
1

Finite-Time Distributed Algorithms for
Verifying and Ensuring Strong Connectivity of

Directed Networks
Made Widhi Surya Atman, Member, IEEE, and Azwirman Gusrialdi, Member, IEEE

Abstract—The strong connectivity of a directed graph associated with the communication network topology is crucial in ensuring the
convergence of many distributed estimation/control/optimization algorithms. However, the assumption on the network’s strong
connectivity may not always be satisfied in practice. In addition, information on the overall network topology is often not available, e.g.,
due to privacy concerns or geographical constraints which calls for a distributed algorithm. This paper aims to fill a crucial gap in the
literature due to the absence of a fully distributed algorithm to verify and ensure in finite-time the strong connectivity of a directed
network. Specifically, inspired by the maximum consensus algorithm we propose distributed algorithms that enable individual node in a
networked system to verify the strong connectivity of a directed graph and further, if necessary, augment a minimum number of new
links to ensure the directed graph’s strong connectivity. The proposed distributed algorithms are implemented without requiring
information of the overall network topology and are scalable as they only require finite storage and converge in finite number of steps.
Furthermore, the algorithms also preserve the privacy in terms of the overall network’s topology. Finally, the proposed distributed
algorithms are demonstrated and evaluated via numerical results.

Index Terms—Distributed algorithms, finite-time, max-consensus, strongly connected digraph, weakly connected digraph, link
addition.

✦

1 INTRODUCTION

1.1 Motivation and Literature Review

D ISTRIBUTED algorithm plays an important role in esti-
mation [2], [3], optimization [4], [5], and control [6],

[7], [8], [9] of networked systems. In contrast to central-
ized algorithms where all the computations are performed
at a control center, the computations in distributed al-
gorithms are locally performed at individual system and
by exchanging information with a number of neighboring
systems via a communication network. As a result, dis-
tributed algorithms have several potential advantages such
as scalability to system’s size, robustness with respect to
failure of individual system, and also preservation of data
privacy. Strong connectedness of a graph associated with the
communication network topology of distributed systems
is a crucial requirement in ensuring the convergence of
the above mentioned distributed algorithms. Most of the
work on distributed estimation, optimization, and control
algorithms take for granted (i.e., assume) that the commu-
nication network topology is strongly connected. However,
in practice the communication network topology of a net-
worked systems may not always be strongly connected.
Therefore, it is of importance to first verify and further
ensure (e.g., by adding new links) the strong connectivity
of a given communication network topology before execut-

• A preliminary version of this paper was presented at the IEEE Conference
on Decision and Control as [1].

• The work was supported by the Academy of Finland under Academy
Project decision number 330073.

• M. W. S. Atman and A. Gusrialdi are with Faculty of Engineering and
Natural Sciences, Tampere University, Tampere 33014, Finland.
E-mail: widhi.atman@tuni.fi, azwirman.gusrialdi@tuni.fi

ing any distributed estimation/optimization/control algo-
rithms. More importantly, the procedure for verifying and
ensuring strong connectivity of a communication network
topology also needs to be performed in a distributed manner
as the overall network topology is often not available due
to privacy concerns or geographical constraints and also in
order to comply with the feature of distributed algorithms
that will be deployed in the networked systems.

Motivated by the above fundamental yet crucial issue,
this paper focuses on the problem of distributively verifying
and ensuring the strong connectivity of a directed graph.
The communication of many real-world distributed systems
is unidirectional whose overall communication network
topology can be modelled as a directed graph. For example,
in a broadcast-based communication scheme or publish-
subscribe protocol (as can be found in Robot Operating
System for robotic systems [10] and Open Field Message
Bus for smart grid [11]) the receiver/subscriber can decide
to use only a portion of all the broadcasted/published
information due to their selected preferences or to limit the
computational and/or communication cost. Other examples
of unidirectional communication include connectivity in
social network such as Twitter [12] and wireless network
using directional antennae [13].

The problem of verifying a strongly connected directed
graph (digraph) can be translated into the problem of com-
puting strongly connected components of a given digraph.
Existing algorithms to solve the computation include Tar-
jan [14], [15], Kosaraju–Sharir [16], and Gabow [17], [18]
algorithm, which are based on depth-first-search approach,
as well as the relation-transitive-closure-based Warshall al-
gorithm [19]. On the other hand, the problem of ensuring

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3200466

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

strong connectivity of a directed graph is often described
as strong connectivity augmentation problem. The study
on the augmentation problem was initiated by the work in
[14], [15], followed by subsequent research in [20], [21], em-
phasizing that the problem is solvable in polynomial time.
Note that while the problem of ensuring strong-connectivity
problem is equivalent to constructing k-edge-connectivity
topology with k = 1, various approaches for k ≥ 2 in
undirected graph topology has also been gaining interest
to ensure robustness of the communication network, see for
example [22], [23].

Despite the aforementioned approaches in verifying and
ensuring strongly connected digraph, most of the solutions
focus on the centralized or parallel computation and rely on
the assumption that information/knowledge of the overall
network topology is available or known beforehand. A fully
distributed approach (i.e., without requiring knowledge of
the overall network topology) to solve the problem is still
limited in literature, with notable examples are presented
in [9], [24]. The distributed algorithms in [9], [24] focus
on verifying strong connectivity of a digraph after link
removals. However, the algorithm still requires the initial
graph before link removal to be strongly connected.

1.2 Statement of Contributions
The main contributions of this paper are twofold. First, we
propose distributed algorithms for verifying strong connec-
tivity of a directed graph. The proposed algorithms are
inspired by the maximum consensus algorithm [25], [26].
Our second contribution is distributed algorithms to turn a
non-strongly connected digraph into a strongly connected
one by adding a minimum number of new links. This is
achieved by first developing distributed link addition algo-
rithms together with their optimality gap to ensure strong
connectivity of a directed graph. A distributed method is
then developed to check if the number of added links is
minimum and further, if necessary, compute a new set of
minimum number of links to make the digraph strongly
connected. In addition to be fully distributed and without
requiring information of the overall network topology, the
proposed distributed algorithms are also scalable as they
only require finite storage and converge in finite time steps.
The completion in a finite number of steps allows the pro-
posed algorithms to be easily implemented before execut-
ing any distributed estimation/control/optimization algo-
rithms whose convergence require strong connectedness of
the underlying communication network. Furthermore, the
distributed algorithms are also able to preserve the privacy
in terms of the global network topology.

Finally, in comparison to the preliminary version of our
work on this problem [1], this paper considers link augmen-
tation problem for not only weakly connected digraph but
also disconnected digraph. The distributed algorithms in
this paper also ensure strong connectivity of a digraph with
minimum number of link addition. In addition, this paper
includes all the proofs omitted in the preliminary version
together with extensive simulations.

1.3 Organization
The remainder of this paper is organized as follows. In
Section 2, we review the basic notions from graph theory

and provide the problem settings. Section 3 presents the
distributive algorithm to verify whether a given directed
network is strongly connected. The distributed algorithm
to estimate strongly connected components of a digraph
is then presented in Section 4. Section 5 presents the dis-
tributed algorithm to strongly connect a directed graph.
Numerical results is presented in Section 6 and followed
with concluding remarks in Section 7. All the proofs of the
theorems, propositions and lemmas are presented in the
Appendix A. Illustrative examples to describe the procedure
of the proposed algorithms are included as a supplementary
material.

2 PROBLEM FORMULATION
In this section, we recall some basic notions of the fun-
damental theories such as graph theory and maximum
consensus algorithm. Then, we define the problem settings
within this paper.

2.1 Notation and Graph Theory

Information exchange between nodes in a network can be
modeled by means of directed graph (digraph). A directed
graph is denoted by G = (V, E) with a set of nodes
V = {1, 2, . . . , n} and a set of edges (links) E ⊆ V × V .
A graph G1 = (V1, E1) is a subgraph of G = (V, E) if V1 ⊆ V
and E1 ⊆ E . Existence of an edge (i, j) ∈ E denotes that
node j can obtain information from node i, or node i is
accessible to node j. Here, node i is said to be an in-neighbor
of node j while node j is the out-neighbor of node i. Within
this paper, the set of all in-neighbors of node i is denoted by
N in

i = {j ∈ V | (j, i) ∈ E} while N out
i = {j ∈ V | (i, j) ∈ E}

denotes the set of all out-neighbors of node i. Let the set
K consist of all 2-element subsets of V , then the edge set
EC := K \ E denotes all possible edges that are not present
in G.

A path is a sequence of nodes (i1, i2, . . . , ip), p > 1, such
that ij is an in-neighbor of ij+1 for j = i1, . . . , p − 1. An
elementary path is a path in which no nodes appears more
than once. A path is closed if ip = i1. A cycle is a closed path
such that i1, i2, . . . , ip−1 are all distinct. A graph is acyclic if
it has no cycles. A graph is said to be strongly connected if
there is a path between any pair of distinct nodes and it is
called weakly connected if the graph obtained by adding an
edge (j, i) for every existing edge (i, j) ∈ E in the original
graph is strongly connected. A strongly connected component
of directed graph G is a subgraph of G that is strongly
connected and maximal, as such no additional edges or
vertices from G can be included in the subgraph without
breaking its property of being strongly connected.

