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ABSTRACT: Actively controllable photoluminescence is potent for a

wide variety of applications from biosensing and imaging to : Ly
optoelectronic components. Traditionally, methods to achieve active
emission control are limited due to complex fabrication processes or A
irreversible tuning. Here, we demonstrate active emission tuning,
achieved by changing the ambient humidity in a fluorescent dye-
containing hydrogel integrated into a metal—insulator—metal (MIM)
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system. Altering the overlapping region of the MIM cavity resonance and 5 /. 0% Ri Roverse
the absorption and emission spectra of the dye used is the underlying £ /’r \
principle to achieving tunability of the emission. We first verify this by 3 J N\ 80% RH
passive tuning of cavity resonance and further experimentally & .
Wavelength

demonstrate active tuning in both air and aqueous environments. The
proposed approach is reversible, easy to integrate, and spectrally scalable,
thus providing opportunities for developing tunable photonic devices.

KEYWORDS: metal—insulator—metal system, hydrogels, fluorescent dye, humidity, tunable emission, stimuli-responsive materials

B INTRODUCTION approaches have shown notable PL enhancement, they bring
along some limitations. First, the resonance modes correspond-
ing to these resonators are subwavelength, which require
careful alignment of dye molecules with the resonance hot
spots. Secondly, continuous tuning of resonance frequency in
plasmonic and dielectric resonator systems possesses fabrica-
tion complexity. In addition to the PL enhancement, its active
tunability is also important. Several ways exist to actively tune
the emission properties. These include the application of
magnetic,w’20 electric,”* and opticalzz’23 fields. Furthermore, a
diverse range of tunable metasurfaces based on mechanical
actuation,”*”*° phase-change materials,”” ™" and liquid crys-
tals>>~>* exist, offering dynamic tuning of optical properties.
For a metasurface, the collective response of subwavelength-
sized resonators is primarily determined by the resonator
geometry and size. ¢ Integrating the emitter into a tunable
metasurfaces would allow for active emission tuning. However,
all these approaches either require complex experimental setup,
fabrication techniques, lack reversibility, or exhibit small

Manipulating the optical properties of an emitter is of
paramount importance for developing efficient light sources
for advanced nanophotonic devices,"” fluorescence micros-
copy,” and various optoelectronic applications.” Over the past
decades, numerous efforts have been made to control the
emission properties of organic dye molecules, owing to their
high photoluminescence (PL) quantum yield and broadband
emission,” paving the way for new solutions for photonic
devices such as LEDs,’ lasers,” and single-photon sources.® To
improve the efficiency and functionalities of the photonic
devices, it is highly desirable to control and enhance the
emission properties of the photonic structures. In addition, a
facile, real-time, reversible, and actively tunable luminescence
system is of great importance, as it serves as the basis for next-
generation photonic elements. Furthermore, on-demand
control of the emission will enable broadband sensing and
full-color display devices. To date, plasmonic’ and dielectric
cavities'”"" are routinely utilized to boost the PL signals by
increasing the local density of photonic states'>" around the
emitter. For instance, thin metallic films and plasmonic
nanoantennae tightly confine the electromagnetic field into a
small volume due to plasmonic resonance. Similarly, high-
index dielectric nanostructures, such as 1D gratings,14 2D
photonic crystals,"'® and dielectric resonators,'”'* localize the
electromagnetic fields by Mie-resonances. Although these
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Figure 1. (a) The absorption and emission spectra of RhB are presented as black dotted and red solid curves, respectively. Inset: schematic
representation of the RhB-containing hydrogel incorporated into the MIM device. (b) Simulated reflection from the MIM for different hydrogel

thicknesses.

spectral tunability.”” In addition, complex and time-consuming
fabrication procedures hamper their translation into real-world
applications. To circumvent this, we utilize a metal—insulator—
metal platform for tuning the emission.

