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Abstract—Dual functional radar communication (DFRC) is
a promising approach that provides a viable solution for the
problem spectrum sharing between communication and radar
applications. This paper studies a DFRC system with multiple
communication users (CUs) and a radar target. The goal is devise
beamforming vectors at the DFRC transmitter in such a way that
the radar received signal to noise ratio (SNR) is maximized while
the minimum data rate requirements of the individual CUs are
satisfied. Even though the formulated optimization problem is
non-convex, it is shown that it can be solved optimally through
semi-definite relaxation (SDR). Also, it is observed that there is no
need to transmit separate probing signal for the radar detection.

Index Terms—Dual functional radar communication, detection
probability, integrated sensing and communication, resource
allocation.

I. INTRODUCTION

Recently, the communication systems has been integrated
with many types of other systems to broaden the capabilities of
existing wireless communication infrastructure. More general
examples of such integration include mobile computing, sens-
ing, localization etc. In the same vein, research efforts are put
to explore the possibilities of joining wireless communications
with radar systems. These efforts lead to emergence of very
interesting research field which is now known as integrated
sensing and communication (ISAC) [1], [2].

It is expected that in 6G wireless networks sensing as a ser-
vice will play a vital role [3]. Mainly, it is anticipated that the
communication performance can be greatly improved if the in-
formation about destination detection, destination location and
movement can be obtained [3]. With this information at hand,
the access point can direct its beam towards the destination
to enhance the communication performance. Therefore, dual
functional radar communication (DFRC) systems deals with
the possibility of using the same access point for transmission
information to communication users (CUs) and detecting radar
targets. Thus, resulting in integration gain and coordination
gain [3].

With the sensing functionality integrated with the commu-
nication systems, the performance metrics also differ from
those of the conventional communication systems. Most com-
monly used performance metrics for sensing, localization are
based on Crámer-Rao bound (CRB) and detection probability.

Specifically, for localization purposes, the goal is to devise the
transmission schemes such that the performance is as close to
the CRB as possible. Similarly, for detection purposes, the
goal is to allocate transmission resources in such a way that
the detection probability is maximized.

In terms of localization performance, recent works [4]–
[8] provided CRB minimization schemes under different sys-
tem setups. In [4], a hybrid approach with known/unknown
placements of multiple sensors is presented to estimate the
location of multiple targets. The design of various detectors
based on the minimization of the CRB is presented in [5].
The works in [4], [5] do not consider the joint operation of
sensing and communication. In terms of ISAC, [6] provides
a CRB minimization scheme. Specifically, CRB is used as
a performance metric of target estimation, and then a CRB
minimization beamforming design is proposed which guar-
antees a pre-defined level of signal-to-interference-plus-noise
ratio (SINR) for each CU. This work is further extended in
[7] to design an energy efficient ISAC system with the help of
antenna selection at the DFRC. In particular, l0 norm is used
to select the number of active antennas to reduce the energy
consumption at the DFRC. More recently, an over-the-air com-
putation aided DFRC is investigated in [8], and a beamforming
design is proposed to encompass different performance aspects
of the integrated sensing, communication and computation
system. Interesting results related to the beamforming vectors
are derived based on the shared and separated designs between
computing, sensing and communication systems.

With regard to the detection probability maximization, it is
well known that the probability of detection is an increasing
function of the radar received signal to noise ratio (SNR)
[9]. Much research effort is devoted to guarantee the constant
modulus and similarity properties of the radar waveforms
which include the sequential optimization algorithms (SOAs)
in [10], the successive quadratically constrained quadratic
programming (QCQP) in [11], the block coordinate descent
(BCD) framework in [12], and the general majorizationmin-
imization (MM) framework in [13]. In works [9]–[13], the
authors make assumption about the apriori information about
the target, which is generally impractical to obtain. Hence,
an efficient beamforming design is proposed in [14] where
no such assumption is made. It is concluded in [14] that in



Fig. 1. The presumed multiuser donwlink integrated communications and
sensing scenario with K = 3 CUs.

the presence of clutter, the use of dedicated probing signal
can improve the detection performance of the radar. In order
to reap the benefits of orthogonal frequency division multiple
(OFDM) access in ISAC systems, a joint OFDM waveform
design is proposed in [15] to increase the reflected signal
power under interference and auto-correlation constraints. In
order to reduce the complexity of this work, a low complexity
design is proposed in [16] for single CU.