Within this paper, let R be the set of real numbers and
Z≥0 be the set of non-negative integers. By 1n ∈ Rn and
0n ∈ Rn, we denote the all ones vector and zeros vector in
n-dimension, respectively. For a given set N , |N | denotes
the number of elements in this set. Vectors are denoted as
boldface letters and matrices are denoted as capital letters
in boldface. Finally, the state associated with node i ∈ V
is represented by the subscript operator, for example state
a ∈ Rb, b > 1 for node i is shown as ai and the j-th element
of vector ai (with j ≤ b) is denoted by ai,j .

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3200466

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

2.2 Max-Consensus Algorithm

Consider a directed graph G = (V, E) with n nodes and
let us assign state yi[t] ∈ R to each node i ∈ V . The
max-consensus algorithm allows all nodes to distributively
compute the maximum value of the initial conditions yi[0]
for all i ∈ V . Specifically, each node executes the following
update rule [25]

yi[t+ 1] = max
j∈N in

i ∪{i}
{yj [t]} , (1)

with t denotes the t-th communication event.

Definition 1 (Max-Consensus [25]). Given a directed graph
G = (V, E), an initial states yi[0] for each node i ∈ V
and the update law (1). Then, max-consensus is said to be
achieved, if ∃l ∈ Z≥0 such that

yi[k] = max
i∈V

{yi[0]} ∀k ≥ l, ∀i ∈ V. (2)

If (2) holds for all possible yi[0], we say that strong max-
consensus is achieved. If (2) only holds for a subset of all
possible yi[0], weak max-consensus is achieved.

Next, we recall the following results.

Lemma 1 (Max-Consensus [25]). Let G be a directed graph
representing the communication topology of n nodes.

• Strong max-consensus: Given any initial value of yi[0],
the necessary and sufficient condition for strong
max-consensus is that there exist a path between any
pair of nodes in G, i.e., the digraph G is strongly
connected.

• Weak max-consensus: Given partitions of all nodes
based on the initial value of yi[0] as Vm := {i ∈
V | yi[0] = maxi∈V{yi[0]}} and Vo := V \ Vm. Then,
the necessary and sufficient condition for weak max-
consensus is that for any node j ∈ Vo, there exist a
path ending in j and starting in a node k ∈ Vm.

• Convergence speed: The required number of communi-
cation instants is the maximum of the shortest path
length between any pair of nodes in G, i.e. n − 1 in
the worst case.

It will be demonstrated throughout the paper that max-
consensus algorithm serves as a unified framework to solve
our problem.

2.3 Problem Settings

Consider a network consisting of n nodes whose connec-
tions is given by a directed graph G0 = {V, E}, which also
represents the communication network topology between
the nodes. We make the following assumptions in the re-
maining of the paper:

Assumption 1. Assume that

1) The information of the overall network topology G0

is not available and each node i only knows the
information on N in

i , N out
i , and n.

2) Each node is equipped with its own computational
resources and is assigned with a unique identifier
which can be mapped to its vertex number, i.e., i ∈
{1, . . . , n}.

Note that the unique identifier is a standard assumption
commonly used in designing distributed algorithm which
can be realized e.g., by using MAC address, see for example
[3], [7]. In addition to Assumption 1, it is also assumed that
the communication between nodes occur in a synchronous
manner. Furthermore, we consider a discrete-time case,
where communication instants may either be defined by
a clock or by the occurrence of external events. This can
be realized, e.g., by allowing the node to have access to
global/universal time and by having the execution timing
and interval to be predetermined beforehand.

The objective of this paper is to develop distributed
algorithms, under assumption 1, for solving the following
problems:
Problem 1 (Connectivity Verification). Verify in a dis-

tributed manner if directed graph G0 is strongly con-
nected.

Problem 2 (Connectivity Augmentation). For a directed
graph G0, add a minimum number of additional edges
∆E+ ⊆ EC in a distributed manner to ensure that the re-
sulting graph G∗ = {V, E ∪∆E+} is strongly connected,
i.e., to solve the following optimization problem

min
∆E+⊆EC

|∆E+|,

s.t. G∗ is strongly connected
(3)

For the sake of readability, the notations used in this paper
are summarized in Table 1. Each notation will be described
in more detail when it is first used in the discussion.

3 DISTRIBUTED VERIFICATION OF A DI-
RECTED GRAPH’S STRONG CONNECTIVITY
In this section, we present a distributed algorithm to verify
whether a given network is strongly connected. Here, for
each node i ∈ V , we introduce the state xi[t] ∈ Rn for
checking if node i is reachable from any other nodes and
state fi[t] ∈ R for locally verifying if graph G0 is strongly
connected. Within this paper, we refer t ∈ Z≥0 as the tth
communication event. To this end, each node updates each
row j ∈ V of its state xi[t], i.e., xi,j [t], for n iterations
according to the following max-consensus protocol

xi,j [t+ 1] = max
k∈N in

i ∪{i}
xk,j [t] (4)

whose initial condition is chosen as

xi,j [0] =

{
1, if j = i

0, otherwise.
(5)

Given the initialization in (5), this approach allows individ-
ual node to estimate the existence of paths from all other
nodes to itself as the value of xi,j [n] = 1 for any i ̸= j
implies that there exists a path from node j to node i while
the value of xi,j [n] = 0 signals the absence of that path [9].
The n iterations is selected to ensure xi reach its steady state.

The following result establishes the relationship between
the value of xi[n] and the strong connectivity of directed
graph G0.
Theorem 1. Given a digraph G0 and each node executes (4)

for n iterations whose initial values are given in (5), the

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3200466

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

TABLE 1: A List of Key Notations

Notations Description
G0 original graph to test
V , E set of nodes and initial edges in G0

n number of nodes, i.e., n = |V|
∆E+ set of new edges to strongly connect G0

xi[t] node i’s estimate of reachable nodes
fi[t] node i’s estimate of strong connectivity
ci[t] node i’s estimate of other nodes’ information number
oi[t] node i’s estimate of other SCC’s outgoing edge
ζi node i’s information number, i.e. 1 plus total number

of reachable nodes to i

Ci node i’s estimate of its own member of SCC
Pi node i’s estimate of reachable nodes outside of Ci
m index for number of link addition iteration
Gm the resulting graph after m-iteration of link addition
Vm

sour representative node of source-scc in graph Gm

Vm
sink representative node of sink-scc in graph Gm

Vm
isol representative node of isolated-scc in graph Gm

dm number of disjoint subgraphs in graph Gm

Sm
j set of node within Vm

sour that is accessible to j ∈ Vm
sink

Gm a condensed graph representation for Gm

Vm set of nodes in Gm, i.e., Vm
= {Vm

sour,Vm
sink,V

m
isol} ⊆ V

Em set of edges in Gm. Edge (i, j) ∈ Em denotes the
existence of path from i ∈ Vm

sour to j ∈ Vm
sink in Gm

∆∗ optimality gap between |∆E+| and the minimum
number of required link to strongly connect G0

v an ordering for Vm
sour, Vm

isol to compute minimum link
w an ordering for Vm

sink to compute minimum link
p an index to compute minimum link

graph G0 is strongly connected if and only if xi[n] = 1n

for all i ∈ V .

As a last step, each node needs to verify locally whether
xi[n] = 1n for all i ∈ V . To this end, each node updates its
state fi[t] for n iterations according to

fi[t+ 1] = max
j∈N in

i ∪{i}
fj [t] (6)

whose initial value is chosen as

fi[0] =

{
0, if xi[n] = 1n

1, otherwise.
(7)

Each node can then independently verify the strong connec-
tivity of digraph G0 by observing its own value of fi[n] as
shown in the following theorem.
Theorem 2. Given a digraph G0 and each node executes in

sequence update rule (4) and (6) for n iterations each,
with each initial values as in (5) and (7). The graph G0 is
strongly connected if and only if fi[n] = 0 for any i ∈ V .

The pseudo code of distributed verification algorithm for
solving problem 1 is summarized in Algorithm 1.
Remark 1 (Computational Complexity). Algorithm 1 fin-

ishes in 2n iterations i.e., its computational complexity is
equal to O(n).

Remark 2 (Privacy Preservation). From the retrieved infor-
mation through Algorithm 1, each node only knows the

Algorithm 1 Distributed Algorithm for Solving Problem 1

Input: network size n, in-neighbor set N in
i

Output: verification if G0 is strongly connected
1: initialize each row of xi[0] as in (5)
2: for each j-th row of xi (j ∈ {1, . . . , n}), execute max-

consensus update law (4) for n iterations.
3: assign fi[0] as in (7)
4: execute max-consensus update law (6) for n iterations
5: node i knows that graph G0 is strongly connected when

fi[n] = 0 and not strongly connected when fi[n] = 1.

existence of path from other nodes to itself (state xi)
and the general notion of the strong connectivity of the
graph G0 (state fi). Thus, Algorithm 1 does not reveal
the overall network topology.

