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Abstract: Due to the complexity of the power system model, model-free or data-driven methods are 
promising for real-time electromechanical oscillations monitoring and allow grid operators to better manage 
the grid security and maximize transfer capacity during real-time operation. Dynamic mode decomposition 
(DMD) is a promising data-driven method and has been recently applied for electromechanical oscillations 
monitoring. However, it is still not clear what influence the length of time-window, power system 
eigenvalues and the use of data from pre-, during, and post-disturbances have on the estimation accuracy 
of the DMD. This work aims to investigate the above issues by performing a systemic analysis on three 
benchmark test systems. It is shown that the ultra-low frequency mode and large disturbances can 
negatively affect the estimation result of DMD method. In addition, it is found that the time-window length 
of 10 s is suitable in ensuring the best estimation accuracy/performance of the DMD with a sliding window. 
Keywords: Electromechanical oscillations monitoring, Dynamic Mode Decompositions, time-window 
length, WAMS. 

1. INTRODUCTION 

1.1 Motivation 

Wide area measurement systems (WAMS) using data from 
phasor measurement units (PMU) facilitates the development 
of real-time security assessment tools which complement the 
existing SCADA/EMS systems. An example of the real-time 
security assessment tools is the power oscillation monitoring 
(related to small-signal stability) implemented in the ABB 
PSGuard which assists Fingrid operators (Finnish power grid) 
in detecting when the stability limit is exceeded and further 
taking corrective measures to move the state system from alert 
to normal state (i.e., preventing the power system to enter an 
emergency or extreme state). In order to realize such real-time 
security assessment tool, it is crucial that the data-driven 
method being used to run sufficiently fast, provide accurate 
results and capture the power system dynamics (i.e., 
monitoring with good performance). 

Several data-driven methods used for electromechanical 
oscillations monitoring include Prony Analysis, Matrix Pencil, 
Empirical Mode Decomposition, Eigensystem Realization 
Algorithms (ERA), Dynamic Mode Decomposition (DMD). 
Among those approaches, DMD has advantages in that it 
allows robust estimation (against measurement noise) of the 
dominant eigenvalues and eigenvectors which can be used to 
calculate the mode shapes and participation factor and thus 
making operator decision-taking less complicated (M. Zuhaib 
et al, 2021, A. Alassaf et al, 2019). Therefore, in this work we 
focus on the DMD method. The application of DMD to power  
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system is relatively new and hence there are still many open 
questions related to its settings and performance. 

1.2 Related work on DMD application in power system 

To the best of our knowledge, DMD was used for the first time 
in (Barocio et al, 2015) where its potential is compared with 
small-signal stability analysis (SSSA) using simulation data 
and focusing on coherency identification and mode shapes of 
the generators.  

Following the above mentioned work, many of the related 
works focus on analyzing the DMD’s robust, such as its 
estimation accuracy, under noisy measurement. For example, 
the authors in (A. Alassaf et al, 2019) show that DMD 
performs well using real noisy measurements during an 
unstable oscillation. New strategies to improve DMD’s 
robustness under noisy measurements are proposed in (D. 
Yang et al, 2019, V. T. Priyanga et al, 2021, M. Zuhaib et al, 
2021, A. Alassaf et al, 2021). On the other hand, the work (J. 
Ramos et al, 2019) investigates how many nodes (and their 
locations) are required to be monitored in order to achieve an 
accurate assessment on the power grid disturbances.   

All the previously mentioned work analyze DMD estimation’s 
potential and robustness for one static time-window using 
post-disturbance measurement and different time-window 
lengths as summarized in Fig. 1. However, in practice the 
measurements are changing over the time, e.g., during the 
oscillations monitoring in real-time using DMD. Hence, using 
the static time-window may lead to a poor evaluation in 
comparison to the use of sliding (moving) time-window. The 
authors in (S. Mohapatra et al, 2016) consider a sliding 
window for DMD algorithm, however similar to the 
previously mentioned work they only use post-disturbance 
data. Specifically, DMD’s accuracy is evaluated for different 
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system is relatively new and hence there are still many open 
questions related to its settings and performance. 

1.2 Related work on DMD application in power system 

To the best of our knowledge, DMD was used for the first time 
in (Barocio et al, 2015) where its potential is compared with 
small-signal stability analysis (SSSA) using simulation data 
and focusing on coherency identification and mode shapes of 
the generators.  

Following the above mentioned work, many of the related 
works focus on analyzing the DMD’s robust, such as its 
estimation accuracy, under noisy measurement. For example, 
the authors in (A. Alassaf et al, 2019) show that DMD 
performs well using real noisy measurements during an 
unstable oscillation. New strategies to improve DMD’s 
robustness under noisy measurements are proposed in (D. 
Yang et al, 2019, V. T. Priyanga et al, 2021, M. Zuhaib et al, 
2021, A. Alassaf et al, 2021). On the other hand, the work (J. 
Ramos et al, 2019) investigates how many nodes (and their 
locations) are required to be monitored in order to achieve an 
accurate assessment on the power grid disturbances.   