The metal—insulator—metal (MIM) structure is relatively
simple and exhibits high-quality-factor resonance.’”® The
resonance wavelength of the MIM cavity is scalable by simply
changing the thickness of the insulating layer. We exploited
this property to demonstrate an active emission tuning using a
hydrogel as the insulating layer. Hydrogel is a stimuli-
responsive hydrophilic cross-linked polymer network capable
of holding a large amount of water in its network. The volume
and the optical and mechanical properties of the hydrogels can
be changed due to the reversible swelling—deswelling process
in a humid and aqueous environment.”> An increment in
humidity allows the hydrogel to absorb water from the
environment and swell, resulting a relatively large thickness
change of the thin hydrogel.”*' Due to this remarkable
feature, hydrogels have stood out as promising materials for
developing actively tunable plasmonic devices.*”~**

To showcase the active emission tuning, we integrated a
photoluminescent hydrogel, obtained via covalent functional-
ization with rhodamine B (RhB) as an emitter (see the
Methods section for further details) into a MIM cavity as a
tunable platform. Our results reveal an active emission tuning
by varying the thickness of the hydrogel, resulting in maximum
emission enhancement when the MIM cavity resonance
overlaps with both the absorption and emission bands of the
emitter. We demonstrate humidity-responsive PL of the
emitter coupled to an actively tunable MIM cavity at room
temperature, via both passive and active tuning schemes. In the
passive tuning, we fabricated MIM cavities with different
thicknesses of the hydrogel-based insulating layer, while for the
active tuning, the hydrogel thickness was varied in response to
humidity or the presence of water. We envision that our study
will pave the way for engineering light—matter interactions,
advancing the fundamental understanding and in the longer-
term potentially contributing to the technological development
of luminescent devices. The proposed solution exhibits real-
time tunability, reversibility, and large spectral tuning of the
cavity resonance with relatively easy fabrication and exper-
imental setup. The planar topography and scalability of our
structure will enable large-area devices to function at the
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desired spectral region, being well-positioned to enable tunable
light sources.

H RESULTS AND DISCUSSION
MIM (Metal-Hydrogel+Dye—Metal) Design. The

simultaneous overlap of dye’s emission and absorption bands
with the cavity resonance leads to enhanced emission. This
arises from a combination of the Purcell effect and the
excitation rate enhancement.*” This guideline defines the
design of the particular MIM structure, especially the dielectric
thickness to enhance the emission. The measured absorption
and emission of RhB depicted in Figure 1a show a small Stokes
shift of ~30 nm. The black dotted curve represents the
absorption spectrum, peaking at 563 nm, which is marked with
a blue dashed line, and the red solid line is the emission of RhB
with a peak at 592 nm, highlighted using the green dashed line.
As Figure la suggests, the wavelength range of 540 to 650 nm
is optimal for simultaneous overlap of the cavity resonance
with both the emission and absorption of RhB. To identify the
suitable thickness range of the dielectric layer of the MIM
structure, we utilized both the dye characteristics and the MIM
cavity resonance presented in Figure 1. The latter is obtained
between the required wavelength region when the dielectric
thickness is between ~90 and =150 nm.

The MIM design and the thickness of the hydrogel layer
were obtained using numerical simulation software based on
the finite-difference time-domain (FDTD) method. The
hydrogel was modeled with a refractive index n = 1.503,*
and further simulation details are given in Methods. The
simulated reflection for the MIM cavity at varying hydrogel
thicknesses is shown in Figure 1b, and the positions of
absorption and emission maxima of RhB are shown by blue
and green dashed lines, respectively.

In order to realize emission-tunable MIM, we deposited a
gold (Au) layer using an e-beam evaporator and confirmed its
thickness with a stylus profilometer under cleanroom
conditions. The insulator layer, the poly(N-isopropylacryla-
mide)-acrylamidobenzophenone (PNIPAm-BP) hydrogel with
pendant RhB molecules, was spin-coated on the bottom Au
layer and cross-linked with a UV light (see Methods for more
details). The thickness of the hydrogel was varied to tune the
cavity resonance using different spin coating conditions. The
schematic of the MIM cavity is shown in the inset of Figure 1a,
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Figure 2. (a) Measured reflectance spectra for the MIM cavities with different hydrogel thicknesses. (b) Steady-state PL spectra of RhB in the
different MIM cavities. (c) Optical images of the MIM samples with different hydrogel thicknesses exhibit different bright colors as per their

reflectance. The thicknesses of hydrogels were measured with profilometer.

where the thicknesses of the top and bottom metallic layers are
30 and 100 nm, respectively. The bottom layer serves as a
reflector while the top layer is partially transparent, allowing to
collect the reflected light. Au has been used for the metal layers
owing to its nonoxidizing nature and stable plasmonic
properties.”” We have selected PNIPAm-BP as the insulating
layer owing to its excellent thin-film forming*"** and swelling
properties.””*" Because of the thin hydrogel layer, the
swelling/deswelling modulates the hydrogel thickness, hence
changing the resonance of the whole MIM structure.”"