In this paper, we consider a DFRC with multiple CUs and a
target. Then, the aim is to maximize the detection probability
of the radar whilst satisfying the minimum rate requirements of
the CUs. The maximization of the radar detection is achieved
by properly designing the transmit beamforming vectors for
the CUs. Specifically, it is observed that in considered system
there is no need to transmit probing signal for target. This
observation on the one hand reduces the complexity of the
optimization algorithm while on the other hand reduces the
feedback requirements of the overall system since otherwise
the information related to probing signal is required at the CUs
to perform interference cancellation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The considered system model comprises of a multi-antenna
DFRC, K single antenna CUs, and a radar target located at
an angle θ from the DFRC. The scenario can be illustrated as
Fig. 1.

The DFRC uses Nt antennas for transmission of information
to the CUs and Nr antennas for reception of reflection from
the target to perform detection of the target. The beamforming
vector, and information symbol for k-th CU are denoted by
uk ∈ CNt×1, sk with E[|sk|2] = 1, respectively. Furthermore,
we assume that DFRC employs a probing signal with beam-
forming vector v ∈ CNt×1. Hence, the overall transmitted
symbol from the DFRC is x =

∑K
k=1 uksk + vs0, where

s0 with E[|s0|2] = 1 is the symbol for probing signal. The
channel between the DFRC and k-th CU is represented by

hk ∈ CNt×1. Next, we present the performance metrics for
communication and radar systems, respectively.

A. Communication system performance metric

With the above assumptions, the received signal at the k-th
user can be written as

yk = hH
k uksk +

K∑
i=1,i̸=k

hH
k uisi + hH

k vs0 + ωk, (1)

where ωk ∈ C is the additive white Gaussian noise (AWGN)
at CU k with variance N0. Therefore, the corresponding signal
to interference plus noise ratio (SINR) is given as

γI
k =

|hH
k uk|2∑K

i=1,i̸=k |hH
k ui|2 + |hH

k v|2 +No

. (2)

In order to have a satisfactory communication performance,
the k-th CU requires its SINR to be at least Γk. Mathemati-
cally, it can be represented as

γk ≥ Γk. (3)

B. Radar system performance metric

In this subsection, we present the radar system performance
metric for two possible scenarios. In the first possibility, we
assume that the reflected signals from the clutter components
can be perfectly removed from the received signal. For this
scenario the radar performance metric is radar SNR. In the
second scenario, we assume that the clutter component can not
be removed from the radar received signal. For this scenario,
the radar performance metric is radar signal-to-clutter-plus-
noise-ratio (SCNR).

1) Radar SNR with perfect clutter removal: In the consid-
ered system model, the received signal at the radar after the
clutter removal can be written as

rcr = α0ar(θ0)at(θ0)
Hx+ n = αA(θ0)x+ n, (4)

where A(θ) = ar(θ)at(θ)
H ∈ CNr×Nt , α ∈ C is complex

channel between target and radar which is independently dis-
tributed from hk’s, n ∈ CNr×1 is AWGN with n ∼ CN (0, I),
aj(θ) ∈ CNj×1 is the transmit are receive steering vectors
for j ∈ {t, r}, respectively. The radar performs receive
beamforming with vector w on the received signal, then the
output of the radar receiver is given as

yr = wHr = αwHAx+wHn. (5)

Subsequently, the radar signal to noise ratio can be written as

γcr
r =

|αwHAx|2

wHw
. (6)

It can be easily verified that the optimal receive beamforming
vector, that maximizes the radar SNR, is w∗ = A(θ)x

xHAH(θ)A(θ)x
the corresponding SNR is given as

γcr
r (w∗) = |α|2xHAH(θ)A(θ)x, (7)



and the corresponding average radar SNR is given as

γ̄cr
r = |α|2E

[
xHAH(θ)A(θ)x

]
=

K∑
k=1

uH
k Φ(θ)uk + vHΦ(θ)v, (8)

where Φ(θ) = |α|2AH(θ)A(θ) with largest eigenvalue ζmax

and corresponding eigenvector ϕ. It is widely known that the
detection probability of the radar is directly proportional to
the radar received SNR.