All the previously mentioned work analyze DMD estimation’s 
potential and robustness for one static time-window using 
post-disturbance measurement and different time-window 
lengths as summarized in Fig. 1. However, in practice the 
measurements are changing over the time, e.g., during the 
oscillations monitoring in real-time using DMD. Hence, using 
the static time-window may lead to a poor evaluation in 
comparison to the use of sliding (moving) time-window. The 
authors in (S. Mohapatra et al, 2016) consider a sliding 
window for DMD algorithm, however similar to the 
previously mentioned work they only use post-disturbance 
data. Specifically, DMD’s accuracy is evaluated for different 
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time-window lengths (i.e., settings) and it is suggested to use 
a time-window length of 7 s which can be modified based on 
the application or preference.  

 

Figure 1. Time-window lengths used by the related work. 

The length of time-window plays an important role in the 
performance of DMD algorithm for the purpose of real-time 
monitoring. DMD with a long time-window is 
computationally expensive and may affect the monitoring 
speed. On the other hand, DMD with a short time-window 
length may affect the estimation’s accuracy due to 
measurements fluctuations (S. Mohapatra et al, 2016). To the 
best of our knowledge, there is still little work, in particular 
when utilizing a sliding window, which systematically analyze 
the influence of the length of time-window on the accuracy of 
DMD’s estimation and further investigate the suitable length 
of the time-window. In addition, it is not totally clear about the 
effect of power system eigenvalues and the use of data from 
pre-, during, and post-disturbances on the estimation result of 
the DMD algorithm. 

1.3. Contributions of the paper 

This work aims to address the previously mentioned gaps. 
Specifically, the contributions of the paper are summarized as 
follows: i) DMD performance is tested for several case studies 
and the results show that DMD algorithm yields a misleading 
estimation when data-window has snapshots of different 
signals after a large disturbance; ii) It is reported for the first 
time that the dominant ultra-low frequency modes (𝑓𝑓< 0,1 Hz) 
may negatively affect the estimation results of DMD algorithm 
when using small time-window lengths; iii) The analysis 
demonstrates that the time-window length plays a critical role 
in ensuring a reliable DMD performance. It is found that the 
window length of 10 s is suitable in ensuring the best DMD 
performance for a broad power system test systems. 

The rest of the paper is organized as follows. Section 2 
describes briefly the principal steps of the DMD Algorithm 
followed by problem statement. The case studies and the most 
relevant results are presented in Section 3. Finally, Section 4 
concludes with the conclusions and recommendations. 

2. DMD ALGORITHM AND PROBLEM FORMULATION  

2.1 Review of Dynamic Mode Decomposition algorithm for 
electromechanical oscillations monitoring  

The idea of DMD is to fit the nonlinear power system 
dynamics using the following linearized power system model  

𝑥𝑥𝑘𝑘+1 =  𝑨𝑨𝑥𝑥𝑘𝑘                                   (1) 

by computing the best-fit linear operator 𝑨𝑨 ∈ ℝ𝑛𝑛×𝑛𝑛 using 
available state measurements (data) 𝑥𝑥𝑘𝑘 =  𝑥𝑥(𝑘𝑘∆𝑡𝑡) ∈ ℝ𝑛𝑛 
corresponding to the power system dynamics where ∆𝑡𝑡 is the 
sampling time of the measurements and 𝑘𝑘 = 0,1,2, …  (Burton 
and Kutz, 2019).  

To this end, the snapshots 𝑥𝑥𝑘𝑘 which include generators speed, 
rotor angle or buses voltage are sent to the energy control 
center (ECC) in every ∆𝑡𝑡 seconds. ECC then constructs two 
matrices 𝑿𝑿1

𝑚𝑚−1 ∈ ℝ𝑛𝑛×(𝑚𝑚−1) and 𝑿𝑿2
𝑚𝑚 ∈ ℝ𝑛𝑛×(𝑚𝑚−1) using 𝑚𝑚 

snapshots of measurements taken during a time-window of 
length 𝑇𝑇 = 𝑚𝑚∆𝑡𝑡 given by      

𝑿𝑿1
𝑚𝑚−1 =  [

|
𝑥𝑥𝑝𝑝
|

|
 𝑥𝑥𝑝𝑝+1

|
… 

|
𝑥𝑥𝑝𝑝+𝑚𝑚−1

|
] , 𝑿𝑿2

𝑚𝑚 =  [
|

𝑥𝑥𝑝𝑝+1
|

|
 𝑥𝑥𝑝𝑝+2

|
… 

|
𝑥𝑥𝑝𝑝+𝑚𝑚

|
]    (2) 

Next, using the data matrices in (2), linear approximation in 
(1) can be described as 

𝑿𝑿2
𝑚𝑚 ≈  𝑨𝑨𝑿𝑿1

𝑚𝑚−1                                   (3) 