Passive Emission Tuning. To demonstrate passive (ie.,
without real-time control) emission tuning by varying the
thickness of the MIM, we investigated the effect that the
overlap between the cavity resonance and the absorption and
emission of the RhB dye has on the emission intensity, by
using MIM cavities with dry hydrogel thicknesses from ~90 to
~160 nm. Here, the dry hydrogel thickness implies its
thickness at a relative humidity of 28%. We measured the
reflectance and emission from the samples using a 20X air
objective as detailed in the Methods section. Figure 2a shows
the measured reflectance spectra for the MIM cavities with
various hydrogel thicknesses. With an increase in the hydrogel
thickness, the MIM cavity resonance redshifts, which is also
evident from the change in the color of the fabricated samples,
as shown in Figure 2c.

Figure 2b shows the tunable emission of the emitters
coupled with different resonance cavities of the MIM
structures for passively varying the dry hydrogel thickness to
tune the spectral overlapping. The MIM cavity with a dry
hydrogel thickness of 90 nm exhibits cavity resonance at 540
nm, which strongly overlaps with the absorption spectrum of
RhB and barely with its emission spectrum. This yields very
low emission intensity, as shown by the magenta solid line in
Figure 2b. Upon increasing the hydrogel thickness to 110 nm,
the cavity resonance redshifts and lies at 558 nm (Figure 2a,
pink solid line), exhibiting a significant overlap with both the
absorption and the emission spectra of RhB. This leads to an
opportunity to exploit both the Purcell factor enhancement
and the excitation rate enhancement to boost the overall
emission of the system.”” The simultaneous contribution from
both processes yields the maximum PL intensity, and we
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observed the highest emission as shown by the pink solid line
in Figure 2b (enhancement factor of &7 as compared to the
dry thickness of 90 nm). For the sample with a dry hydrogel
thickness of 135 nm, where the cavity resonance overlaps with
the emission and only slightly with the tail of the absorption,
the emission further redshifts, and its intensity decreases. We
also further increased the dry hydrogel thicknesses to 150 nm,
which shifted the cavity resonance away from the absorption
and emission of RhB, with only a minor overlap with the
emission tail. As a result, we observed further reduction of
emission intensity with a small shoulder at about 650 nm, as
shown in Figure 2b.

We would like to highlight that the underlying principle
behind the emission intensity change is either the Purcell
factor enhancement (when the cavity resonance overlaps with
only the emission band) or both the Purcell enhancement and
the excitation rate enhancement (when the cavity resonance
overlaps with the absorption and emission bands simulta-
neously). Since the Stokes shift for RhB is small, it is difficult to
completely isolate the contributions arising from the Purcell
factor and the excitation rate enhancement. Therefore, the
wavelength corresponding to the maximal emission enhance-
ment slightly offsets the cavity resonance wavelength.

Reversible and Active Emission Tuning in Air. Serpe et
al. have worked extensively on tunable etalons where the
dielectric layer comprises a PNIPAm microgel, which in an
aqueous environment responds to different stimuli and displays
color tuning.sz_58 In addition, Chervinskii et al. have shown
the dynamic tuning of the MIM cavity resonance by tuning the
thickness of a hydrogel insulating layer.** However, all
aforementioned studies do not converse emission tuning.
Herein, after first exploring the passive tuning of emission, we
demonstrate active tuning of emission via hydrogel-based MIM
in response to ambient humidity. The humidity-based tuning
allows controlling the overlapping region with the emission
and absorption of RhB, which manifests as tunable emission.