Now, assume that after running Algorithm 1 all nodes
verify that the graph G0 is not strongly connected, i.e., G0

is either a weakly connected or a disconnected digraph. A
distributed algorithm is then needed to add new edges to
G0 so that the resulting graph becomes strongly connected.
The problem can be reduced to a simpler one by converting
G0 into a directed acyclic graph Ĝ0 which contains one
node for each strongly connected component (SCC) of G0.
The resulting node in Ĝ0 with no entering edge is called
a source, and a node with no exiting edge is called a
sink. The new edges to strongly connect Ĝ0 can then be
selected by connecting the existing sink to source following
a certain ordering, as shown in [14], [15]. However, the
computation for the solution in general is centralized which
requires information of the overall network topology. In the
following sections, given a non-strongly connected digraph
we propose distributed algorithms which first estimate the
strongly connected components that each node belongs to
(Section 4) and then distributively add new links to make
the digraph strongly connected (Section 5).

4 DISTRIBUTED ESTIMATION OF SCC
In the following, inspired by the max-consensus algo-
rithm we propose distributive approaches for estimating the
strongly connected component (SCC) of a directed graph.
First, let us introduce the following definitions on different
types of SCC.
Definition 2 (source-scc). source strongly connected component

is a strongly connected component with no entering
edges and one or more exiting edges.

Definition 3 (sink-scc). sink strongly connected component is
a strongly connected component with no exiting edges
and one or more entering edges.

Definition 4 (isolated-scc). isolated strongly connected compo-
nent is a strongly connected component with no exiting
edges and no entering edges.

An illustration of source-sccs, sink-sccs, and isolated-sccs is
shown in Fig. 1. Note that a SCC which is neither sink-
scc, source-scc, or isolated-scc can also exist (called as non-
assigned SCC) within a directed graph, e.g., nodes 9 and 10
in Fig. 1.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3200466

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

3
8

5

10

1

79

2

6
4

14 17

12

15

13

11
16

18 19

20

Fig. 1: Examples of source-sccs (green regions), sink-sccs
(blue regions), isolated-sccs (orange regions), and non-
assigned SCC (gray region)

The proposed distributed algorithms allow each node
i ∈ V to estimate the following: 1) the existence of paths
from other nodes to itself; 2) the SCC that it belongs to,
namely the set Ci; 3) the existence of entering or exiting
edges of its own SCC; and 4) verify whether its own SCC is
a source-scc, sink-scc, isolated-scc, or neither of these.

To that end, for each node i ∈ V , let us assign states
xi[t] ∈ Rn, ci[t] ∈ Rn, and oi[t] ∈ Rn. State xi[t] is used
to check if node i is reachable from any other nodes. State
ci[t] then collect all accessible xj [n] from other nodes for
determining the set Ci. Using the information on ci[n], each
node i also determines an additional set Pi consisting of all
nodes which are reachable to Ci. The determination of enter-
ing edge into Ci will rely on Pi. Then, states oi[t] estimates
the exiting edges from Ci. Finally, the characterization of its
own SCC into source-scc, sink-scc, or isolated-scc will rely
on the information Ci, Pi and oi[n] values.

4.1 Estimation of Paths and SCCs

As the first step, each node updates its state xi[t] for n
iterations according to the update rule (4) whose initial con-
dition is chosen as in (5). Next, let us define the information
number of node i, denoted as ζi, as the number of nodes that
can reach node i, including node i itself. Noting that the
existence of a path from node j to i is indicated by the value
xi,j [n] = 1, node i’s information number is then equal to
ζi = 1T

nxi[n]. In order to estimate the information number
of other nodes which can reach node i, each node updates
for n iterations each row j ∈ V of its own state ci[t], i.e.,
ci,j [t], according to the following rule

ci,j [t+ 1] = max
k∈N in

i ∪{i}
ck,j [t] (8)

whose initial condition is chosen as

ci,j [0] =

{
ζi, if j = i

0, otherwise.
(9)

After n iterations, the information number of all nodes j
that can reach node i will be given by the entry of ci,j [n].

We then have the following results on the information
number:

Lemma 2. If node i is reachable from node j (i.e., ci,j(n) > 0)
and nodes i and j have the same information number
(i.e., ci,j(n) = ζi), then nodes i and j are belonging to

Algorithm 2 Alternative Distributed Algorithm for Solving
Problem 1
Input: directed graph G0, network size n, in-neighbor set

N in
i

Output: verification whether graph G0 is strongly con-
nected

1: initialize each row of xi[0] as in (5)
2: for each j-th row of xi (j ∈ {1, . . . , n}), execute max-

consensus update law (4) for n iterations.
3: initialize each row of ci[0] as in (9)
4: for each j-th row of ci (j ∈ {1, . . . , n}), execute max-

consensus update law (8) for n iterations
5: node i knows that graph G0 is strongly connected when

ci[n] = n1n.

the same SCC (i.e., they are mutually reachable to each
other).

Lemma 3. For each node i, the other nodes in the set Pi

have a smaller (positive) information number compared
to node i (equivalently any nodes in Ci). Specifically,
the information number of node i satisfy ζi ≥ |Ci| +
maxj∈Pi

ζj .

As a direct result of Lemma 3, it is clear that within all
the entries of ci[n], its i-th element ci,i[n] = ζi always
has the highest number. Additionally, from Lemma 2 node
i can estimate its own SCC, i.e., set Ci, by identifying all
nodes which have the same information number with itself,
namely

Ci := {∀j ∈ V | ci,j [n] = ci,i[n]}. (10)

Furthermore, each node i can estimate the set Pi by collect-
ing all nodes which have lower information number than
itself, that is

Pi := {∀j ∈ V | 0 < ci,j [n] < ci,i[n]}. (11)

Here, ci,j [n] = 0 represents the case where node j’s in-
formation is inaccessible to i. Note that the node i’s local
estimation of Ci and Pi are identical to all the other nodes
which belong to the same SCC (i.e,. Cj = Ci and Pj = Pi for
all j ∈ Ci).

It is easy to observe that the only SCC of a strongly
connected graph is the graph itself. In fact, using this obser-
vation we can develop an alternative distributed algorithm
to solve Problem 1 in which each node distributively checks
the membership of its own SCC and verifies if it comprises
of all nodes, i.e. V , as shown in the following corollary.
Corollary 1. Given a digraph G0 and each node executes

in sequence the update laws (4) and (8) for n iterations
each, with initial conditions given in (5) and (9). Then,
G0 is strongly connected if and only if for any i ∈ V ,
ci[n] = n1n (equivalent to |Ci| = n and Ci = V).

The pseudo code of alternative distributed verification algo-
rithm for solving problem 1 is summarized in Algorithm 2.

4.2 Determination of Sink-scc, Source-scc, and
Isolated-scc
Using Algorithm 2, node i can estimate the existence of
paths from other nodes to itself and the SCC that it belongs

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3200466

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

to, namely the set Ci. In order to provide an effective strong
connectivity augmentation which will be described later,
it is important that each node is also able to characterize
whether its own SCC is a source-scc, sink-scc, or isolated-
scc. For this purpose, each node needs to identify the
existence of entering or exiting edges of its own SCC. To
that end, we introduce the following lemma.
Lemma 4. A SCC has no entering edges if and only if Pi = ∅

for all node i in its membership.

With the estimated value of Pi, each node i can determine
the absence of an entering edge to its own SCC (i.e., set Ci)
based on Lemma 4, namely when Pi = ∅.

On the other hand, in order to verify if there exists an
edge from nodes i in Ci to any nodes j /∈ Ci, each node
updates for n iterations each row j ∈ V of its state oi[t], i.e.,
oi,j [t], according to the following rule

oi,j [t+ 1] = max
k∈N in

i ∪{i}
ok,j [t] (12)

whose initial condition is chosen as

oi,j [0] =

{
1, if j = i and ∃k ∈ N out

i (k /∈ Ci)
0, otherwise.

(13)

In other words, the state oi[n] collects the information from
all nodes k ∈ Pi ∪ Ci on whether there exists an edge from
node k to any nodes outside of its set Ck.

We can then establish the following result which allows
each node to distributively characterize its own SCC.
Proposition 1. Given a digraph G0 and each node executes

in sequence the update rules (4), (8), and (12) for n iter-
ations each, with initial values given in (5), (9), and (13),
respectively. Node i can then determine the following to
characterize its own SCC (i.e. the set Ci):

1) All nodes in the set Ci is a source-scc if and only if
Pi = ∅ and there exist a node j ∈ Ci where oi,j [n] =
1.

2) All nodes in the set Ci is a sink-scc if and only if
Pi ̸= ∅ and oi,j [n] = 0, ∀j ∈ Ci.

3) All nodes in the set Ci is an isolated-scc if and only
if Pi = ∅ and oi,j [n] = 0, ∀j ∈ Ci.

Note that a non-assigned SCC will fall outside of the con-
ditions 1)–3) in Proposition 1, i.e., Pi ̸= ∅ and there exist
a node j ∈ Ci where oi,j [n] = 1. The pseudo code for
the proposed distributed estimation and characterization of
SCC is presented in Algorithm 3.
Remark 3 (Computational Complexity). Algorithm 2 and 3

finishes in 2n and 3n iterations, respectively. Thus, both
algorithms’ computational complexity are equal to O(n).

Remark 4 (Privacy Preservation). Using the information
retrieved via Algorithm 2 and 3, each node only knows
the existence of path from other nodes to itself (state
xi), the information number of other nodes (state ci),
and the other SCC’s information regarding their exiting
edges (state oi). Therefore, Algorithm 2 and 3 does not
reveal the overall network topology.