As a result, the best-fit matrix 𝑨𝑨 can be calculated as 

 𝑨𝑨 = 𝑿𝑿2
𝑚𝑚(𝑿𝑿1

𝑚𝑚−1)†                                (4) 

where † denotes the pseudo-inverse. As the calculation of 
(pseudo) inverse of a high dimensional matrix is expensive, a 
Singular Value Decomposition (SVD) of the 𝑿𝑿1

𝑚𝑚−1 is carried 
out with rank r resulting in the following 

 𝑿𝑿1
𝑚𝑚−1 ≈ �̃�𝑼𝚺𝚺�̃�𝑽∗                                  (5) 

where �̃�𝑼 ∈ ℂ𝑛𝑛×𝑟𝑟, �̃�𝜮 ∈ ℂ𝑟𝑟×𝑟𝑟, �̃�𝑽 ∈ ℂ𝑚𝑚×𝑟𝑟, the notation ∗ denotes 
the complex conjugate transpose, 𝑟𝑟 ≤ 𝑚𝑚 denotes either the 
exact or approximate rank of the data matrix 𝑿𝑿1

𝑚𝑚−1 and the 
matrixes satisfy �̃�𝑼∗�̃�𝑼 = 𝑰𝑰 and �̃�𝑽∗�̃�𝑽 = 𝑰𝑰. Hence, the pseudo-
inverse can then be calculated as (𝑿𝑿1

𝑚𝑚−1)† = �̃�𝑽𝚺𝚺−𝟏𝟏�̃�𝑼∗ and 
substituting it into (4) yields                              

𝑨𝑨 = 𝑿𝑿2
𝑚𝑚�̃�𝑽𝚺𝚺−𝟏𝟏�̃�𝑼∗                              (6) 

For electromechanical oscillations monitoring we are 
interested in estimating the 𝑟𝑟 dominant eigenvalues. Hence, a 
reduced matrix �̃�𝑨 ∈ ℝ𝑟𝑟×𝑟𝑟 is calculated by projecting 𝑨𝑨 onto �̃�𝑼 
basis such that 

   �̃�𝑨 = �̃�𝑼∗𝑨𝑨�̃�𝑼 = �̃�𝑼∗𝑿𝑿2
𝑚𝑚�̃�𝑽𝚺𝚺−𝟏𝟏                              (7) 

After computing the dominant dynamics in (7), the dominant 
eigenvalues and eigenvectors are given by  

�̃�𝑨𝑾𝑾 = 𝑾𝑾𝚲𝚲                                    (8) 

where the diagonal entries of 𝚲𝚲 ∈ ℂ𝑟𝑟×𝑟𝑟 are the eigenvalues 
which also correspond to the eigenvalues of 𝑨𝑨 while 𝑾𝑾 ∈ ℂ𝑟𝑟×𝑟𝑟 
are the associated eigenvectors. Finally the relation between 
the eigenvalues 𝜆𝜆�̅�𝑗(𝐴𝐴) and the eigenvalues of the continuous-
time version of dynamics (1), denoted by 𝜆𝜆𝑗𝑗 is given by  

𝜆𝜆𝑗𝑗 = ln(𝜆𝜆�̅�𝑗) ∆𝑡𝑡⁄                                  (9) 

Where 𝜆𝜆𝑗𝑗 = 𝜎𝜎𝑗𝑗 ± 𝑗𝑗2𝜋𝜋𝑓𝑓𝑗𝑗 and the damping ratio is 𝜉𝜉𝑗𝑗 =
−𝜎𝜎𝑗𝑗 √(𝜎𝜎𝑗𝑗)2 + (2𝜋𝜋𝑓𝑓𝑗𝑗)2⁄ .  In the remaining sections, we are 
going to focus on the eigenvalues of the continuous-time 
dynamics.  
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2.2 Problem formulation  

Real-time monitoring by DMD is carried out through a sliding 
window, that is the dominant eigenvalues are estimated using 
data matrices in (2) with a fixed length of window T and by 
taking p=0,1,2,3,… To this end, we aim at investigating the 
following research questions which are still not addressed in 
the related work: 1) How is the accuracy of DMD algorithm 
for real-time monitoring when the used measurement data 
corresponds to the pre-, during, and post-disturbances 
condition? 2) Could the power system’s eigenvalues with 
ultra-low frequency affect the accuracy of DMD algorithm? 3) 
What is the suitable time-window length 𝑇𝑇 resulting in an 
accurate estimation and applicable to a broad power system 
test systems?  

3. MAIN RESULTS: CASES STUDY 

To answer the research questions in the previous section, we 
performed numerical analysis on three benchmark systems, 
namely Single Machine Infinite Bus (SMIB), 2-Area, 4-
generator system and Australian equivalent system by 
considering different disturbances for obtaining the 
measurements (simulation data). Note that these benchmarks 
have been widely used in the related work to study 
electromechanical oscillations. 

SMIB is modeled using MATLAB while two other 
benchmarks are modeled using DigSILENT PowerFactory 
2021. In the cases of 2-Area and Australian power systems, 
conventional generators are modeled by considering 
Automatic Voltage Regulator (AVR) and Power System 
Stabilizers according to IEEE Std 421.5-2016 whose settings, 
power system’s initial conditions, SVC’s AVRs, and the rest 
of parameters can be found in (M. Gibbard et al, 2010 and P. 
Kundur, 1994).  