2) Radar SCNR without clutter removal: For this scenario,
the radar received signal with a total of J clutter components
can be written as

r = α0ar(θ0)at(θ0)
Hx+

J∑
j=1

αiar(θj)at(θj)
Hx+ n (9)

= α0A(θ0)x+

J∑
j=1

αjA(θj)x+ n. (10)

Then, after performing the received combining, the radar
SCNR can be written as

γr(w) =
|αwHAx|2

wH
(∑J

j=1 |αj |2A(θj)xxHAH(θj) + I
)
w
. (11)

The optimal value of w which maximizes (11) is given as

w∗ =
(W(x))

−1
A(θ0)x

xHAH(θ0) (M(x) + I)
−1

A(θ0)x
, (12)

where W(x) =
∑J

j=1 |αj |2A(θj)xx
HAH(θj) + I. Putting

(12) into (11) we get

γr(w
∗) = |α0|2xHAH(θ0)W

−1(x)A(θ0)x, (13)

with the corresponding average SCNR given as

γ̄r(w
∗) = |α0|2

K∑
k=1

uH
k AH(θ0)W

−1(x)A(θ0)

K∑
k=1

uk

+|α0|2vHAH(θ0)W
−1(x)A(θ0)v. (14)

It is clear from (3), (8), (14) that the communication and
radar performance depend on the beamforming vectors uk,v.
In the next subsection, we formulate an optimization problem
to find the optimal values of uk,v.

C. Problem formulation

In this paper, we are interested in maximizing the detection
probability of the radar. As noted above, the radar detection
probability is directly proportional to the radar SNR and
SCNR depending on the clutter removal. Therefore, our aim
is to maximize the radar SNR, SCNR whilst satisfying the
communication requirements of the CUs. Overall, the mathe-
matical formulation of the optimization problem for finding the
appropriate beamforming vectors for perfect clutter removal
scenario is given as follows

P1

maximize
uk,v

K∑
k=1

uH
k Φ(θ)uk + vHΦ(θ)v

subject to C1 :
|hH

k uk|2∑K
i=1,i̸=k |hH

k ui|2 + |hH
k v|2 +No

≥ Γk,

C2 :

K∑
k=1

|uk|2 + |v|2 ≤ Pmax,

(15)
and without clutter removal

P2

maximize
uk,v

|α0|2
K∑

k=1

uH
k AHW−1(x)Auk + |α0|2vHAHW−1(x)Av.

subject to C1, C2.
(16)

In P1, P2 the objective is to maximize the average SNR, SCNR
of the radar system. The constraints C1 guarantee that the data
rate requirements of the CUs are met and C2 makes sure that
the total transmitted power is no more than the maximum
allowed transmit power. For P1, the objective is a convex
function and the constraints C1 are non-convex, P1 is a non-
convex optimization problem and hence difficult to solve. For
P2, the constraints are non-convex for a multiple CU scenario.

In the following sections, we discuss the proposed solution
strategies for problems P1, P2.

III. PROPOSED SOLUTION

In this section, we present SDR based solution for the
optimization problem P1, P2. Although both problems P1,
P2 are non-convex, in the following we show that problem
P1 can be solved optimally and the global optimal solution
is presented in closed form. On the other hand, an iterative
algorithm is used to find a suboptimal solution for problem
P2.

A. Probposed solution for problem P1

In order to solve P1, we use the semi-definite relaxation
(SDR) technique. In this regard, we introduce following vari-
ables Uk = uku

H
k ,V = vvH ,Hk = hkh

H
k . Then, P1 can be

equivalently written as



P2

maximize
Uk,V

K∑
k=1

Tr(ΦUk) + Tr(ΦV)

subject to C̃1 :
Tr(HkUk)

Tr

(
Hk

(
K∑

i=1,i̸=k

Ui +V

))
+No

≥ Γk,

C̃2 :

K∑
k=1

Tr(Uk) + Tr(V) ≤ Pmax,

C̃3 : Uk ⪰ 0,

C̃4 : V ⪰ 0,

C̃5 : rank(Uk) ≤ 1,

C̃6 : rank(V) ≤ 1,
(17)

where for simplicity of notation we have used Φ(θ) = Φ.
Since constraints C̃5, C̃6 are non-convex, P2 is non-convex.
However, if we remove the constraints C̃5, C̃6, then the
relaxed problem is a semi-definite program (SDP), whose
solution can be easily found through some off the shelf tools
such as CVX.