Remark 5. In the case where there is no disjoint subgraphs
in the directed graph G0, it is sufficient to know only the
information on the upper bound of the number of nodes

Algorithm 3 Distributed Estimation and Characterization of
SCC

Input: directed graph G0, network size n, neighbor set N in
i

and N out
i

Output: node i’s associated SCC
1: step 1-4 in Algorithm 2
2: estimate Ci and Pi by (10) and (11), respectively
3: initialize each row of oi[0] as in (13)
4: for each j-th row of oi (j ∈ {1, . . . , n}), execute max-

consensus update law and (12) for n iterations
5: node i can determine whether Ci is a source-scc, sink-

scc, isolated-scc or neither (Proposition 1).

in the network (denoted by n) for executing Algorithm
3. This is due to the fact that the state xi, ci, and oi are
reaching steady state at time step t = n ≤ n. Moreover,
each node i can verify strong connectivity of the digraph
by checking whether its own SCC is an isolated-scc,
namely property 3) in Proposition 1.

5 DISTRIBUTED AUGMENTATION FOR A DI-
RECTED GRAPH’S STRONG CONNECTIVITY
In this section, we focus our discussion on the distributed
strategies to solve Problem 2. We first propose a distributed
algorithm together with its optimality gap in order to add
new edges to a non-strongly connected directed graph G0 so
that the resulting graph becomes strongly connected. Then,
inspired by the centralized approach in [14], [15], we pro-
pose an algorithm to verify in a distributed manner whether
the number of added edges is minimum and alternatively
provide a solution for the minimum link addition problem.
All the computations are performed in a distributed manner
and without requiring information of the overall network
topology G0. We start by introducing the following addi-
tional assumption.
Assumption 2. Each node can establish a communication

link to any node in G0.

This assumption can be satisfied for the publish-subscribe
protocol as found in Open Field Message Bus and in social
network such as Twitter where a node can request a connec-
tion to any other nodes.

In order to simplify the discussion and presentation of
the proposed algorithms, in the remaining of the section
each sink-scc, source-scc, and isolated-scc is represented by
a single node which is a member of their own SCC. To this
end, let us denote Gm as the resulting graph after the m-
iteration of link-addition. Let us define Vm

sour, Vm
sink, and Vm

isol,
as a set consisting of representative nodes respectively for
source-scc, sink-scc, and isolated-scc in Gm. Furthermore, let
Sm
j denote the set of all the source-scc representative nodes

accessible to representative node j ∈ Vm
sink.

A condensed graph representation of a digraph Gm

is then given by Gm
:= {Vm

, Em} with Vm
=

{Vm
sour,Vm

sink,Vm
isol} ⊆ V and (i, j) ∈ Em

denotes the existence
of path from node i to node j in the original graph Gm.
Note that all nodes within non-assigned SCC, together with
non-representative nodes within source-scc, sink-scc, and
isolated-scc, will not have special role during the distributed

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3200466

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

8

1

7

2

6

15

11

18 19

20

Fig. 2: A condensed graph representation Ḡ0 for the digraph
in Fig. 1. The nodes within non-assigned SCCs and non-
representative nodes are omitted in the graph Ḡ0. The graph
Ḡ0 is composed of 5 disjoint subgraphs, i.e., d0 = 5, which
are {1, 2, 6, 7, 8}, {11, 15}, {18}, {19}, and {20}.

link addition other than passing the information, hence they
are omitted for the condensed graph representation.

To this end, the representative nodes can be selected
by following a predefined rules, e.g., the node with the
highest vertex (ID) number in each SCC is selected as the
representative node. Alternatively, the nodes within the
same SCC can locally coordinate over a certain decision
variable, e.g., to select a node with the most number of out-
neighbors, each node can share its own N out

i and execute a
max-consensus algorithm. For the above two examples, the
selection of representative nodes will take no more than n
iteration.

Moreover, we consider the representative nodes after
each link addition, i.e., Vm

, to be selected within V0
. To be

precise, the selection of the representative node ensures that
Vm

sour ⊆ V0
sour∪V0

isol, Vm
sink ⊆ V0

sink∪V0
isol, and Vm

isol ⊆ V0
sink∪V0

isol
are maintained. Additionally let us denote dm as the number
of disjoint subgraphs within Gm. An example of this con-
densed graph is illustrated in Fig. 2. Note that the condensed
graph information is introduced only for facilitating the
discussion, and not necessarily known by each node in the
original graph.

5.1 Distributed Link Addition Algorithm
Here, we present the algorithm to strongly connects G0

by utilizing the estimated SCCs obtained from the previ-
ous section. Recall that each node can use Algorithm 3
to estimate whether its own SCC is a source-scc, sink-scc,
isolated-scc, or neither of these. Let us further assume that
the procedure to select representative nodes for all SCCs
have been established, and as a result we can present the
discussion in terms of the condensed graph Ḡm.

To this end, the proposed algorithm will rely on the
approach where each node i ∈ Vm

sour broadcasts its infor-
mation to the rest of the network and accordingly each
node j ∈ Vm

sink collects this information. This informa-
tion broadcasting enables each sink-scc representative j to
obtain the information about all the accessible source-scc
representative Sm

j ⊆ Vm
sour. The broadcast of information

can be distributively realized via another max-consensus
update law which takes as many as n time-steps, that is
by introducing a state si[t] ∈ Rn and initializing its element
as si,i[0] = 1 if i ∈ V0

sour and si,j [0] = 0 for j ̸= i.

Algorithm 4 Distributed Algorithm to Strongly Connect A
Weakly Connected Digraph

Input: weakly connected graph G0, network size n, neigh-
bor set N in

i and N out
i

Output: strongly connected graph Gm = {V, E ∪∆E+}
1: set m = 0 and run Algorithm 3 {for Gm = {V, E}}
2: if Gm not strongly connected, i.e. Ci ̸= V then
3: determine SCC’s representative node within Ci
4: m = m+ 1
5: if i ∈ Vm−1

sour then
6: broadcast its own information
7: else if i ∈ Vm−1

sink then
8: Sm−1

i = ∅ and start collecting source information
9: end if

10: forward broadcast information for n iterations
11: if i ∈ Vm−1

sink then
12: add all members of Sm−1

i into N out
i and establish

new link from node i to all j ∈ Sm−1
i . {at the same

time i is added into N in
j and conceptually (i, j) is

added to ∆E+}
13: end if
14: end if

5.1.1 Distributed Algorithm for Weakly Connected Graph

We first consider the case where the non-strongly connected
digraph is given by a weakly connected digraph which
has no isolated-sccs, i.e., V0

isol = ∅. Before proceeding, we
introduce the following lemma.

Lemma 5. Given a weakly connected graph G0, adding
edges (j, i) from each node j ∈ V0

sink to all reachable
nodes i ∈ S0

j , results in a strongly connected graph.

The above lemma provides a one-step strategy to strongly
connect a weakly connected digraph, namely by adding a
set of edges from each j ∈ V0

sink to all reachable i ∈ S0
j . The

pseudo code of the proposed algorithm is given in Algo-
rithm 4. Next, let ∆∗ denote the optimality gap between the
added edges using Algorithm 4, denoted by |∆E+| and the
minimum number of required links to strongly connect the
graph. We then have the following main result.

Theorem 3. Given a weakly connected digraph G0 = {V, E},
Algorithm 4 results in a strongly connected graph Gm =
{V, E ∪ ∆E+}. Furthermore, Algorithm 4 will finish in
5n iterations with one link-addition step (m = 1), whose
optimality gap ∆∗ is equal to

∆∗ = |∆E+| −max
{
|V0

sour|, |V0
sink|

}
(14)

where |∆E+| =
∑

i∈V0
sink

|S0
i | ≤ |V0

sour||V0
sink|.

Note that the resulting |∆E+| also denotes the total
number of elementary paths from any pair source-scc to
sink-scc that exists in the initial graph. Furthermore, the
following corollary shows a case where Algorithm 4 results
in a minimum link addition.

Corollary 2. For a weakly connected digraph G0 with
a single source-scc (|V0

sour| = 1) or a single sink-scc
(|V0

sink| = 1), Algorithm 4 yields an optimal solution with
minimum link addition.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3200466

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

Algorithm 5 Distributed Algorithm to Strongly Connect A
Disconnected Digraph

Input: directed graph G0, network size n, neighbor set N in
i

and N out
i

Output: strongly connected graph Gm = {V, E ∪∆E+}
1: set m = 0 and run Algorithm 3 {for Gm = {V, E}}
2: while Gm is not strongly connected, i.e. Ci ̸= V do
3: determine representative node within Ci
4: m = m+ 1
5: run step 5-10 in Algorithm 4 {Broadcast source infor-

mation}
6: if i ∈ Vm−1

isol then
7: randomly select a candidate node j /∈ Ci
8: add j into N out

i and establish new link (i, j).
9: else if i ∈ Vm−1

sink then
10: add all members Sm−1

i into N out
i and establish new

links from node i to all j ∈ Sm−1
i .