For the sake of simplicity, time delay on the communication 
and DMD calculation are not considered in the case studies as 
its value is relatively small in comparison to the time response 
related to electromechanical response of the power system and 
thus does not affect the estimation’s results. Regarding the 
WAMS, it is assumed that PMUs are installed at all the 
generators whose sampling time ∆𝑡𝑡 = 0,02 𝑠𝑠 similar to the 
units ABB RES521, SEL-451 already installed in Fingrid. 
Furthermore, WAMS sends the data at time step p on the speed 
(ω) and rotor angle (δ) of all 𝑛𝑛 generators to the energy control 
center, that is the state in (1) at time step p equals to 𝑥𝑥𝑝𝑝 =
[𝜔𝜔1 … 𝜔𝜔𝑛𝑛    𝛿𝛿1 … 𝛿𝛿𝑛𝑛]𝑇𝑇 . Finally, we set 𝑟𝑟 = 2𝑛𝑛.   

3.1 Case 1: Single Machine Infinite Bus (SMIB) 

In order to analyze the effect of time-window length of the 
sliding window on the accuracy of DMD algorithm, we 
consider the lengths used in the literature given by 𝑇𝑇 =
(2𝑠𝑠, 7𝑠𝑠, 10𝑠𝑠, 15𝑠𝑠, 20𝑠𝑠, 30𝑠𝑠) and we use post-disturbance data 
to compare the estimation results. Furthermore, we use second 
order model for the generator and thus there is one local mode 
corresponding to eigenvalues 𝜆𝜆1,2 = −0,107 ± 𝑗𝑗6,38 which is 
excited by a small disturbance at 𝑡𝑡 = 0 𝑠𝑠. Fig. 2 shows the 
speed and rotor angle snapshots for the duration of 40 s. Fig. 3 

summarizes the estimation using DMD, including the one with 
T= 1 s which is equal to the mode period. 

DMD with sliding window is implemented where the initial 
time-step for the estimation is given by 𝑝𝑝 = 0. As can be 
observed from Fig. 3, the estimation of the DMD with a sliding 
window are 𝜎𝜎 = 0,107 (1/𝑠𝑠) and 𝜔𝜔 = 6,384 (𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠) for all 
time window lengths T. Therefore, it can be concluded that for 
this case the length of sliding window does not have any 
influence on the accuracy of the DMD algorithm. 

 
Figure 2. Speed (ω) and rotor angle (δ) variation behavior. 

 
Figure 3. Damping and frequency DMD estimation of the SMIB’s 

measurements. 

Note that the analysis is carried out using post-disturbance data 
and one excited mode. In the following subsections, we extend 
the analysis by considering measurements from several PMUs, 
multiple dominant modes and using data obtained from pre-, 
during, and post-disturbances.  

3.2 Case 2: Two-Area, 4-generator power system 

For case 2, the linearized full state matrix 𝑨𝑨 has 122 
eigenvalues of which 3 modes have the worst damping ratio as 
shown in Table 1. 

Table 1. Modes with the worst damping 

Modes (λ) f (Hz) ξ Generator’s participation 

-0,21±j3,65 0,60 0,057 G1,G2,G3,G4 

-1,63±j7,03 1,12 0,22 G3,G4 

-1,59±j5,86 0,93 0,26 G1,G2 

 

Several disturbances were introduced to generate the 
measurements which represent normal operating conditions. 
First, we consider the scenario “SCE_1” where the line that 
connects the two areas is switched off and on at 𝑡𝑡 = 0 𝑠𝑠 and 
𝑡𝑡 = 24 𝑠𝑠 respectively. The measurements of the four 
generators are shown in the Figs. 4 a and b. 
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2.2 Problem formulation  

Real-time monitoring by DMD is carried out through a sliding 
window, that is the dominant eigenvalues are estimated using 
data matrices in (2) with a fixed length of window T and by 
taking p=0,1,2,3,… To this end, we aim at investigating the 
following research questions which are still not addressed in 
the related work: 1) How is the accuracy of DMD algorithm 
for real-time monitoring when the used measurement data 
corresponds to the pre-, during, and post-disturbances 
condition? 2) Could the power system’s eigenvalues with 
ultra-low frequency affect the accuracy of DMD algorithm? 3) 
What is the suitable time-window length 𝑇𝑇 resulting in an 
accurate estimation and applicable to a broad power system 
test systems?  

3. MAIN RESULTS: CASES STUDY 

To answer the research questions in the previous section, we 
performed numerical analysis on three benchmark systems, 
namely Single Machine Infinite Bus (SMIB), 2-Area, 4-
generator system and Australian equivalent system by 
considering different disturbances for obtaining the 
measurements (simulation data). Note that these benchmarks 
have been widely used in the related work to study 
electromechanical oscillations. 

