In all cohorts, SNPs were

imputed to the 1000 Genomes Phase 1 or Phase 3 reference panel [30]. Each cohort per-

formed a GWAS and summary results were collected for meta-analysis. We omitted the X-

chromosome from further analysis as most cohorts had no information available on X-

linked SNPs. Pre-meta-analysis QC was performed with EasyQC and QCGWAS [31–33].

The QC steps are summarized in S1 Fig. After meta-analysis, we excluded SNPs with low

minor allele frequency (MAF < 5%), sample size (<5000), or with data from a small number

of cohorts (<5). Finally, we checked the pooled results for spurious inflation by examining

QQ-plots of the p-value distribution and by examining the LD score regression intercept

(see statistical analysis). Full genetic methods and quality control per cohort can be found

in S1 and S2 Tables.

Statistical analysis

Single SNP associations and meta-analysis. The z-scores of the total psychiatric prob-

lems scores were related to the SNP dosages in a linear model. Covariates included gender, age

at assessment and principal components of ancestry. The number of dimensions (1–10) were

specified by each cohort. CATSS and TCHAD additionally used a random effect to account

for familial relatedness. FinnTwin12 and NTR applied a mixed model with two random effects

to control for population stratification and relatedness. We pooled the results from the individ-

ual cohorts using an inverse-variance weighted fixed-effects meta-analysis. R 3.4.3 was used

for QC, data preparation and analysis of results [34]. Meta-soft 2.0.1 was used for the meta-

analysis of single SNP associations [35]. The individual cohort results after quality control

were examined and meta-analyzed independently by the first and second author with consis-

tent results. Genome-wide significance was set at p<5E-08. We had good power (>80%) to

detect effect sizes between 0.05 for MAF = 50% and 0.11 for MAF = 5%. Effect size (Beta) was

defined as change in log(total problems+1) in SD per effect allele. Power was calculated with

gwas-power (https://github.com/kaustubhad/gwas-power) [36].

We also used the FUMA web tool [37] to explore potential functional implications of any

identified variants. We reviewed positional mapping, eQTL analyses and chromatin interac-

tions with all available databases (date: 2019-06-30). We also performed a lookup in the mQTL

[38] database, to check for potential influences on gene expression via DNA methylation.

Gene-based and expression analysis. We performed gene-based tests using MAGMA

[39] in FUMA. MAGMA estimates the joint effect of all SNPs within a gene, while accounting

for the LD structure and gene size. We tested 18,168 protein coding genes and thus the p-value

significance threshold was set at 3e-6 based on Bonferroni correction.

Second, we tested, whether the results from the gene-based tests were related to gene

expression in several tissues. Specifically, we used MAGMA to test whether the strength of

association between genes and the total psychiatric problem score was related to the mean

gene expression level in a specific tissue, while considering average expression levels. Given
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that we expected gene variants to act via brain pathways, we tested expression in 13 brain

regions (S3 Table). However, as gene effects may impact the brain indirectly via other tissues,

we also investigated gene expression levels on an organ level (S4 Table). Gene expression levels

were obtained from the GTEx 7 database [40].

Third, we further examined whether the predicted gene expression of selected genes was

related to total psychiatric problems. We selected genes, that were (functionally) annotated to

genome-wide hits, or that were genome-wide significant according to gene-based tests. To corre-

late gene expression with total psychiatric problems, we used a transciptome-wide association

study (TWAS) approach [41]. In short, gene expression in a tissue is imputed based on expres-

sion information from the GTEx 7 database for a specific tissue and then correlated with a phe-

notype, as inferred from GWAS summary statics. We chose to examine the expression in the

basal ganglia post-hoc, as the loci most strongly associated with total psychiatric problems were

related to genes expressed in the basal ganglia regions, see section “results: gene expression”

below. We also performed a lookup on TWAS hub, to examine whether gene expression by a

gene identified in this study has previously been associated with other phenotypes [42, 43].

SNP heritability and genetic correlations. We estimated the SNP heritability of total psy-

chiatric problem scores with LD score regression [44]. We used the online tool LD Hub [45] to

estimate common SNP heritability and genetic correlations with various psychiatric, psycho-

logical, neurological and lifestyle or educational characteristics. To compute the genetic corre-

lations we selected published GWAS summary statistics available on LD Hub, except genetic

correlations with anxiety symptoms, [46] which were computed locally with ldsc 1.0.0.