11: end if
12: run Algorithm 3 {for Gm = {V, E ∪∆E+}}
13: end while

5.1.2 Distributed Algorithm for Disconnected Digraph
Next, we present distributed algorithm to strongly connect
G0, given that G0 is a disconnected graph which separates
group of nodes into several disjoint subgraphs, i.e. d0 > 1.
The main idea for the proposed distributed link addition
algorithm comprises of two main steps (extending from
ideas in Algorithm 4), namely to strongly connect each
weakly-connected subgraph and to connect all disconnected
subgraphs. Specifically, each link-addition step adds the
following new links: (i) from each i ∈ Vm

sink to all j ∈ Sm
i

and (ii) from each i ∈ Vm
isol to a random node j /∈ Ci.

The pseudo-code of the distributed algorithm is given in
Algorithm 5 and its performance is summarized in the
following theorem.
Theorem 4. Given a disconnected digraph G0 = {V, E}, then

Algorithm 5 results in a strongly connected graph Gm =
{V, E∪∆E+} by adding at most (2d0+

∑
i∈V0

sink
|S0

i |) new
edges. Furthermore, Algorithm 5 will finish in 3n+5nm
iterations with the worst case m = 2⌈log2 d0⌉, whose
optimality gap ∆∗ is upper-bounded by

∆∗ ≤ 2d0 +
∑

i∈V0
sink

|S0
i | − (max{|V0

sour|, |V0
sink|}+ |V0

isol|).

(15)

Remark 6. Note that for a weakly connected digraph, the
link addition procedure in Algorithm 5 is identical to
Algorithm 4, i.e., m = 1. However, Algorithm 5 intro-
duces additional 3n iterations for strong connectivity
verification (Algorithm 3 in line 12), thus finishes in 8n.

Remark 7 (Alternative Algorithm). An earlier version of
algorithm is presented in [1] without the need to broad-
cast the source information. However, it may results in a
longer computation time as the computation complexity
is O(n2).

Remark 8. Analogous to Remark 5, given a weakly con-
nected graph G0, the Algorithm 4 and 5 can be executed
only with the information of the upper bound of number

of nodes n ≥ n by modifying the step 2 into checking
whether Ci reflects an isolated-scc, namely property 3) in
Proposition 1. Moreover, the exact number of nodes, i.e.,
n, can be inferred at the end of Algorithm 5 as n = |Ci|.

5.2 Verifying and Enforcing Minimum Link Addition
In the previous subsection, we have presented distributed
link addition algorithms to ensure a strongly connected
graph. However, as summarized in Theorems 3 and 4, the
resulting number of added links is not always guaranteed
to be minimum. In the following, we present the procedure
to verify whether the number of added links is minimum,
and additionally compute a new set of edges to ensure min-
imum link augmentation by first removing the previously
augmented edges ∆E+. The computation will be conducted
by a single node called a virtual leader. The virtual leader
can be selected among any node i ∈ V0

sink ∪ V0
isol where

(i, j) ∈ ∆E+ for some nodes j.
The verification of minimum link addition is conducted

once the execution of Algorithm 5 is finished. The strong
connectivity of the graph is required in order to collect the
information for the minimum link verification algorithm as
well as to solve the minimum link augmentation problem. A
solution to the minimum link augmentation problem itself is
presented in [14], [15], where a max{|V0

sour|, |V0
sink|}+ |V0

sink|
number of links can be added once the information on V0

isol,
V0

sour, V0
sink, and S0

i ,∀i ∈ V0
sink are known.

Adopting the approach in [14], [15] to our current setup,
the virtual leader needs to collect the following information:
1) original sinks V0

sink; 2) reachable sources S0
i for each

i ∈ V0
sink; and 3) number of added links |∆E+|. Note that the

set V0
sour can be reconstructed from ∪i∈V0

sink
S0
i . These infor-

mation can be obtained by having all nodes i ∈ V0
sink ∪ V0

isol
to broadcast their own information and the number of links
which they added. Using the above information, the virtual
leader can then verify if the added link |∆E+| is minimum.
If the number of added links is not minimum, the virtual
leader then constructs a new set of ∆E+ which ensure the
minimal link augmentation.

The procedure to compute the minimum link augment-
ing set, as shown in [14], [15], requires an index p and an
ordering v(1), . . . , v(|V0

sour|+|V0
isol|) and w(1), . . . , w(|V0

sink|).
The ordering w contains all nodes in V0

sink, while the order-
ing v contains a combination of V0

sour and V0
isol. The index p

and the orderings need to ensure the following properties:

1) there is a path from v(i) to w(i) for 1 ≤ i ≤ p;
2) for each source v(i), p + 1 ≤ i ≤ |V0

sour| there is a
path from v(i) to some w(j), 1 ≤ j ≤ p ; and

3) for each sink w(j), p+1 ≤ j ≤ |V0
sink| there is a path

from some v(i), 1 ≤ i ≤ p to w(j).

Additionally, the ordering v(|V0
sour| + 1), . . . , v(|V0

sour| +
|V0

isol|) contains all nodes from V0
isol. Given the existing infor-

mation in the virtual leader, the ordering can be constructed
by following the steps in Algorithm 6.
Lemma 6. Given a list of pairings of sinks and their reach-

able sources, the Algorithm 6 finds an index p and an
ordering of v and w satisfying Properties 1–3.

Once the p and the ordering of v and w are known, the
augmenting set can be constructed as a combination of the

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3200466

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

∆E+ ={(w(i), v(i+ 1)) | 1 ≤ i < p} ∪ {(w(i), v(i)) | p+ 1 ≤ i ≤ min{|V0
sour|, |V0

sink|}}

∪



(w(p),V∗), if |V0
sour| = |V0

sink| > 0;

(w(p), w(|V0
sour|+ 1)) ∪ {(w(i), w(i+ 1)) | |V0

sour|+ 1 ≤ i < |V0
sink|}

∪ (w(|V0
sink|),V∗),

if |V0
sour| < |V0

sink|;

(w(p), v(|V0
sink|+ 1)) ∪ {(v(i), v(i+ 1)) | |V0

sink|+ 1 ≤ i < |V0
sour|}

∪ (v(|V0
sour|),V∗),

if |V0
sour| > |V0

sink|;

∪
{
{(v(i), v(i+ 1)) | (|V0

sour|+ 1) ≤ i < (|V0
sour|+ |V0

isol|)} ∪ (v(|V0
sour|+ |V0

isol|), v(1)) if |V0
isol| ≠ 0;

∅ if |V0
isol| = 0;

with V∗ =

{
v(|V0

sour|+ 1) if |V0
isol| ≠ 0;

v(1) if |V0
isol| = 0;

.

(16)

Algorithm 6 Ordering for Sinks and Sources

Input: V0
sour, V0

sink, V0
isol, and S0

i for all i ∈ V0
sink

Output: p, v and w following Properties 1–3
1: p = 0
2: for each i ∈ V0

sink do
3: for each j ∈ S0

i do
4: if j /∈ {v(1), . . . , v(p)} and i /∈ {w(1), . . . , w(p)}

then
5: p = p+ 1
6: add j to v(p) and add i to w(p)
7: end if
8: end for
9: end for

10: add the remaining V0
sour into v(p+ 1), . . . , v(|V0

sour|)
11: add the remaining V0

sink into w(p+ 1), . . . , w(|V0
sink|)

12: add all V0
isol into v(|V0

sour|+ 1), . . . , v(|V0
sour|+ |V0

isol|)

following edges shown in (16). Note that the formulated
links in (16) is modified from the original formulation in
[14], [15] to circumvent the need to flip the direction of the
graph for the case of |V0

sour| > |V0
sink|. The information about

the augmenting set can then be distributed to all nodes
to reconfigure the new edges, that is by locally removing
existing ∆E+ and replacing it with the new one.

The complete pseudo-code of algorithm for verifying
and enforcing minimum link addition is presented in Algo-
rithm 7. The results can be formally stated in the following
theorem.

Theorem 5. Consider a disconnected digraph G0. Given an
index p, and an ordering of v and w following Proper-
ties 1-3, then the set of edges ∆E+ in (16) makes the
resulting graph G∗ = {V, E ∪∆E+} strongly connected.
In addition, the number of links added is |∆E+| =
max{|V0

sour|, |V0
sink|}+ |V0

isol|.

Remark 9 (Privacy Preservation). In addition to the ex-
isting information as stated in Remark 4, by executing
Algorithm 4, 5, or 7, each node can also retrieved the
information of Vm

sour, V0
sink, and V0

isol from the broadcasted
information. While this information provide a general
existence of paths between source-sccs and sink-sccs, it
is still not sufficient for each node to reveal the overall
network topology, thus preserving the privacy.