SMIB is modeled using MATLAB while two other 
benchmarks are modeled using DigSILENT PowerFactory 
2021. In the cases of 2-Area and Australian power systems, 
conventional generators are modeled by considering 
Automatic Voltage Regulator (AVR) and Power System 
Stabilizers according to IEEE Std 421.5-2016 whose settings, 
power system’s initial conditions, SVC’s AVRs, and the rest 
of parameters can be found in (M. Gibbard et al, 2010 and P. 
Kundur, 1994).  

For the sake of simplicity, time delay on the communication 
and DMD calculation are not considered in the case studies as 
its value is relatively small in comparison to the time response 
related to electromechanical response of the power system and 
thus does not affect the estimation’s results. Regarding the 
WAMS, it is assumed that PMUs are installed at all the 
generators whose sampling time ∆𝑡𝑡 = 0,02 𝑠𝑠 similar to the 
units ABB RES521, SEL-451 already installed in Fingrid. 
Furthermore, WAMS sends the data at time step p on the speed 
(ω) and rotor angle (δ) of all 𝑛𝑛 generators to the energy control 
center, that is the state in (1) at time step p equals to 𝑥𝑥𝑝𝑝 =
[𝜔𝜔1 … 𝜔𝜔𝑛𝑛    𝛿𝛿1 … 𝛿𝛿𝑛𝑛]𝑇𝑇 . Finally, we set 𝑟𝑟 = 2𝑛𝑛.   

3.1 Case 1: Single Machine Infinite Bus (SMIB) 

In order to analyze the effect of time-window length of the 
sliding window on the accuracy of DMD algorithm, we 
consider the lengths used in the literature given by 𝑇𝑇 =
(2𝑠𝑠, 7𝑠𝑠, 10𝑠𝑠, 15𝑠𝑠, 20𝑠𝑠, 30𝑠𝑠) and we use post-disturbance data 
to compare the estimation results. Furthermore, we use second 
order model for the generator and thus there is one local mode 
corresponding to eigenvalues 𝜆𝜆1,2 = −0,107 ± 𝑗𝑗6,38 which is 
excited by a small disturbance at 𝑡𝑡 = 0 𝑠𝑠. Fig. 2 shows the 
speed and rotor angle snapshots for the duration of 40 s. Fig. 3 

summarizes the estimation using DMD, including the one with 
T= 1 s which is equal to the mode period. 

DMD with sliding window is implemented where the initial 
time-step for the estimation is given by 𝑝𝑝 = 0. As can be 
observed from Fig. 3, the estimation of the DMD with a sliding 
window are 𝜎𝜎 = 0,107 (1/𝑠𝑠) and 𝜔𝜔 = 6,384 (𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠) for all 
time window lengths T. Therefore, it can be concluded that for 
this case the length of sliding window does not have any 
influence on the accuracy of the DMD algorithm. 

 
Figure 2. Speed (ω) and rotor angle (δ) variation behavior. 

 
Figure 3. Damping and frequency DMD estimation of the SMIB’s 

measurements. 

Note that the analysis is carried out using post-disturbance data 
and one excited mode. In the following subsections, we extend 
the analysis by considering measurements from several PMUs, 
multiple dominant modes and using data obtained from pre-, 
during, and post-disturbances.  

3.2 Case 2: Two-Area, 4-generator power system 

For case 2, the linearized full state matrix 𝑨𝑨 has 122 
eigenvalues of which 3 modes have the worst damping ratio as 
shown in Table 1. 

Table 1. Modes with the worst damping 

Modes (λ) f (Hz) ξ Generator’s participation 

-0,21±j3,65 0,60 0,057 G1,G2,G3,G4 

-1,63±j7,03 1,12 0,22 G3,G4 

-1,59±j5,86 0,93 0,26 G1,G2 

 

Several disturbances were introduced to generate the 
measurements which represent normal operating conditions. 
First, we consider the scenario “SCE_1” where the line that 
connects the two areas is switched off and on at 𝑡𝑡 = 0 𝑠𝑠 and 
𝑡𝑡 = 24 𝑠𝑠 respectively. The measurements of the four 
generators are shown in the Figs. 4 a and b. 

Figure 4. Behavior  and Fast Fourier Transform (FFT) of the speed (a, c)  and rotor angle (b, d) for the scenario “SCE_1” , behavior  and 
FFT of the speed (e, g)  and rotor angle (f, h) for the scenario “SCE_2”. Fast Fourier Transform (FFT) is calculated at t=0 s to t=14,3 s .

Fast Fourier Transform (FFT) of the measurements depicted in 
Figs. 4 c, d shows that the local modes are not excited while 
both the interarea mode (0,60 Hz) and one ultra-low frequency 
mode (f< 0,1 Hz) corresponding to eigenvalue 𝜆𝜆 = −0,21 ±
𝑗𝑗0,44 , (0,07 Hz) are excited. Therefore, we chose this 
interarea mode (ξ = 0,057) in order to analyze the estimation 
accuracy of the DMD algorithm with a sliding window where 
the time-window lengths are set to 𝑇𝑇 = (1,66𝑠𝑠, 2𝑠𝑠,
7𝑠𝑠, 10𝑠𝑠, 15𝑠𝑠, 20𝑠𝑠). Note that the window length T= 1,66 𝑠𝑠 is 
also equal to the period of the interarea mode. The results are 
summarized in Fig. 5 which shows the damping ratio (DR) 
estimation of the interarea mode using DMD and the DR 
(dotted line) calculated via Modal Analysis (MA). 