Sensitivity analyses. The GWAS meta-analysis included cohorts using different instru-

ments to measure total psychiatric problems with mean age ranges from 5 to 13 years. While

our inclusion criteria maximized sample sizes and also increased the potential for generaliz-

ability, this approach may have increased the study heterogeneity. We therefore performed

two sensitivity analyses to investigate effect consistency. In the first, we performed three sepa-

rate meta-analyses for each of the major instrument groups. These meta-analyses included

only cohorts using the CBCL, SDQ or Rutter questionnaires, respectively. We then tested con-

sistency of genetic effects by computing the genetic correlation between each instrument.

In the second sensitivity analyses, we tested, whether the genetic correlation between total

psychiatric problems and thought disorders changed depending on the age at which total psy-

chiatric problems were assessed. Specifically, we hypothesized, that total psychiatric problems

scores assessed during early adolescence would correlate more strongly with schizophrenia

and bipolar disorders, than total psychiatric problems occurring before the onset of puberty.

We therefore performed two meta-analyses consisting of the cohorts assessing youths below

and equal or above age 12 years. We then examined the genetic correlation of total psychiatric

problems in both age groups with schizophrenia and bipolar disorder.

Results

Spurious inflation and SNP Heritability

We tested 6,844,199 SNPs after quality control. The QQ-plot (Fig 1) showed some inflation,

however, the LD score intercepts was close to 1 (β0 = 1.01, SE = 0.01), suggesting that the infla-

tion was due to a true signal rather than spurious associations. The SNP heritability was esti-

mated at 5.4% (SE = 0.013).

SNP based tests. Two loci on chromosome 11 were genome-wide significant, see Fig 2.

One locus is located around lead SNP rs10767094, which showed an increase of 0.08SD in

total psychiatric problems per A allele (SE = 0.01, p = 3E-09, n = 8,216) (S2 Fig). The A allele is

very common with an average frequency of 48% across the cohorts, but the SNP’s average
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imputation quality was a moderate 50% (Info/R2). Information on this locus was only available

in 27% of participants (6 cohorts). The SNP showed a moderate amount of effect heterogeneity

(I2 = 47.6%). Also on chromosome 11 an insertion/deletion variant (InDel) was genome-wide

significant. A deletion of the A allele at rs202005905 was associated with an increase of 0.08SD

in total psychiatric problems (SE = 0.01, p = 4E-08, n = 15,886, S3 Fig). Deletion prevalence was

on average 16%, but again the imputation quality was modest with 52%, information was

Fig 1. QQ-plot. Quantile-quantile plot of observed -log 10 p values vs expected -log 10 p values assuming chance findings in single SNP analysis. Diagonal line

indicates a p value distribution compatible with chance finding. Upward deviations indicate p values more significant than expected.

https://doi.org/10.1371/journal.pone.0273116.g001
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available in 41% of participants (9 cohorts) and the genetic variant showed moderate effect het-

erogeneity (I2 = 59.6%).

The SNP rs10767094 lies in the intron of the long non-coding RNA Loc105379880 and

rs202005905 lies in an intergenic region with no nearby genes. A FUMA eQTL and chromatin

interaction analysis did not reveal any interactions with genes. The mQTL database did not list

any associations with DNA methylation.

The third top locus did not reach genome-wide significance, but is of interest for its loca-

tion in a gene previously implicated in neuroticism [47, 48] as well as being very close to

genome-wide significance. The SNP rs72854494 lies within the gene SBF2. The T allele was

associated with 0.05SD lower total psychiatric problems (SE = 0.01, p = 5E-08, n = 38,330) (S4

Fig). This association showed no heterogeneity (I2 = 0.0%) among the cohorts. The T allele

occurred on average in 14% across cohorts, with a very good imputation quality of 96%.

FUMA eQTL and chromatin interaction analysis, as well as a lookup in mQTL DB did not

reveal any further information on functional association. Results for all SNPs with genome-

wide suggestive p-values (p<5E-06) can be found in Table 2. The full summary statistics can

be found at https://doi.org/10.6084/m9.figshare.17170994.v1.

Gene-based test

Next we tested the association of 18,290 protein coding genes with the child total psychiatric

problem score. None of the genes reached genome-wide significance (S3 Table, S5 and S6

Figs). We also post-hoc looked up the association of SBF2. The aggregate of 1,508 SNPs in

SBF2 showed a nominal significance of p = 0.0004 (n = 35,736).

Gene expression

We performed a MAGMA tissue expression analysis in 13 specific brain tissues (S4 Table).