After relaxing the constraints C̃5, C̃6 in P2, we denote the
new problem as P2-rel given as

P2-rel

maximize
Uk,V

K∑
k=1

Tr(ΦUk) + Tr(ΦV)

subject to C̃1 :
Tr(HkUk)

Tr

(
Hk

(
K∑

i=1,i̸=k

Ui +V

))
+No

≥ Γk,

C̃2 :

K∑
k=1

Tr(Uk) + Tr(V) ≤ Pmax,

C̃3 : Uk ⪰ 0,

C̃4 : V ⪰ 0
(18)

Then, Lemma 1 below provides a useful result about P2-rel.

Lemma 1. The optimal solution of P2-rel has following
properties

• rank(U∗
k) = 1,

• V∗ = 0.

Proof. Before we proceed with the proof, let us consider the
following optimization problem

P3
maximize

X
Tr(AX)

subject to C̃7 : Tr(X) ≤ S
(19)

where A is a positive semi-definite matrix. It can be easily
deduced that the optimal value of P3 is λmaxS, where λmax

is the largest eigenvalue of the matrix A. Also, it is clear that
the optimal value of problem P2-rel cannot be greater than
λmaxS since P3 is a relaxation of P2-rel, which can be easily

verified by replacing X =
∑K

k=1 Uk + V, S = Pmax and
removing the SINR constraints from P2-rel. We will use this
result related to P3 later in the proof.

Next, we note that P2-rel is a convex SDP, and hence the
duality gap is zero. Therefore, we consider the Lagrangian of
P2-rel, which is given as

L(Uk,V, ηk, ω) = ωPmax +Tr

(
K∑

k=1

UkMk +TV

)

−N0

K∑
k=1

ηk, (20)

where ηk is the dual variable associated with the k-th SINR
constraint, and ω is the dual variable corresponding to the sum
power constraint. Furthermore, Mk,T are defined as

T = Φ− ωI−
K∑

k=1

ηkHk (21)

Mk = Φ− ωI+
ηk
Γk

Hk −
K∑

i=1,i̸=k

ηiHi. (22)

Hence, the dual problem of P2-rel can be written as

minimize
ω, ηk

max
Uk,V

L (Uk,V, ηk, ω)

subject to C̃8 : ω ≥ 0, ηk ≥ 0,
(23)

with the corresponding complementary conditions given as

Tr(M∗
kU

∗
k) = 0, Tr(T∗V∗) = 0, (24)

where M∗
k,T

∗ are the corresponding values for η∗k, ω
∗. The

problem (16) can be written as
P4

minimize
ω, ηk

ωPmax −N0

K∑
k=1

ηk

subject to C̃9 : Mk ⪯ 0,

˜C10 : T ⪯ 0,

˜C11 : ω ≥ 0,

˜C11 : ηk ≥ 0.

(25)

We have following proposition for P4 when the optimal values
of all the ηk’s in P4 are zero.

Proposition 1. If none of the ηk > 0 in the optimal solution of
P4 then we can set V∗ = 0,U∗

k = Pmax∑K
i=1 pi

pkϕϕ
H to maximize

the objective value of P2-rel, where pk’s are obtained from
solving the following linear constraints

pk Tr(HkUk) ≥ Γk

 K∑
i=1,i̸=k

pi Tr(HkUi) +N0

 , (26)

K∑
k=1

pk ≤ Pmax. (27)



Proof. First note that when all ηk = 0, then the optimal
value of P4 is ζmaxPmax. Now if we use V∗ = 0,U∗

k =
Pmax∑K
i=1 pi

pkϕϕ
H , we will have same objective value for P2-rel

and the guarantee to satisfy the rate constraints and sum power
are satisfied due to the choice of pk’s through (17), (18). Thus,
the proposition is proved.