 

Figure 5. DR estimation of the interarea mode for “SCE_1”. 

It can be observed that after the second disturbance at 𝑡𝑡 = 24 𝑠𝑠 
the estimated damping ratio is negative (ξ < 0) (i.e., the power 
system lost its stability) which is misleading. This inaccurate 
estimation is because the data matrices in (2) consist of both 
the pre-disturbance signal and the post-disturbance signal 
(when the line switches on at 𝑡𝑡 = 24 𝑠𝑠) and as a result the 
DMD algorithm performed an estimation using snapshots of 

two different signals. DMD algorithms started to accurately 
estimate the inter-area mode after one time-window length at 
𝑡𝑡 = (25,66𝑠𝑠, 26𝑠𝑠, 28𝑠𝑠, 31𝑠𝑠, 34𝑠𝑠, 39𝑠𝑠), that is when the data 
matrices contain only snapshots of the post-disturbance 
signals. This also means that DMD algorithm requires a longer 
time to result in an accurate estimation for large time-window 
lengths 𝑇𝑇 = (15𝑠𝑠, 20𝑠𝑠, 30𝑠𝑠) following a disturbance. This 
shortcoming was not reported in the previously described 
related work since they did not analyze the DMD algorithm 
with a sliding window using measurements obtained from pre, 
during, and post-disturbances.  

In addition, it can be seen that the DR estimation has a large 
variation (less accurate “LA”) during the first 10 seconds for 
the window lengths 𝑇𝑇 = (1,66𝑠𝑠, 2𝑠𝑠), which was not observed 
in case 1 for 𝑇𝑇 = (1𝑠𝑠, 2𝑠𝑠). This large variation may be related 
to the ultra-low frequency mode excited until 𝑡𝑡 = 14,3 𝑠𝑠. In 
order to analyze in more details the influence of small time-
window lengths given by 𝑇𝑇 = (1,66𝑠𝑠, 2𝑠𝑠, 7𝑠𝑠, 10𝑠𝑠) and the 
role of the ultra-low frequency mode, in the following we 
consider the scenario “SCE_2” when only one disturbance 
(15% decrease of active (P) and reactive (Q)) occurred at 𝑡𝑡 =
0 𝑠𝑠 was simulated and whose measurements and FFT are 
shown in Figs. 4 e, f, g and h. The measurements represent 
higher excitation of the ultra-low frequency mode compared to 
interarea mode. Moreover, the estimation is performed until 
𝑡𝑡 = 12 𝑠𝑠 as the interarea mode excitation decreases 
considerably after this time. The results are summarized in Fig. 
6. 

First, it can be observed from Fig. 6 that the variation (“LA”) 
of the estimation using DMD algorithm for window lengths 
𝑇𝑇 = (1,66𝑠𝑠, 2𝑠𝑠) is larger than then the one using 
measurements from the scenario “SCE_1”. Furthermore, the 
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damping ratio is incorrectly (negative value) estimated at 𝑡𝑡 =
(1,66s, 2,94s, 9,34s) during the first quarter cycle of the ultra-
low frequency mode. This shows that the ultra-low frequency 
mode affects the estimation result for window lengths 𝑇𝑇 =
(1,66𝑠𝑠, 2𝑠𝑠). 

 
Figure 6. DR estimation of the interarea mode for “SCE_2”. 

The above result can also be confirmed from Fig. 7 which 
shows the first snapshots (𝑚𝑚 = 83) for window length 𝑇𝑇 =
1,66 𝑠𝑠 with data obtained between the interval 𝑡𝑡 = 0 𝑠𝑠 and 𝑡𝑡 =
1,66 𝑠𝑠. It can be seen that as interarea mode is riding over the 
ultra-low frequency mode, the DMD algorithm estimates 
incorrect (misleading) damping ratio. This behavior of DMD 
algorithm was not reported in (D. Yang et al, 2019) since the 
ultra-low frequency mode was not excited when they 
considered the window of length 𝑇𝑇 = 2 𝑠𝑠. 

 

Figure 7. Snapshots that contain a data-window for a length T = 1,66 
s, “SCE_2”. 

Note that the ultra-low frequency mode does not affect the 
estimation accuracy of the DMD algorithm with window 
lengths 𝑇𝑇 = (7𝑠𝑠, 10𝑠𝑠, 15𝑠𝑠, 20 𝑠𝑠). However, using a larger 
window length comes at a price that the DMD algorithm takes 
more time to estimate the damping ratio with good accuracy 
since it may use mixed data from two different signals after a 
disturbance, as discussed previously. In the following, the 
lengths 𝑇𝑇 = (7𝑠𝑠, 10𝑠𝑠, 15𝑠𝑠, 20 𝑠𝑠) are analyzed by considering 
measurements containing several excited dominants modes. 