The passive tuning study revealed 110 nm (see Figure 2b) as
the optimized hydrogel thickness for enhancing the emission
intensity. Therefore, for demonstrating the active tuning, we
selected the MIM with a dry hydrogel thickness of 110 nm. We
used a humidity-controlled chamber to measure the PL spectra
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when immersed in water for 5, 10, and 20 min. Inset: optical images of the sample in two cases: dry and after 20 min immersion.

of the structures, using a customized experimental setup with
controlled relative humidity (RH) and performed reflectance
and PL measurements (see Figure 3a,b) of the samples in the
controlled environment. The measurements were conducted at
3%, 30%, 60%, and 80% RH. Furthermore, measurements were
taken in a reversible manner (i.e., from 80% back to 3% RH
value) to attain the reversibility of the PL response. Figure 3¢
shows the optical micrographs of the MIM sample at different
RH values. We observed distinct color changes in the samples
with the increment of the RH value. This signifies that with the
increase in humidity, the hydrogel thickness changes, which in
turn modifies the cavity resonance wavelength. We note that
the swelling of the hydrogel is strongly dependent on its initial
thickness and uniformity. Due to defects present in the spin-
coated samples, the swelling process is inevitably somewhat
nonuniform. To minimize the nonuniformity, an alternative
solution of two-step spin coating was utilized.""

To quantify the swelling and the corresponding overlap with
the RhB absorption and emission spectra, we extracted the

2290

hydrogel thickness from the simulation results. At a constant
temperature, with an increase in RH from 3 to 80%, the
hydrogel thickness changes from 104 to 128 nm. As a result,
the cavity resonance red-shifted by 30 nm, from 548 to 588
nm, as shown in Figure 3a. During this process, the cavity
resonance overlaps better with both the absorption and
emission bands of the RhB. Hence, we observed an almost
2-fold increase in the emission intensity while increasing the
humidity from 3% to 80%, as shown in Figure 3b. The increase
in humidity does not directly affect the intrinsic properties of
the covalently bonded dye in the hydrogel matrix. Therefore,
this increase in emission is solely due to the significant overlap
of the cavity with the dye’s absorption and emission.

The humidity-induced emission tuning is reversible, and by
decreasing the RH from 80% to 3%, the original spectrum is
retained. However, the reverse cycle (3.5 h) is slightly slower
than the forward cycle (3 h), because the rate at which the
hydrogel expels water and the rate at which it absorbs water are
different.”” We observed that in the reverse cycle, the

https://doi.org/10.1021/acsphotonics.2c00202
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humidified sample (80% RH) started expelling the absorbed
water gradually with a decrease in RH value, and the cavity
resonance retains its original position, as shown in Figure 3a
(black, red, and green dashed line). The decrease in the
hydrogel thickness during the reverse cycle also allowed to
retrieve the PL intensity, as shown in Figure 3b (black, red, and
green dashed line). The swelling and deswelling of the
hydrogel allowed the reversible humidity-induced tuning of the
optical response of the MIM cavity and, hence, reversible
control of the PL intensity.

Active Emission Tuning in Water. The previous active
tuning scheme was performed in the air where the change in
humidity was controlling the hydrogel thickness. However,
controlling the thickness of the hydrogel with humidity does
not allow large thickness variations. Therefore, to find the
limits of our system, we immersed the hydrogel-integrated
MIM sample in water. By immersing the sample in deionized
water for different time periods, we achieved various hydrogel
thicknesses that were generally larger than in the air humidity-
controlled case, which allowed us to tune the MIM cavity
resonance with large spectral shifts compared to the humidity-
based control.

We submerged the sample for 5, 10, and 20 min and
monitored the change in the cavity resonance as well as the
changes in the PL response of the dyes incorporated within the
MIM cavity. Figure 4a shows the measured reflectance spectra
of the MIM cavity with a dry hydrogel thickness of 110 nm and
three submerged cases.

The inset of Figure 4b shows the optical images of the
sample in the dry case, corresponding to a thinner hydrogel
layer, and the wet case, where the hydrogel swells® and shifts
the MIM resonance to a higher wavelength. To evaluate the
tuning range of MIM structures, we compared the dry case
with the wet case. The dry hydrogel (ambient conditions)
thickness was 110 nm. After immersing the sample in
deionized water for 20 min, we identified a spectral shift of
255 nm from 550 to 805 nm, as shown in Figure 4a, with black
and green solid lines, respectively. As the cavity resonance
shifts to a higher wavelength, its overlap with the dye’s
absorption and emission spectra decrease. As a result, we
observed a decrease in the emission intensity, as shown in
Figure 4b. Subsequently, for the swollen hydrogel thickness of
20S nm, in which the cavity resonance does not overlap with
the dye’s emission at all, we observed negligible emission
intensity as shown by the green solid line Figure 4b.