Since for the special case of ηk = 0,∀k, we have
rank(U∗

k) = 1, rank(V∗) = 0, and thus the Lemma 1 is
proved for this special case when all the ηk’s are zero. In the
rest of this paper, we assume that there is at least one ηk > 0.

Next, we consider the possibility that there exist a subset
K such that η∗

k̂
> 0,∀ k̂ ∈ K. From () and using the

fact that rank(U∗
k) ≥ 1 due to SINR constraints, it can be

easily deduced that rank(M∗
k) ≤ Nt − 1. Also, based on

Tr(T∗V∗) = 0 we have that

η∗
k̂

(
1 +

1

Γk̂

)
Tr(Hk̂V

∗) + Tr(T∗V∗) = Tr(M∗
k̂
V∗) ≤ 0, (28)

where the last inequality is a result of the fact that M∗
k̂
⪯ 0

and V∗ ⪰ 0. This means Tr(Hk̂V
∗) = 0 which implies

Hk̂V
∗ = 0, (29)

since both Hk̂,V
∗ are positive-semidefinite matrices. It fol-

lows that

(Φ− ω∗I−
∑
k∈K

η∗kHk)V
∗ = Tr(T∗V∗) = 0, (30)

which means (Φ− ω∗I)V∗. Thus, V∗ must be orthogonal to
Hk as well as (Φ− ω∗I). In what follows, we make user of
the following identities about rank of matrices

rank(AB) ≤ min(rank(A), rank(B)), (31)
rank(A+B) ≤ rank(A) + rank(B), (32)
rank(A−B) ≥ rank(A)− rank(B), (33)

rank(−A) = rank(A), (34)

it can be established that rank(Φ) = 1, rank(Hk) =
1, rank(Φ− ω∗I) ≥ Nt − 1. Since we have assumed that Hk

and Φ are independent, their combined dimensions are Nt.
Hence, we conclude that V∗ = 0 since it is orthogonal to the
total number of dimensions Nt. Hence, the second property
in the Lemma 1 is proved for all possible cases.

To prove the first property in Lemma 1, we note that in
order to satisfy (17), V∗ must be a zero matrix. Therefore,
T∗ must be full rank, i.e. rank(T∗) = Nt. Also, we have

T∗ = M∗
k − η∗k

(
1 +

1

Γk

)
Hk. (35)

Multiplying U∗
k on both sides of (28) and using (17) we get

T∗U∗
k = −η∗k

(
1 +

1

Γk

)
HkU

∗
k, (36)

and since T∗ is full rank, we must have rank(T∗U∗
k) =

rank(U∗
k) and hence from (29), we have

rank(U∗
k) = rank

(
−η∗k

(
1 +

1

Γk

)
HkU

∗
k

)
≤ 1, (37)

where we have used (24) and the fact that rank(Hk) = 1.
Combining (30) with the earlier observation that rank(U∗

k) ≥
1, we conclude rank(U∗

k) = 1. This completes the proof of
the first property in Lemma 1.

Lemma 1 not only shows that the obtained solution for P2-
rel is the optimal solution for P2 but also helps in reducing
the complexity of finding solution by reducing the number of
optimization variables through noting that V∗ = 0. According
to Proposition 1, the notion is to avoid that part of the
interference at the CUs which is caused by the probing signal
since it cannot be cancelled at the CUs as they do not have the
apriori information about the probing signal. Thus, the optimal
transmission strategy is to adjust the beamforming for the CUs
only in such a way that the radar SNR is maximized.

Based on the result of Lemma 1, in the rest of this
subsection, we assume that v∗ = 0. Next, we use the
results presented above to find a close-form solution for the
optimization problem P1. The Lagrangian of P1 with v∗ = 0
can be written as

L(uk, ηk, ω) = −
K∑

k=1

uH
k Φuk + ω(

K∑
k=1

|uk|2 − Pmax)

+

K∑
k=1

ηk

(
Γk

K∑
i=1,i̸=k

|hH
k ui|2 + ΓkNo − |hk

Huk|2
)

(38)

and the corresponding dual problem can be written as
P1-d

maximize
ηk, ω

min
uk

L(uk, ηk, ω) (39)

The following lemma presents a useful result for the problem
P1, P1-d.