Genes more strongly associated with total psychiatric problems tended to express particularly

in four subcortical structures: caudate, putamen, anterior cingulate cortex and amygdala.

However, these associations were not significant after correction for multiple testing. In addi-

tion, we analyzed tissue expression for 30 tissues on an organ level, see S5 Table. None of the

Fig 2. Manhattan plot. Manhattan plot of -log 10 p values vs SNP position for single SNP analysis. SNPs above the red horizontal line indicate genome-wide

significant findings.

https://doi.org/10.1371/journal.pone.0273116.g002
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organs had statistically significant associations, however, expression in the brain showed the

strongest association (p = 0.06).

The top two genome-wide significant loci were not linked to a characterized gene, thus

we decided to perform a TWAS analysis only for SBF2. We found that higher predicted lev-

els of SBF2 in the basal ganglia were related to higher scores of total psychiatric symptoms

(Z = +2.33, p = 0.02) based on the best linear unbiased predictions (BLUP) of a random var-

iable representing 489 SNPs. A lookup in the TWAS Hub database revealed, that predicted

levels of SBF2 gene products associate most with following phenotypes: neuroticism, body

fat measures, red blood cell count, nervous feelings and worrying (http://twas-hub.org/

genes/SBF2/).

Genetic correlation. Next we quantified the extent to which the genetic associations of

child psychiatric problems scores were shared with other phenotypes. After adjustment for

false discovery rate, insomnia, depressive symptoms, neuroticism, cigarettes smoked per day,

Table 2. SNPs with genome-wide significant (p<5E-08) and suggestive (p<5E-07) results.

SNP Chr BP EA OA EAF nstu n β SE p I2

rs10767094 11 3477509 A G 0.48 6 8216 0.08 0.01 3E-09 47.6

rs12098951 11 3478953 A G 0.48 8 10417 0.08 0.01 9E-09 52.3

rs10767093 11 3477421 T A 0.48 8 10408 0.08 0.01 1E-08 40.3

rs10767096 11 3477891 T C 0.53 8 10382 0.07 0.01 2E-08 47.6

rs202005905 11 54733705 I D 0.84 9 15886 -0.08 0.01 4E-08 59.6

rs72854494 11 9946312 T C 0.86 21 38330 -0.05 0.01 5E-08 0.0

rs188216744 14 106478354 T C 0.55 5 7045 0.08 0.01 6E-08 87.2

rs115749482 16 16754648 A G 0.81 5 6930 0.08 0.01 1E-07 85.6

rs59076561 11 9951438 G T 0.86 20 35645 -0.05 0.01 1E-07 0.0

rs113227893 11 9944120 D I 0.86 18 33850 -0.05 0.01 1E-07 0.2

rs67456791 11 9944108 G A 0.86 20 35533 -0.05 0.01 1E-07 0.0

rs10767095 11 3477568 G A 0.48 8 10413 0.07 0.01 2E-07 43.8

rs10834158 11 3477887 A G 0.52 9 11682 0.07 0.01 2E-07 56.1

rs116657155 11 9954242 A G 0.85 20 35619 -0.05 0.01 4E-07 0.0

rs60713856 11 9955418 G C 0.85 20 35579 -0.05 0.01 4E-07 0.0

rs140557414 11 9953387 A C 0.85 20 35632 -0.05 0.01 5E-07 0.0

rs57331333 11 9956272 T C 0.85 20 35570 -0.05 0.01 6E-07 0.0

rs34543113 5 3339568 G A 0.70 20 35612 -0.04 0.01 6E-07 0.0

rs11042555 11 9957159 T C 0.85 20 35571 -0.05 0.01 7E-07 0.0

rs36189439 7 323206 A G 0.58 6 7814 0.07 0.01 7E-07 69.2

Chr Chromosome

BP Basepair Position (Build 37 map)

EA Effect Allele

OA Other Allele

EAF Effect Allele Frequency

nstu Number of Studies

n Sample Size

β Beta

SE standard error

p p-value

I2 Effect heterogeneity

https://doi.org/10.1371/journal.pone.0273116.t002
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body fat, body mass index, number of children, and age of smoking initiation all showed posi-

tive genetic correlations between 0.29 and 0.60 with the total psychiatric problem score

(Table 3) based on the results of independent GWAS in adults. The highest correlation of total

psychiatric problems was with ADHD, but this association did not survive multiple testing

correction (rG = 0.86, SE = 0.39, p = 0.03, q = 0.06). Subjective wellbeing, childhood IQ, college

completion, years of schooling, intelligence and age of smoking initiation showed significant

negative correlations with the total psychiatric problem score, ranging from -0.66 to -0.42. Of

the psychiatric phenotypes tested, the less common psychiatric disorders like schizophrenia,

bipolar disorder, autism spectrum disorder, and anorexia were not genetically correlated with

the total psychiatric problem score (rG < 0.01).