B CONCLUSION

We report active emission tuning based on emitters embedded
within the PNIPAm hydrogel-based metal—insulator—metal
device. We demonstrate a 30 nm spectral shift and significant
tunability in PL intensity in response to the humidity stimulus.
Our structures showed reversible behavior and almost
reproduced the initial results by utilizing the deswelling
property of hydrogels. The maximum resonance shift (255
nm) and emission tunability were obtained by immersion of
incorporated PNIPAm hydrogel-based MIM structure in
deionized water. This large spectral shift is remarkable and
of great importance, especially for sensing applications. Our
approach mitigates the complex fabrication challenges and is
versatile in nature that potentially can be translated to a broad
spectral range to achieve on-demand tunability by judiciously
choosing various hydrogel thicknesses integrated with different
dye molecules. We envision a wide range of opportunities in
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targets that require on-demand optoelectronic tunability,
ranging from integrated circuits to flat optics. Our findings
may also provide new possibilities in actively tunable reversible
photonic devices and contactless optical sensors.

B METHODS

PNIPAmM-BP-RhB Copolymer Synthesis. N-Isopropyla-
crylamide (NIPAm) and azobis(isobutyronitrile) (AIBN) were
commercially available. NIPAm was used as received, and
AIBN was recrystallized from methanol before use. Rhodamine
B acrylate was synthesized from commercial rhodamine B as
described below. Benzophenone acrylamide (BP) and the
copolymer were prepared in a similar fashion to the procedures
in our earlier publication,” yielding the copolymer with
composition 98.5:2.0:0.5 (NIPAm/BP/RhB), determined with
'"H NMR (500 MHz, CDCl,).

Rhodamine B (500 mg, 1.04 mmol) and a droplet of N,N-
dimethylformamide were stirred in dry dichloromethane (6
mL) at 0 °C under argon, and oxalyl chloride (128 uL, 1.5
mmol) was added dropwise. The mixture was stirred at 0 °C
for 30 min, until gas evolution was not observed. This solution
was added into a solution of 2-hydroxyethyl acrylate (115 uL,
1.1 mmol), dry triethylamine (415 pL, 3.0 mmol), and a
catalytic amount of N,N-dimethyl-4-aminopyridine in dry
dichloromethane (10 mL) and stirred under argon for 24 h.
The crude mixture was purified by column chromatography
(from pure ethyl acetate to 10% methanol/ethyl acetate) to
yield the product (352.5 mg, 59%) as a violet-red crystalline
solid. '"H NMR (500 MHz, DMSO-d,) 6 8.26 (d, ] = 7.4 Hz,
1H),7.92 (t,] = 7.4 Hz, 1H), 7.86 (t, ] = 7.4 Hz, 1H), 7.51 (d,
J = 7.4 Hz, 1H), 7.07 (dd, ] = 9.5, 2.0 Hz, 2H), 6.99 (d, ] = 9.2
Hz, 2H), 6.95 (s, 2H), 621 (d, ] = 16.6 Hz, 1H), 5.87—6.02
(2H), 4.14—4.28 (2H), 3.87-4.01 (2H), 3.55—3.74 (8H),
1.20 (t, J = 6.9 Hz, 12H).

Solution Preparation, Film Thickness Optimization,
and Photopolymerization. PNIPAm-BP-RhB copolymer
(this is the composition of the copolymer after polymerization)
was dissolved in filtered (filtered using 0.2 um pore sized PTFE
Teflon filter) 94% ethanol with concentrations of 20 and 30
mg/mL. Using the 20 mg/mL solution, we acquired 90 and
110 nm thicknesses. For higher thicknesses (135—160 nm), we
utilized the 30 mg/mL solution. Different thicknesses were
achieved by using different spin coating parameters and two
solutions. For better dissolution of the copolymer in ethanol,
the solutions were sonicated for 10 min. Then magnetic
stirring was used at 1400 rpm, 50 °C for 1 h. The solutions
were filtered through PTFE membranes with 0.45 um pores,
then spin-coated the solution on a glass sample to optimize the
desired thickness of the hydrogel layer. We used dynamic two-
step spin-coating: (1) 10 s at 150 rpm, 100 acceleration during
which the PNIPAm-BP-RhB solution was dispensed and
predistributed onto the sample; (2) 30 s at 2000 rpm/3000
rpm/4500 rpm, 1000 acceleration to form the final coatings.
The deposition was followed by drying for 45 min at 50 °C in a
vacuum. The next step was photopolymerization under UV
light (365 nm from CoolLED pE-4000 focused on sample
area), the time required for complete cross-linking of
PNIPAm-BP-RhB copolymer was 40 min. This time was
confirmed by the disappearance of the 301 nm peak in the
optical transmittance spectra of the reference hydrogel coatings
on glass.”®