Lemma 2. The optimal values of P1, P1-d are equal i.e. the
duality gap for problem P1 is zero.

Proof. Let us denote the optimal value of P1 as x∗ and that
of P1-d as y∗. It is clear that y∗ ≥ x∗ due to the fact that the
optimal value of the dual of a maximization problem provides
an upper bound to the optimal value of primal problem.

In order to show that y∗ ≤ x∗, note that the duality gap
between SDR of P1 and its dual is zero since its a convex
optimization problem and the Slater conditions are satisfied.
Hence, we must have x∗

SDRP1 = y∗SDRP1D ≥ y∗. Also from
Lemma 1 we have that SDR relaxation of P1 is tight i.e.
x∗ = x∗

SDRP1. Therefore, we conclude that x∗ ≥ y∗. This
completes the proof.

(wrote on 19-4-2022)Based on Lemma 2, we can solve P1-d
to obtain the solution of P1 in closed-form. Before proceeding
further, we present an important property of the solution for
problem P1 in following lemma.

Lemma 3. Problem P1 has following property.
• If u∗

k,∀k ∈ {1, · · ·K} is the optimal solution of problem
P1 then u∗

ke
jθk is also an optimal solution for problem

P1.



Proof. To prove this property, we note that if uk is an optimal
solution, then u∗

ke
jθk is also an optimal solution since it

does not violate any constraints of P1 and achieves the same
objective value. This means we can apply any phase rotation
to uk to make sure that hH

k uk is a real positive value.

With the help of Lemma 2 and Lemma 3, we can obtain
the optimal solution of the problem minuk

L(uk, ηk, ω) in the
following lemma.

Lemma 4. The optimal solution of minuk
L(uk, ηk, ω) for

any given ω, ηk is

u∗
k(ω, {ηk}) =

√
pk

[
ωI−Φ+

∑K
i=1,i̸=k ηihih

H
i

]−1

hk∥∥∥∥ [ωI−Φ+
∑K

i=1,i̸=k ηihihH
i

]−1

hk

∥∥∥∥ ,
(40)

where

pk =
Γkh

H
k

(∑K
i=1,i̸=k piûiû

H
i

)
hk + ΓkN0

|hH
k ûk|2

, (41)

and

ûk =

[
ωI−Φ+

∑K
i=1,i̸=k ηihih

H
i

]−1

hk∥∥∥∥ [ωI−Φ+
∑K

i=1,i̸=k ηihihH
i

]−1

hk

∥∥∥∥ (42)

Proof. Taking the derivative of (38) and putting it equal to
zero we get

uk =

ωI−Φ+

K∑
i=1,i̸=k

ηihih
H
i

−1

ηkhkh
H
k uk. (43)

Now according to Lemma 3, hH
k uk is a scalar value.

Therefore, the optimal value of uk is parallel to[
ωI−Φ+

∑K
i=1,i̸=k ηihih

H
i

]−1

hk since ηk ≥ 0. Hence,
we have

uk =
√
pk

[
ωI−Φ+

∑K
i=1,i̸=k ηihih

H
i

]−1

hk∥∥∥∥[ωI−Φ+
∑K

i=1,i̸=k ηihihH
i

]−1

hk

∥∥∥∥ . (44)

Hence, (40) is proved. In order to find the values of pk’s, first
we note that none of the ηk is zero and all of the ηk’s are
bounded from above. This statement can be proved with the
help of (41) as follows. From (41) we can conclude

ηk =
N0Γk

hH
k

(
ωI −Φ+

∑K
i=1,i̸=k ηihihH

k

)−1

hk

. (45)

Now recall from the discussion in the proof of Lemma 1 that
rank(ωI−Φ) ≥ Nt−1 and since hk’s and steering vectors are
independent, ωI−Φ+

∑K
i=1,i̸=k ηihih

H
i is a full rank positive

definite matrix. Therefore, from (43) we have ηk > 0 and
bounded from above. Using this observation, and the existence

of zero duality gap it is easy to see that the SINR constraints
must be met with equality

Γk

K∑
i=1,i̸=k

|hH
k ui|2 + ΓkNo = |hk

Huk|2. (46)

From (44) we can obtain the value of pk’s and the proof is
completed.