Sensitivity analyses

Total psychiatric problems measured with CBCL and SDQ genetically correlated with rG =

0.84 (SE = 0.31, p = 0.008). The Rutter questionnaire correlated more modestly with both

CBCL (rG = 0.43, SE = 0.39, p = 0.073) and SDQ (rG = 0.63, SE = 0.29, p = 0.030). The genetic

correlations of total psychiatric problems assessed both before or after age 12 with schizophre-

nia and bipolar disorder were small and consistent with a null effect irrespective of age group

(S6 Table).

Discussion

The current study reports the first GWAS examining global psychopathology in children. Two

genetic loci were genome-wide significant in the total sample. Additionally, we found support

for the involvement of gene SBF2 in the development of psychopathology. The genetic effects

underlying global psychopathology were shared with common psychiatric disorders (ADHD,

anxiety, depression, insomnia), but not with less common and on average more severe ones

(schizophrenia, bipolar disorder, autism, eating disorders).

The two genome-wide significant variants are one SNP (rs10767094) and one InDel

(rs202005905). To the best of our knowledge these variants have not been associated with psy-

chiatric traits before. It is unclear, how exactly these variants or tagged causal variants may

affect general psychopathology, as functional annotation for these loci is sparse. The modest

imputation quality possibly affected study results as both variants failed quality control in most

cohorts. Measurement error of the genotypes could explain the relatively high estimates het-

erogeneity. An important next step would therefore be to replicate these SNPs using direct

genotyping or denser arrays.

While just not genome-wide significant, the evidence for an involvement of SBF2 with the

lead SNP rs72854494 in total psychiatric problems is more convincing. This locus has been

implicated in neuroticism based on two GWAS. In a GWAS of neuroticism [47] rs1557341,

located in SBF2, showed genome-wide significance. In a second larger independent GWAS of

449,484 participants, SBF2 showed a genome-wide significant effect for both neuroticism and

worry in gene-based tests [48]. Furthermore, according to TWAS hub, the predicted gene

products of SBF2 correlate with neuroticism based on several GWAS. Neuroticism describes a

disposition to experience negative emotions and a higher stress reactivity. It robustly and sub-

stantially associates with general psychopathology in children, [8, 49] adolescence, [50] and

adults [51] (between r = 0.13 and r = 0.81). A twin study suggested that this correlation arises

partly due to shared genetic causes [52] and in this GWAS the genetic correlations between

total psychiatric problems and neuroticism were substantial as well, similar to the phenotypic

association (rG = 0.41). These results suggest that SBF2 pleiotropically affects neuroticism and

psychopathology, but the mechanisms would need to be explored further. Neuroticism has
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Table 3. Genetic correlations based on LD score regression.

Correlated trait PMID rG SE p q h2

Psychiatry
ADHD 20732625 0.86 0.39 3E-02 6E-02 0.19

Depressive symptoms 27089181 0.60 0.13 1E-06 9E-06 0.05

Anxiety symptoms 26754954 0.60 0.26 3E-01 4E-01 0.26

Insomnia 28604731 0.49 0.15 9E-04 3E-03 0.05

Major depressive disorder 22472876 0.22 0.17 2E-01 3E-01 0.14

PGC cross-disorder analysis 23453885 0.07 0.11 5E-01 6E-01 0.16

Autism spectrum disorder 28540026 0.01 0.15 9E-01 1E+00 0.37

Schizophrenia 25056061 -0.03 0.07 7E-01 8E-01 0.45

Bipolar disorder 21926972 -0.16 0.11 1E-01 2E-01 0.43

Anorexia Nervosa 24514567 -0.17 0.12 1E-01 2E-01 0.31

Neurology
Amyotrophic lateral sclerosis 27455348 0.30 0.23 2E-01 3E-01 0.04

Parkinsons disease 19915575 0.14 0.12 2E-01 3E-01 0.37

Alzheimers disease 24162737 -0.10 0.17 6E-01 6E-01 0.05

Personality and Wellbeing
Neuroticism 27089181 0.41 0.09 1E-05 8E-05 0.09

Neo-conscientiousness 21173776 0.05 0.23 8E-01 9E-01 0.07

Neo-openness to experience 21173776 0.01 0.18 1E+00 1E+00 0.11

Subjective well being 27089181 -0.46 0.12 1E-04 4E-04 0.02

Intelligence and educational attainment
Childhood IQ 23358156 -0.42 0.16 8E-03 2E-02 0.27