3.3 Case 3: Simplified Australian system  

The simplified Australian system model has 262 eigenvalues 
of which 3 inter-area and 9 locals modes have the worst 
damping depending of the initial conditions, see Table 2. 

Dominant modes are excited through two short circuits and it 
is assumed that protections clearing time is equal to 100 ms. 
The first short circuit occurs in a line between the areas 1 and 
3 at 𝑡𝑡 = 0 𝑠𝑠 and second fault occurs at 𝑡𝑡 = 24 𝑠𝑠 between the 
areas 2 and 4. Figs.9 a and b show the corresponding 
measurements. As shown in Figs. 9 c and d, six modes (1, 2, 

3, 4, 5, 6) of the worst damped modes (table 2) are excited and 
one mode ultra-low frequency (0,05 Hz) corresponding to 𝜆𝜆 =
−1,20 ± 𝑗𝑗0,47 is also excited. Since only the modes 4 and 5 
(0,33 Hz,0,43 Hz) are excited during all the simulation time, 
those modes are chosen to analyze how the lengths 𝑇𝑇 =
(7𝑠𝑠, 10𝑠𝑠, 15𝑠𝑠, 20𝑠𝑠) influences the DMD estimation.  

Table 2. Modes with the worst damping of the Australian 
equivalent system  

Modes (λ) [f;ξ]  Modes [f;ξ] 

-0,15±j7,58(1) [1,21;0,02] -0,48±j7,75(7) [1,23;0,06] 

-0,21±j8,64(2) [1,37;0,02] -0,71±j9,38(8) [1,49;0,08] 

-0,29±j9,10(3) [1,44;0,03] -0,82±j10,29(9) [1,63;0,08] 

-0,09±j2,08(4) [0,33;0,04] -0,81±j8,91(10) [1,41;0,09] 

-0,10±j2,71(5) [0,43;0,03] -0,84±j7,85(11) [1,25;0,10] 

-0,19±j4,22(6) [0,67;0,04] -0,93±j5,72(12) [0,91;0,16] 

 

DMD algorithm accurately estimate the two modes for all the 
lengths as illustrated in Figs. 8 and 10. However, the 
estimation results in a big variation (less accuracy) for 𝑇𝑇 = 7𝑠𝑠 
especially for mode 5. Notice that DMD algorithm also yields 
an inaccurate estimation after the second disturbance  𝑡𝑡 = 24 𝑠𝑠 
as the algorithm uses snapshots of two different signals, 
similar to the case 2. However, it can be observed that after the 
second disturbance, the DMD algorithm starts to estimate the 
correct damping ratio faster than the one in the case 2. Recall 
that for the case 2, DMD algorithm requires a time equal to the 
time-window length in order to estimate the correct values 
again. 

 
Figure 8. DR estimation of the interarea mode 4 (0,3 Hz). 

To summarize, analysis of all the three cases have 
demonstrated that the length of sliding window plays an 
important role in the estimation accuracy of the DMD 
algorithm for real-time monitoring. In addition, it is shown 
from the case studies by considering the window lengths 𝑇𝑇 =
(2𝑠𝑠, 7𝑠𝑠, 10𝑠𝑠, 15𝑠𝑠, 20𝑠𝑠, 30𝑠𝑠) that the length 𝑇𝑇 = 10 𝑠𝑠 yields 
the best performance w.r.t. both estimation’ accuracy and 
recovery time. 
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damping ratio is incorrectly (negative value) estimated at 𝑡𝑡 =
(1,66s, 2,94s, 9,34s) during the first quarter cycle of the ultra-
low frequency mode. This shows that the ultra-low frequency 
mode affects the estimation result for window lengths 𝑇𝑇 =
(1,66𝑠𝑠, 2𝑠𝑠). 

 
Figure 6. DR estimation of the interarea mode for “SCE_2”. 

The above result can also be confirmed from Fig. 7 which 
shows the first snapshots (𝑚𝑚 = 83) for window length 𝑇𝑇 =
1,66 𝑠𝑠 with data obtained between the interval 𝑡𝑡 = 0 𝑠𝑠 and 𝑡𝑡 =
1,66 𝑠𝑠. It can be seen that as interarea mode is riding over the 
ultra-low frequency mode, the DMD algorithm estimates 
incorrect (misleading) damping ratio. This behavior of DMD 
algorithm was not reported in (D. Yang et al, 2019) since the 
ultra-low frequency mode was not excited when they 
considered the window of length 𝑇𝑇 = 2 𝑠𝑠. 

 

Figure 7. Snapshots that contain a data-window for a length T = 1,66 
s, “SCE_2”. 