FDTD Simulations. MIM design and the thickness of the
insulator layer (hydrogel) were optimized using numerical
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simulation (Ansys Lumerical FDTD Solutions) based on the
finite-difference time-domain (FDTD) method. In the
simulation, the symmetric and antisymmetric boundary
conditions were applied in the x and y directions to minimize
the simulation time, while PML (perfectly matched layer) was
used along the z-axis to remove the unwanted reflections. A
plane wave was launched from the z-axis to excite the
resonance cavity mode. The complex refractive index of Au
layers was assigned from the “Johnson and Christy”®” data set
that was in-build in the software material library. The hydrogel
was modeled with a refractive index n = 1.503," which
corresponds to the state where there is no water absorbed into
the hydrogel. An increase in hydrogel thickness depicts the
absorption of water in the hydrogel, and the refractive index of
water will influence the effective index of the hydrogel—water
complex. However, the change in effective refractive index is
relatively small, and its effect on the resonance shift is quite
minimal.

MIM Sample Fabrication. The samples were fabricated
on 1 cm X 1 cm fused silica substrates. First, the samples were
cleaned by sonicating them in acetone, isopropanol, and
deionized water for 10 min each. The fused silica substrates
were blow-dried and treated with oxygen plasma for pristine
clean substrates. Subsequently, the adhesive layer of 1 nm Ti,
followed by a 100 nm layer of Au was deposited by e-beam
evaporation. After that, Au-coated samples were activated by
plasma treatment (20 min, 30 W RF power, 1000 mTorr O,)
and started the spin coating right after plasma treatment.
Thenceforth, for coating hydrogels of different thicknesses,
different spin-coating parameters were used, followed by cross-
linking, as explained in Solution Preparation, Film Thickness
Optimization, and Photopolymerization. The final gold layer
(25—30 nm) was deposited on top of the hydrogel layer by a
thermal evaporation system.

Optical Measurements. Microscopic reflectance measure-
ments were performed with a multifunctional WITec
alpha300C confocal microscope. The samples with different
hydrogel thicknesses were illuminated with a broadband light
source (LDLS EQ-99X) through a Zeiss EC “Epiplan” DIC,
20X objective (NA = 0.4, WD = 3.0 mm). The reflected light
was collected through the same objective and coupled to
spectrometers via an optical fiber. For the spectral range of
400—900 nm, we used Ocean Optics Flame UV-—vis
spectrometer with 1.33 nm full width at half-maximum
(FWHM) spectral resolution for detecting the spectral
response from the fabricated sample. The samples were
measured at room conditions (23 °C, 28% room RH - dry
state) and after immersion in deionized water for S, 10, and 20
min (wet state). Here, the relatively long hydrogel swelling
time is due to the MIM structure, as the Au layers on the top/
bottom of the hydrogel restrict water molecules from
penetrating into the cross-linked polymer network.

Additionally, measurements in a controlled humid environ-
ment were performed using Linkam Scientific LTS420-H stage
with RH9S humidity controller. Reflectance spectra were
measured using the same WITec microscope and the samples
were illuminated with a broadband light source. We utilized a
2.5X air objective with a relatively long working distance to
enable the focusing of the optical field onto the samples
embedded within the Linkam Scientific LTS420-H stage. For
the PL measurement of the samples, we utilized a 532 nm laser
to excite the samples to attain the emission peak intensity of
the RhB dye incorporated within the MIM structure utilizing a
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532 nm long-pass filter (LPF). The response of the samples
was coupled to an optical fiber connected to an Ocean Optics
Flame UV—vis spectrometer for PL measurement.
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