Years of schooling 25201988 -0.56 0.11 3E-07 2E-06 0.11

Intelligence 28530673 -0.63 0.11 1E-08 2E-07 0.20

College completion 23722424 -0.66 0.11 3E-09 8E-08 0.08

Brain volume
Mean Hippocampus 25607358 0.01 0.18 1E+00 1E+00 0.15

Mean Thalamus 25607358 -0.06 0.20 8E-01 8E-01 0.11

Infant head circumference 22504419 -0.13 0.18 5E-01 6E-01 0.22

Intracranial Volume 25607358 -0.15 0.20 4E-01 6E-01 0.17

Mean Pallidum 25607358 -0.17 0.17 3E-01 4E-01 0.17

Mean Caudate 25607358 -0.18 0.14 2E-01 3E-01 0.25

Mean Accumbens 25607358 -0.24 0.25 4E-01 5E-01 0.09

Mean Putamen 25607358 -0.25 0.13 6E-02 1E-01 0.29

General health behaviors/outcomes
Cigarettes smoked per day 20418890 0.58 0.22 9E-03 2E-02 0.05

Body fat 26833246 0.48 0.12 5E-05 2E-04 0.11

Body mass index 20935630 0.30 0.09 1E-03 3E-03 0.19

Sleep duration 27494321 -0.18 0.11 9E-02 2E-01 0.05

Age of smoking initiation 20418890 -0.64 0.25 1E-02 2E-02 0.05

Parent’s age at death
Parent’s age at death 27015805 -0.20 0.16 2E-01 3E-01 0.03

Reproduction
Number of children ever born 27798627 0.30 0.11 5E-03 2E-02 0.02

Bold rows indicate correlates with statistical significance after multiple testing correction

PMID PubMed ID, rG Genetic Correlation, SE Standard Error, p P-value

q False Discovery Rate Adjusted P-values, h2 SNP heritability

https://doi.org/10.1371/journal.pone.0273116.t003
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been hypothesized to contribute strongly to general psychopathology, [53] thus it may mediate

the effect of genetic variants on total psychiatric problems, but both phenotypes may also be

independently affected. In regards to biology, human and mice studies points towards abnor-

mal myelination as one of the consequences of SBF2 alterations [54, 55]. We recently reported

an association between lower global white matter integrity and higher levels of general psycho-

pathology in school-aged children [56]. Thus, one may speculate that SBF2 affects psychiatric

problems via white matter development.

We additionally tested, whether genetic variants associated with total psychiatric problems

were associated with gene expression in the brain. Association with gene expression in the lim-

bic system of the brain showed the most support, but did not survive multiple testing correc-

tion. The findings are thus compatible with the possibility of a chance finding, but strong

theoretical support for a major role of the limbic system exists. The limbic system includes evo-

lutionary preserved regions responsible for emotion regulation and motivation, [57] which

were previously implicated in affective disorders, ADHD and OCD, [58, 59] and are a potential

intervention target [60].

In this study we observed 5% SNP heritability, which is similar to the LD score estimated

SNP heritability of continuously measured ADHD, [4] depression, [47] and anxiety symptoms

[46] in population based cohorts. The total psychiatric problem scores were based on various

instruments, which all included items for common psychiatric internalizing, attention, and

externalizing symptoms. Therefore, it is not surprising that common psychiatric symptoms

and disorders such as ADHD and depression shared 36% or more of the genetic variation with

the total psychiatric problem score. The extent to which the questionnaires used in this study

covered other less common problems, such as psychotic, bipolar or autistic symptoms varied

greatly by instrument. This may explain the low genetic correlation between total psychiatric

problem scores with these disorders. Also, these disorders are less prevalent in the general pop-

ulation and thus may be reflected less in total problem scores. Furthermore, age of onset for

schizophrenia and bipolar disorder is typically in late adolescence and early adulthood [61–

63]. We did not find support for the notion that total psychiatric problems assessed in at later

ages would genetically correlate more strongly with thought disorders than those assessed at

younger ages. For autism spectrum disorder, the age of onset is early, but the prevalence in the

cohorts was low. Thus, the total psychiatric problem score covered broad symptomatology but

was not representative of severe psychiatric disorders with lower prevalence rates or emer-

gence at later ages. The differential genetic correlations with common and relatively rare disor-

ders suggests a continuum of genetic effects varying from very specific variants, variants which

underlie either common or less common disorders, to variants which underlie most psychiat-

ric problems. The presence of these universal variants is supported by genetic correlations

between common and less common disorders, such as ADHD and schizophrenia [2, 10]. The

latter set of variants may be better detected with measures of global psychopathology in older

children, when thought disorders such as schizophrenia and bipolar disorder occur.