Algorithm 7 Distributed Algorithm for Solving Problem 2

Input: directed graph G0, network size n, neighbor set N in
i

and N out
i

Output: strongly connected graph Gm = {V, E∪∆E+} with
minimum number of ∆E+

1: run Algorithm 5
2: determine virtual leader
3: if node i ∈ V0

sink ∪ V0
isol then

4: if node i is not virtual leader then
5: broadcast i, added edges, and accessible sources S0

i

(if applicable)
6: else
7: start collecting other’s information
8: end if
9: end if

10: forward broadcast information for n iterations
11: if node i is virtual leader then
12: construct V0

sour, V0
sink, V0

isol and ∆E+

13: if |∆E+| > max{|V0
sour|, |V0

sink|}+ |V0
isol| then

14: construct Tarjan’s ordering as Algorithm 6
15: construct minimum link augmentation as in (16)
16: broadcast the optimal link to reforge new ∆E+

17: else
18: broadcast that link is already optimal
19: end if
20: end if
21: save broadcasted information and forward it for n iter-

ations
22: process the information, re-establish new links if previ-

ously not optimal

Remark 10 (Computational Complexity). Algorithm 7 fin-
ishes in 3n additional iterations from Algorithm 4
due to the broadcasting procedures, totaling to 6n +
10n(⌈log2 d0⌉) iterations. Hence, Algorithm 7 computa-
tional complexity is equal to O(n log n).

6 NUMERICAL SIMULATION
In this section, we provide numerical simulations where
we test Algorithm 7 as it covers all the main func-
tionalities presented in Algorithms 1-6. The distributed
computation of Algorithm 7 including the informa-
tion exchange are simulated in a single PC using

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3200466

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

0

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

2829
30

31

32

33

34

35

36

3738

39

40

41

42

43

44

45

46

4748

49

Original Edges

Fig. 3: A disconnected graph GL with 50 nodes.

TABLE 2: Parameter of the tested graph and the theoretical
bounds from Theorem 4 and 5

Parameter GB GA GL

|V0
sour| 3 4 11

|V0
sink| 2 3 11

|V0
isol| 0 3 6

|E0| 5 6 34
d0 1 5 9

min required links |∆E+| 3 7 17
guaranteed max links |∆E+| 7 16 52

max optimality gap ∆∗ 4 9 35
max number of link addition m 2 6 8

max time step iteration 16n 36n 46n

python programming language. The source code is
available in the following link https://github.com/
TUNI-IINES/dist-strong-connectivity.

For the simulations we consider three different graphs,
namely GA,GB ,GL. The graph GA = (VA, EA) consists
of 5 disjoint subgraphs and is shown in Fig. 1. Digraph
GB = (VB , EB) is a weakly connected graph consists of
10 nodes as depicted in Fig. 4. Finally, digraph GL is a
disconnected graph of 50 nodes as shown in Fig. 3. The de-
tailed parameters for each graph and the theoretical bounds
presented in Theorems 4 and 5 are summarized in Table 2.

Since the distributed link addition for the weakly con-
nected graph provides a unique solution, it is sufficient to
run a single numerical simulation for GB . Furthermore, we
conduct 400 and 2500 number of simulations for GA and GL

respectively in order to ensure sufficient samples (n2) are
collected for verifying our theoretical results in Theorem 4
and 5, as some new links are selected randomly.

All the results of the numerical simulation show that
the distributed link addition algorithms result in strongly
connected digraph and if the number of added links is not
minimum, the algorithms will further enforce a minimum
number of added links. Hence, the results are aligned
with Theorem 5. More detailed results are presented in
the subsequent discussions to further verify the required
number of time steps and the number of augmented link
before the minimum link reconfiguration in comparison to

1

2

3

4

5

6

7
8

9
10

Original Edges
Added Edges #1

(a) Result of Algorithm 5

1

2

3

4

5

6

7
8

9
10

Original Edges
Minimum Link Edges

(b) Result of Algorithm 7

Fig. 4: Numerical results for graph GB at the end of: a)
distributed link addition algorithm and b) verification and
enforcing minimum link addition algorithm.

its theoretical bound given in Theorem 4.

6.1 Weakly Connected Graph GB with 10 nodes
The results for graph GB is illustrated in Fig. 4. The algo-
rithm finishes in 11n time steps, where it first introduces
5 new edges (Fig. 4a) to strongly connect graph GB be-
fore minimum link addition is enforced with 3 new edges
(Fig. 4b). Note that for the weakly connected graph, the
link addition procedure in Algorithm 5 is identical to the
one in Algorithm 4, which ensures strong connectivity in
5n iteration (m = 1). In addition, Theorem 3 guarantee a
smaller optimality gap with ∆∗ = 2, which is aligned with
the observation shown in Fig. 4.

6.2 Disconnected Graph GA with 20 nodes
An example of the results for graph GA is illustrated in Fig. 5
while the results for n2 = 400 repetitions are summarized
in Fig. 6. For all the repetitions, the data shows that the
algorithm finishes in 21n time steps, which is equivalent to
link addition with m = 3 steps. The number of added links
for all the repetitions are between 12 to 14 new edges. Both
the number of iterations and number of augmented links
are within the expected bounds as shown in Table 2.

6.3 Disconnected Graph GL with 50 nodes
Finally, an example of the results for graph GL is illustrated
in Fig. 7 while the results for n2 = 2500 repetitions are
summarized in Fig. 8. The data is divided into two groups,
with the majority (1362 results) finishes in 26n time steps
and the remaining (1138 results) finishes in 21n time steps,
which are equivalent to link addition with m = 4 and m = 3
steps, respectively. The number of added links for all the
results are between 46 to 50 new edges. Both the number
of iterations and number of augmented links are within the
expected bounds as shown in Table 2. The results verify the
theoretical bounds given in Theorem 4 and 5.

7 CONCLUSIONS
This paper proposes distributed and finite time algorithms
to verify strongly connected property of a directed graph
and to make a directed graph strongly connected with
a minimum number of link addition. The strategy is in-
spired by maximum consensus algorithm which is known

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3200466

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

1

2

3

4

5

6

7
8

9
10

11

12

13

14

15

16

17

18

19
20

Original Edges
Added Edges #1
Added Edges #2
Added Edges #3

(a) Result of Algorithm 5.

1

2

3

4

5

6

7
8

9
10

11

12

13

14

15

16

17

18

19
20

Original Edges
Minimum Link Edges

(b) Result of Algorithm 7

Fig. 5: An example of numerical results for graph GA at the
end of: a) distributed link addition algorithm and b) verifi-
cation and enforcing minimum link addition algorithm.

6 7 8 9 10 11 12 13 14 15 16 17 18
Number of Augmented links

16

21

26

31

36

41

Nu
m

be
r o

f T
im

e
St

ep
s (

tim
es

 n
)

19518322
Optimal
Number
of Links

Theoretical
Maximum
Number of
Augmented
Links

Theoretical
Maximum
Number of
Iterations

m=3

Fig. 6: Numerical results of disconnected graph GA with
20 nodes for 400 repetitions. The number beside each data
point describe the number of accumulated occurrences on
that data point.

to have finite computation time. The proposed strategies
provide the solutions without requiring knowledge of the
overall network topology and further preserve the privacy
in terms of the overall network’s topology. Strong con-
nectivity is a graph property that is commonly assumed
or required in many distributed systems and is crucial
in guaranteeing convergence of many distributed estima-
tion/optimization/control algorithms. Hence, the proposed
distributed strategy has broad applications.

Future work will aim towards the asynchronous imple-
mentation of the proposed algorithms and to relax the as-
sumption where only upper bound of the number of nodes
is known. In addition, several application specific use-cases
will be considered, e.g., towards minimizing network’s end-
to-end delay or a case where a communication link can
only established with nodes within a certain communication
range.

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

2930
31

32

33

34

35

36

37

3839

40

41

42

43

44

45

46

47

4849

50

Original Edges
Added Edges #1
Added Edges #2
Added Edges #3

(a) Result of Algorithm 5.

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

2930
31

32

33

34

35

36

37

3839

40

41

42

43

44

45

46

47

4849

50

Original Edges
Minimum Link Edges

(b) Result of Algorithm 7

Fig. 7: An example of numerical results for graph GL at the
end of: a) distributed link addition algorithm and b) verifi-
cation and enforcing minimum link addition algorithm.

16 17 18

16

21

26

31

36

41

46

51

Nu
m

be
r o

f T
im

e
St

ep
s (

tim
es

 n
)

m=3

m=4

Optimal
Number
of Links

Theoretical
Maximum
Number of
Iterations

46 47 48 49 50 51 52 53 54

778

133

476

487 495

100

212

8

Theoretical
Maximum
Number of
Augmented
Links

Number of Augmented links

Fig. 8: Numerical results of disconnected graph GL with 50
nodes for 2500 repetitions. The number beside each data
point describe the number of accumulated occurrences on
that data point.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3200466

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

APPENDIX A
PROOFS

A.1 Proof of Theorem 1

We start by showing the necessity (⇒). From Lemma 1,
since the graph G0 is strongly connected, each element in xi

namely xi,j will converge to maxi xi,j [0] = 1 (strong max-
consensus) for all i, j ∈ V within the worst-case of n − 1
iterations. Thus, xi[n] = 1n is fulfilled for all i ∈ V . Next,
we show the sufficiency (⇐) through contradiction. We first
assume that graph G0 is not strongly connected, i.e., there
exists no path from a certain node i to j. However, as we
have xi,j [n] = 1 under update law (4) for all j-th row in
xi[n] and for all nodes i in the network, this means that there
exist path from any node j to any node i. Hence the graph
G0 is strongly connected, which contradicts the assumption.

A.2 Proof of Theorem 2

Let us divide all nodes into set V0 := {∀i ∈ V | fi[0] = 0}
and V1 := {∀i ∈ V | fi[0] = 1}. Then, we can rewrite
Theorem 1 as graph G0 is strongly connected if and only if
V0 = V and V1 = ∅, equivalently fi[n] = 0, ∀i ∈ V .