With the help of Lemma 4, the algorithmic complexity of
finding the solution for problem P1 is greatly reduced. This
is due to the fact that for the primal problem P1 the number
of optimization variables are 2×Nt ×K +2×Nt. However,
for solving the dual problem the search should be performed
on K real variables. Also, we can use the gradient descent to
find the optimal values of ω, {ηk}.

B. Proposed solution for problem P2
When clutter removal is not possible, the objective function

becomes more complex than that of problem P1 due to the
involvement of W(x) =

∑J
j=1 |αj |2A(θj)xx

HAH(θj) + I.
In order to address this issue, we use an iterative approach
where in each iteration x in W(x) is replaced by optimal
value of x in the previous iteration. Hence, in the l + 1-th
iteration we set

Φ′ = W(x) = W(xl) (47)

where xl is the optimal solution achieved in the l-th iteration.
The iterative procedure is repeated until a sufficient conver-
gence criteria is met or the maximum number of iteration is
reached. Therefore, during the l+ 1-th iteration the optimiza-
tion problem P2 is modified as P2’

maximize
uk,v

|α0|2
K∑

k=1

uH
k AHΦ′Auk + |α0|2vHAHΦ′Av.

subject to C1 :
|hH

k uk|2∑K
i=1,i̸=k |hH

k ui|2 + |hH
k v|2 +No

≥ Γk,

C2 :

K∑
k=1

|uk|2 + |v|2 ≤ Pmax,

(48)
with the corresponding SDR relaxation given as P2’-SDR

maximize
Uk,V

K∑
k=1

Tr(Φ′Uk) + Tr(Φ′V)

subject to C̃1− C̃4.

(49)

Since in each iteration the optimal solutions depend on the
channel gains hk’s of the CUs, which can cause dependence
of Φ′ on the channel gains. Thus the independence argument
used in the proof of Lemma 1 cannot be used here for showing
that rank(Uk) = 1. The following lemma presents the solution
structure for problem P2’-SDR.

Lemma 5. There exists an optimal solution for P2’-SDR such
that

• V∗ = 0,
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• rank(Uk) = 1.

Proof. In order to prove that V∗ = 0 assume that the optimal
solution to P2’-SDR is {U∗

k}, and V∗ ̸= 0. Then, we can
obtain another solution {U′∗

k},V′∗ = 0 of P2’-SDR such that
U′∗

k̂ = U∗
k +V∗ for some k ∈ {1, · · · ,K}, U′∗

k = U∗
k,∀k ∈

{1, · · · ,K} \ k̂ and V′∗ = 0. By doing so, we can easily
observe that the optimal value for the solution {U′∗

k},V′∗ =
0 is exactly the same as that achieved by {U∗

k},V∗ ̸= 0.
Furthermore, it is easy to verify that all the constraints are
satisfied for modified solution. This proves the first statement
of this lemma. In order to proceed further, we set V = 0 in
P2’-SDR. Then P2’SDR can be written as P2’-SDR

maximize
Uk

K∑
k=1

Tr(Φ′Uk)

subject to C̃1− C̃3.

(50)

Using a well known result in [], it can be shown that there
exist rank one solutions for all Uk’s for P2’SDR.

IV. NUMERICAL RESULTS

In this section, we provide the simulation results. The
important simulation parameters are provided in Table I below.
We demonstrate two types of results. First, we show the radar
SNR with respect to the SINR thresholds of the individual CUs
for different number of Nt, Nr. Second, we show the radar
SNR with respect to the SINR thresholds of the individual
CUs for different distances between the DFRC transmitter and
CUs.

V. CONCLUSIONS

This work focuses on beamforming optimization at the
DFRC transmitter where the objective is to maximize the radar
detection probability while satisfying the communication data
rate requirements of CUs. The formulated problem is shown
to be non-convex. Then, an SDR based scheme is proposed to
solve the formulated problem optimally. It is also concluded
that there is no need to transmit separate probing signal for
target detection.
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