In addition to the genetic correlations with different psychiatric disorders, total psychiatric

problems genetically correlated with various psychological and health-related phenotypes,

namely intelligence, educational attainment, wellbeing, smoking, body fat and number of chil-

dren in adulthood. This observation suggests that children genetically predisposed to higher or

lower total psychiatric problems are also at risk for or protected against various outcomes

related to general development and health. How this correlation arises cannot be inferred

from our data, as both vertical and horizontal pleiotropy is plausible. Genetic factors may

impact psychiatric problems, which may then lead to adverse health and educational out-

comes. However, the reverse is also plausible: genetically determined factors could impact

non-psychiatric problems, which then give rise to psychiatric problems. Finally, genetic
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variants could independently increase the vulnerability to develop problems in many different

areas of life. The observed genetic correlations are most likely the result of a combination of

these three mechanisms and further research is necessary to examine the causal pathways in

detail.

A limitation of this study is the heterogeneity in the measures of psychopathology. On the

one hand, using different assessment methods is an advantage, since any associations that are

detected will likely be more generalizable. On the other hand, it might limit the ability to detect

less robustly associated variants. However, our genetic correlation analyses showed highly con-

sistent effects between cohorts utilizing the CBCL and SDQ questionnaires, which contributed

the majority of study participants (65%). Considering that these correlations represent agree-

ment across independent cohorts with numerous methodological and population differences,

a genetic correlation above 0.8 provides very strong support for jointly analyzing total psychi-

atric problems scores assessed by either CBCL or SDQ. The total psychiatric problems assessed

by the Rutter questionnaire had a lower genetic correlation with the other assessment meth-

ods. However, the Rutter sub-group meta-analysis was only based on three cohorts, represent-

ing only 20% of the total study population, which makes it difficult to distinguish instrument

effects from other cohort-specific characteristics. Overall, the genetic correlation analyses sug-

gest limited heterogeneity between the majority of cohorts. We thus argue that the lack of

power to identify more loci probably stemmed from insufficient sample size, measurement

error and the relatively low number of children with severe psychiatric problems in the general

population.

Another limitation is that the study sample was not sufficient to consider potential sex

interactions. The prevalence of child psychiatric problems differs by gender, with school-age

boys typically showing more externalizing problems and girls more internalizing problems.

Total scores tend to be less different on average, with boys showing only slightly higher scores

[64]. Gene-sex interactions tend to be small for psychiatric disorders and require very high

sample sizes to be robustly detected [65]. Future studies with higher sample sizes are therefore

needed to identify sex-interactions in the context of total psychiatric problems.

Finally, as in any other GWAS study, the extent to which the found associations can be

interpreted causally is difficult. Due to linkage disequilibrium it is unclear whether the two top

variants have causal influence on psychopathology or are a marker for other causal variants.

The same is true for the association of SBF2 with total psychiatric problems. However, the

association of predicted SBF2 gene products with neuroticism and psychiatric problems, as

well as the influence on myelination in an experimental mouse model, suggest a causal role.

In conclusion, this GWAS of total psychiatric problem scores suggests that common genetic

variants exist that are associated simultaneously with internalizing, externalizing, attention

and other psychiatric problems in childhood. The pleiotropy was not restricted to psychiatric

phenotypes, but also included intelligence, educational attainment, wellbeing, smoking, body

fat and number of children in adulthood. Interestingly, we did not find shared genetic effects

with autism, schizophrenia and bipolar disorder. Two novel loci were genome-wide signifi-

cant, though, the low sample size and modest imputation quality necessitate replication before

firm conclusions can be drawn whether they influence total psychiatric problems. Further-

more, we found evidence that the gene SBF2, which was previously known to be associated

with neuroticism, is also implicated in general psychopathology in children. Our results merit

further investigation for confirmation and exploration of potential causal mechanisms.
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