For a non-strongly connected graph G0, under update
law (6), the value of fi will converge to maxi fi[0] = 1, ∀i ∈
V (weak maximum consensus) if for any node i ∈ V0 there
exists path ending in i and starting in j ∈ V1 [25]. Note that
this condition is satisfied as any node i ∈ V0 is reachable
from all nodes. This ensures that fi[n] = fj [n],∀i, j ∈ V .

A.3 Proof of Lemma 2

As there exist a path between any distinct nodes within
a SCC, this means that all information from one node
can reach the other, which results in an equal information
number.

A.4 Proof of Lemma 3

Node i can be reached by all nodes in Pi as well as its own
SCC, i.e. Ci, thus ensures a higher information number than
all nodes in Pi. Hence, node i’s information number is lower
bounded by maxj∈Pi

|Ci|+ ζj , noting that node i’s SCC can
have multiple entering edges.

A.5 Proof of Corollary 1

We start by showing the necessity (⇒). Since the graph G0

is strongly connected, Theorem 1 ensures that xi[n] = 1n

for all i ∈ V . Hence, all node i’s information number is
equal to n, initializing ci,i[0] = n. Strong connectivity of G0

and update law (8) ensures maximum consensus protocol
[25] for each element in ci namely ci,j will converge to
maxi ci,j [0] = n for all i, j ∈ V . Thus, ci[n] = n1n. Note that
with (10), the above condition is equivalent to each node i
ends up with Ci = V (alternatively |Ci| = |V| = n) for all
i, j ∈ V . The sufficiency (⇐) through contradiction follows
similar arguments with Theorem 1.

A.6 Proof of Lemma 4
We can show the proof by contradiction, assume a given
node i where its SCC (i.e. set Ci) has no entering edge and
Pi ̸= ∅. The fact that Pi ̸= ∅ implies that there exist at
minimum one node outside of Ci which can reach node i ∈
Ci. Hence, there exist an entering edge to its own SCC which
contradict the original assumption.

A.7 Proof of Proposition 1
The three statements follows directly from Definitions 2-4
as results from update rules (4), (8), and (12). The condition
Pi ̸= ∅ denotes that there exist at least one node in Pi that
can reach a node in Ci, hence the existence of at least an
entering edge to node i’s SCC. Conversely, the absence of
entering nodes is denoted by Pi = ∅. The existence of at
least an exiting edge is denoted by any oi,j [n] = 1 for all
node j ∈ Ci, while the absence of exiting edge is denoted by
oi,j [n] = 0, ∀j ∈ Ci.

A.8 Proof of Lemma 5
Each new edge (j, i) creates a cycle containing all nodes
within the elementary path from i ∈ S0

j ⊆ V0
sour to the j ∈

V0
sink, merging the corresponding SCCs into a single SCC. As

it occurs simultaneously for all sink-sccs towards all existing
source-sccs, this ensure there exist a path from node j to
node i for every original edge (i, j) ∈ E . Hence, by the
definition of weakly connected graph, the resulting graph is
strongly connected.

A.9 Proof of Theorem 3
The Algorithm 4 reflects the described step in Lemma 5,
hence strongly connects the whole graph.

Upper bound of the added links: The link addition
procedure in step 12 introduces |S0

i | ≤ |V0
sour| number of

new links for each i ∈ V0
sink. Thus, the number of added links

will be
∑

i∈V0
sink

|S0
i | and is upper-bounded by |V0

sour||V0
sink|.

Computational complexity: The Algorithm 3 in step 1
runs in 3n iterations, while the link addition step (steps 3-13)
requires 2n steps due to the selection of representative nodes
and information broadcast. Hence, by a simple calculation,
the execution of Algorithm 4 requires a total 5n iterations.

Optimality gap: The minimum number of edges that
must be added to strongly connect a weakly connected
digraph is equal to max

{
|V0

sour|, |V0
sink|

}
, see [14], [15]. This

stems from the fact that we need to introduce at least one
exiting edge on sink-scc and at least one entering edge
on source-scc. Then, the number of the new edges added
through Algorithm 4 is |∆E+| ≥ max

{
|V0

sour|, |V0
sink|

}
.

Thus, the optimality gap can be calculated as ∆∗ =
|∆E+| −max

{
|V0

sour|, |V0
sink|

}
. As the number of added link

is
∑

i∈V0
sink

|S0
i |, the optimality gap is ∆∗ =

∑
i∈V0

sink
|S0

i | −
max

{
|V0

sour|, |V0
sink|

}
.

A.10 Proof of Corollary 2
When |V0

sour| = 1 or |V0
sink| = 1, we can write the right hand

side of inequality (14) as∑
i∈V0

sink

|S0
i | −max

{
|V0

sour|, |V0
sink|

}
≤ |V0

sour||V0
sink| −max

{
|V0

sour|, |V0
sink|

}
= 0.

(17)

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3200466

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

Hence, the optimality gap ∆∗ = 0, i.e., number of links
obtained from Algorithm 4 is minimum.

A.11 Proof of Theorem 4

As stated in Lemma 5 the combination of new links from
each i ∈ Vm

sink to all j ∈ Sm
i strongly connects the subgraph

where node i belongs to (Step 10). In addition, the new
links from each i ∈ Vm

isol to a random node j /∈ Pi ∪ Ci
(Step 8) connect the associated disjoint subgraphs to form
either new weakly connected subgraphs or new isolated-
sccs (from multiple isolated-sccs forming a cycle).

Now, consider a case where the original graph consists
of d0 weakly connected subgraphs and assume d0 is even.
For m = 1, only nodes i ∈ V0

sink add new links following
step 10, resulting in d0 isolated-sccs. Next, consider an
extreme condition in the subsequent link addition (m = 2),
where any distinct pair of isolated-sccs connect to each other
to form a new isolated-sccs. This reduces the number of
disjoint subgraphs into d0/2.

Note that we can consider the above as the worst-case
scenario, given the following arguments: (a) when isolated-
scc exists in the original graph, the number of disjoint
graphs will already be reduced after m = 1, (b) in many
cases several isolated-sccs can chain together, thus further
reducing the number of disjoint graph after m = 2, and (c)
the extreme case for odd d0 after m = 2 will be analogous
to the above (even) case as the last single isolated-scc need
to add link to a pair of connected isolated-sccs. Hence, it is
guaranteed that after 2 number of link additions the number
of disjoint subgraph will be less than half of the original, i.e.,
dm+2 ≤ dm/2. Thus, the proposed Algorithm 5 guarantees
the reduction of the number of disjoint subgraphs which
results in a strongly connected graph under finite number
of link-addition steps.

Upper bound of the added links: Since the number of
disjoint subgraphs is guaranteed to be less than half of its
original after 2 steps of link addition, i.e., dm+2 ≤ dm, Algo-
rithm 5 will finish at most within 2⌈log2 d0⌉ link additions.

In the first link addition, i.e., m = 1, each node i ∈ V0
sink

adds |S0
i | ≤ |V0

sour| number of new links (step 10). At the
same time each node i ∈ V0

isol adds a new link towards other
disjoint subgraphs (step 8). Note that after each link addi-
tion, any weakly connected subgraph becomes an isolated-
sccs while any existing isolated-sccs add a new exiting edge.
From the above observations, we can infer that any new
weakly connected subgraph that is created after adding
new links will only have a single sink-scc. Note that the
subsequent new edges from this single sink-scc to all source-
sccs, is still within the considered worst-case scenario where
pair of isolated-sccs are selecting each other to add new
links. Hence, with the exception of

∑
i∈V0

sink
|S0

i | number
of links from step 10 at m = 0, the number of new links
to connect the disjoint subgraphs via Algorithm 5 can be
upper-bounded by d0 + d0/2 + d0/4 + · · · ≤ 2d0. Thus,
in total the number of added links is upper-bounded by∑

i∈V0
sink

|S0
i |+ 2d0.

Computational complexity: The Algorithm 3 runs in 3n
iterations, while each link addition steps will need 2n steps
due to the selection of representative node and information
broadcast. Then by simple calculation, each link addition

step requires 5n iterations. In total, as m ≤ 2⌈log2 d0⌉, Algo-
rithm 5 requires at maximum 3n+ 10n⌈log2 d0⌉) iterations.

Optimality gap: The minimum number of edges that
must be added to strongly connect a disconnected digraph
is max{|V0

sour|, |V0
sink|} + |V0

isol|, as shown in [14], [15]. This
stems from the fact that we need to introduce at least one
exiting edge on sink-sccs and isolated-sccs and at least
one entering edge on source-sccs and isolated-sccs. Thus,
the optimality gap can be calculated as ∆∗ = |∆E+| −
(max{|V0

sour|, |V0
sink|}+|V0

isol|). with the upper-bound is given
by ∆∗ ≤

∑
i∈V0

sink
|S0

i |+2d0− (max{|V0
sour|, |V0

sink|}+ |V0
isol|).