Note that the ultra-low frequency mode does not affect the 
estimation accuracy of the DMD algorithm with window 
lengths 𝑇𝑇 = (7𝑠𝑠, 10𝑠𝑠, 15𝑠𝑠, 20 𝑠𝑠). However, using a larger 
window length comes at a price that the DMD algorithm takes 
more time to estimate the damping ratio with good accuracy 
since it may use mixed data from two different signals after a 
disturbance, as discussed previously. In the following, the 
lengths 𝑇𝑇 = (7𝑠𝑠, 10𝑠𝑠, 15𝑠𝑠, 20 𝑠𝑠) are analyzed by considering 
measurements containing several excited dominants modes. 

3.3 Case 3: Simplified Australian system  

The simplified Australian system model has 262 eigenvalues 
of which 3 inter-area and 9 locals modes have the worst 
damping depending of the initial conditions, see Table 2. 

Dominant modes are excited through two short circuits and it 
is assumed that protections clearing time is equal to 100 ms. 
The first short circuit occurs in a line between the areas 1 and 
3 at 𝑡𝑡 = 0 𝑠𝑠 and second fault occurs at 𝑡𝑡 = 24 𝑠𝑠 between the 
areas 2 and 4. Figs.9 a and b show the corresponding 
measurements. As shown in Figs. 9 c and d, six modes (1, 2, 

3, 4, 5, 6) of the worst damped modes (table 2) are excited and 
one mode ultra-low frequency (0,05 Hz) corresponding to 𝜆𝜆 =
−1,20 ± 𝑗𝑗0,47 is also excited. Since only the modes 4 and 5 
(0,33 Hz,0,43 Hz) are excited during all the simulation time, 
those modes are chosen to analyze how the lengths 𝑇𝑇 =
(7𝑠𝑠, 10𝑠𝑠, 15𝑠𝑠, 20𝑠𝑠) influences the DMD estimation.  

Table 2. Modes with the worst damping of the Australian 
equivalent system  

Modes (λ) [f;ξ]  Modes [f;ξ] 

-0,15±j7,58(1) [1,21;0,02] -0,48±j7,75(7) [1,23;0,06] 

-0,21±j8,64(2) [1,37;0,02] -0,71±j9,38(8) [1,49;0,08] 

-0,29±j9,10(3) [1,44;0,03] -0,82±j10,29(9) [1,63;0,08] 

-0,09±j2,08(4) [0,33;0,04] -0,81±j8,91(10) [1,41;0,09] 

-0,10±j2,71(5) [0,43;0,03] -0,84±j7,85(11) [1,25;0,10] 

-0,19±j4,22(6) [0,67;0,04] -0,93±j5,72(12) [0,91;0,16] 

 

DMD algorithm accurately estimate the two modes for all the 
lengths as illustrated in Figs. 8 and 10. However, the 
estimation results in a big variation (less accuracy) for 𝑇𝑇 = 7𝑠𝑠 
especially for mode 5. Notice that DMD algorithm also yields 
an inaccurate estimation after the second disturbance  𝑡𝑡 = 24 𝑠𝑠 
as the algorithm uses snapshots of two different signals, 
similar to the case 2. However, it can be observed that after the 
second disturbance, the DMD algorithm starts to estimate the 
correct damping ratio faster than the one in the case 2. Recall 
that for the case 2, DMD algorithm requires a time equal to the 
time-window length in order to estimate the correct values 
again. 

 
Figure 8. DR estimation of the interarea mode 4 (0,3 Hz). 

To summarize, analysis of all the three cases have 
demonstrated that the length of sliding window plays an 
important role in the estimation accuracy of the DMD 
algorithm for real-time monitoring. In addition, it is shown 
from the case studies by considering the window lengths 𝑇𝑇 =
(2𝑠𝑠, 7𝑠𝑠, 10𝑠𝑠, 15𝑠𝑠, 20𝑠𝑠, 30𝑠𝑠) that the length 𝑇𝑇 = 10 𝑠𝑠 yields 
the best performance w.r.t. both estimation’ accuracy and 
recovery time. 

  

 

Figure 9. Behavior of the speed  and rotor angle a) and b). Fast Fourier Transform (FFT) of the rotor angles at t=0 s and t=24 s, (c), d)).

 
Figure 10. DR estimation of the interarea mode 5 (0,45 Hz). 

3.4 Case 3: Analyzing the measurements number  

4. CONCLUSIONS 

Based on the analysis of the influence of the length of time-
window on real-time monitoring using DMD algorithm, the 
following answers to the research questions are obtained: 1) 
the estimation of DMD algorithm can be misleading when the 
data-window contains snapshots of different signals after a 
large disturbances; 2) Ultra-low frequency mode affects the 
estimation result when small window length, e.g., 𝑇𝑇 =
(1,66𝑠𝑠, 2𝑠𝑠) is used, and in the worst case yielding  a negative 
damping ratio; 3) Based on measurements of three benchmarks 
and by considering different eigensystem, pre-, during, and 
post-disturbances conditions, it is found that the time-window 
of length 𝑇𝑇 = 10 𝑠𝑠 ensures the best DMD performance for a 
broad power system test systems. As a future work, we aim to 
reduce the window length and improve the accuracy of DMD.     
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