A.12 Proof of Lemma 6
Algorithm 6 constructs the ordering by iterating and check-
ing each pairing of sink and reachable sources. Note that
each pairings already ensures that there is a path from any
selected source j ∈ S0

i ⊆ V0
sour to the given i ∈ V0

sink, which
is a requirement for Property 1. Initially, at the first iteration
we can add any i ∈ V0

sink and its respective j ∈ S0
i . Then,

in the subsequent iterations, assuming that the pairing list
contains no duplicate sink, the order can be updated as
long as there exist a reachable source that has not been
listed from a given pairing, i.e., j /∈ {v(1), . . . , v(p)}. If
all sources j ∈ Si already included in the ordering, i.e.,
j /∈ {v(1), . . . , v(p)}, then the given sink already satisfy
the condition for Property 3, thus can be added later into
w(p+1), . . . , w(|V0

sink|) after finished inspecting all the pair-
ing list. In a similar argument, all the sources that is not
selected during iterations, ∀j | j ∈ V0

sour \ {v(1), . . . , v(p)},
satisfy the condition for Property 2 and can be assigned into
v(p+ 1), . . . , v(|V0

sour|).

A.13 Proof of Theorem 5
The proof follow analogously to the existing result in [14],
[15]. First, let us consider |V0

isol| = 0 and focus on all
the augmented edges with the exception of (w(i), v(i)) |
p + 1 ≤ i ≤ min{|V0

sour|, |V0
sink|}. These in total introduces

p+ ∥|V0
sour| − |V0

sink|∥ new edges. Observe that by augment-
ing these edges, the nodes v(1), . . . , v(p), w(1), . . . , w(p)
and either v(|V0

sink|), . . . , v(|V0
sour|) for |V0

sink| < |V0
sour| or

w(|V0
sour|), . . . , w(|V0

sink|) for |V0
sour| < |V0

sink| are on a directed
cycle (denoted by C) and thus strongly connected. Thus,
all of these nodes and their respective sccs are mutually
reachable.

By property (2) there is a path from v(i), p + 1 ≤ i ≤
min{|V0

sour|, |V0
sink|} to some vertex in w(j), 1 ≤ i ≤ p

and hence to all vertices on C. Then, from property (3)
and the addition of edge (w(i), v(i)) for p + 1 ≤ i ≤
min{|V0

sour|, |V0
sink|}, there is a path from every node in the

cycle C to each v(i), p + 1 ≤ i ≤ min{|V0
sour|, |V0

sink|}.
A similar argument shows that there is a directed path
from the nodes in the cycle C to each w(i), p + 1 ≤
i ≤ min{|V0

sour|, |V0
sink|} and from each w(i), p + 1 ≤ i ≤

min{|V0
sour|, |V0

sink|} to the nodes in cycle C.
To this end, the set (w(i), v(i)) for p + 1 ≤ i ≤

min{|V0
sour|, |V0

sink|} introduces min{|V0
sour|, |V0

sink|} − p new
edges. In addition to the p + ∥|V0

sour| − |V0
sink|∥ num-

ber of edges introduced previously, the total number of
augmented set in ∆E+ is min{|V0

sour|, |V0
sink|} + ∥|V0

sour| −
|V0

sink|∥ = max{|V0
sour|, |V0

sink|}.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3200466

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

Note that for the case of |V0
isol| > 0, the modifica-

tion in (16) adds |V0
isol| new edges by chaining the nodes

v(|V0
sour| + 1), . . . , v(|V0

sour| + |V0
isol|) in the directed cycle C.

The rest of the proof follows the previous discussion when
|V0

isol| = 0, which ensures all nodes are mutually reachable.
The additional modification for connecting isolated-sccs re-
sults in the total number of augmented set introduced in
∆E+ as max{|V0

sour|, |V0
sink|}+ |V0

isol|.

REFERENCES

[1] M. W. S. Atman and A. Gusrialdi, “Distributed algorithms for
verifying and ensuring strong connectivity of directed networks,”
in 2021 60th IEEE Conference on Decision and Control (CDC), Dec.
2021, pp. 4798–4803.

[2] A. Gusrialdi and Z. Qu, “Distributed estimation of all the eigen-
values and eigenvectors of matrices associated with strongly con-
nected digraphs,” IEEE Control Systems Letters, vol. 1, no. 2, pp.
328–333, 2017.

[3] T. Charalambous, M. G. Rabbat, M. Johansson, and C. N. Had-
jicostis, “Distributed finite-time computation of digraph param-
eters: Left-eigenvector, out-degree and spectrum,” IEEE Transac-
tions on Control of Network Systems, vol. 3, no. 2, pp. 137–148, Jun.
2016.

[4] V. S. Mai and E. H. Abed, “Distributed optimization over directed
graphs with row stochasticity and constraint regularity,” Automat-
ica, vol. 102, pp. 94–104, 2019.

[5] Q. Yang and G. Chen, “Primal-dual subgradient algorithm for
distributed constraint optimization over unbalanced digraphs,”
IEEE Access, vol. 7, pp. 85 190–85 202, 2019.

[6] T. Charalambous, Y. Yuan, T. Yang, W. Pan, C. N. Hadjicostis,
and M. Johansson, “Distributed finite-time average consensus in
digraphs in the presence of time delays,” IEEE Transactions on
Control of Network Systems, vol. 2, no. 4, pp. 370–381, 2015.

[7] L. Sabattini, C. Secchi, and N. Chopra, “Decentralized estimation
and control for preserving the strong connectivity of directed
graphs,” IEEE Transactions on Cybernetics, vol. 45, no. 10, pp. 2273–
2286, 2014.

[8] Z. Qu and M. A. Simaan, “Modularized design for cooperative
control and plug-and-play operation of networked heterogeneous
systems,” Automatica, vol. 50, no. 9, pp. 2405–2414, 2014.

[9] A. Gusrialdi, “Distributed algorithm for link removal in directed
networks,” in International Conference on Complex Networks and
Their Applications. Springer, 2020, pp. 509–521.

[10] “Ros-robot operating system,” https://www.ros.org/, accessed:
2022-07-03.

[11] “Open field message bus,” https://openfmb.ucaiug.org/, ac-
cessed: 2022-07-03.

[12] H. Efstathiades, D. Antoniades, G. Pallis, M. D. Dikaiakos,
Z. Szlávik, and R.-J. Sips, “Online social network evolution: Re-
visiting the twitter graph,” in 2016 IEEE International Conference on
Big Data (Big Data). IEEE, 2016, pp. 626–635.

[13] S. Dobrev, E. Kranakis, D. Krizanc, J. Opatrny, O. M. Ponce, and
L. Stacho, “Strong connectivity in sensor networks with given
number of directional antennae of bounded angle,” in International
Conference on Combinatorial Optimization and Applications. Springer,
2010, pp. 72–86.

[14] K. P. Eswaran and R. E. Tarjan, “Augmentation problems,” SIAM
Journal on Computing, vol. 5, no. 4, pp. 653–665, Dec. 1976.

[15] S. Raghavan, “A note on eswaran and tarjan’s algorithm for the
strong connectivity augmentation problem,” in The Next Wave
in Computing, Optimization, and Decision Technologies, ser. Oper-
ations Research/Computer Science Interfaces Series, B. Golden,
S. Raghavan, and E. Wasil, Eds. Boston, MA: Springer US, 2005,
pp. 19–26.

[16] M. Sharir, “A strong-connectivity algorithm and its applications
in data flow analysis,” Computers & Mathematics with Applications,
vol. 7, no. 1, pp. 67–72, Jan. 1981.

[17] H. N. Gabow, “Path-based depth-first search for strong and bicon-
nected components,” Information Processing Letters, vol. 74, no. 3,
pp. 107–114, May 2000.

[18] P. Lammich, “Verified efficient implementation of gabow’s
strongly connected component algorithm,” in Interactive Theorem
Proving, ser. Lecture Notes in Computer Science, G. Klein and
R. Gamboa, Eds. Cham: Springer International Publishing, 2014,
pp. 325–340.

[19] Z. Wang, Y. Wu, Y. Xu, and R. Lu, “An Efficient Algorithm to
Determine the Connectivity of Complex Directed Networks,” IEEE
Transactions on Cybernetics, pp. 1–8, 2020.

[20] T. Watanabe and A. Nakamura, “Edge-connectivity augmentation
problems,” Journal of Computer and System Sciences, vol. 35, no. 1,
pp. 96–144, Aug. 1987.

[21] K. V. Klinkby, P. Misra, and S. Saurabh, “Strong connectivity
augmentation is FPT,” in Proceedings of the 2021 ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), ser. Proceedings. Society
for Industrial and Applied Mathematics, Jan. 2021, pp. 219–234.

[22] X. Bao, L. Han, C. Deng, H. Zhang, and W. Tan, “Robust topology
construction method with radio interface constraint for multi-
radio multi-channel wireless mesh network using directional an-
tennas,” International Journal of Distributed Sensor Networks, vol. 12,
no. 9, p. 1550147716668062, Sep. 2016.

[23] N. Chen, T. Qiu, Z. Lu, and D. O. Wu, “An Adaptive Robustness
Evolution Algorithm With Self-Competition and its 3D Deploy-
ment for Internet of Things,” IEEE/ACM Transactions on Network-
ing, vol. 30, no. 1, pp. 368–381, Feb. 2022.

[24] A. Gusrialdi, Z. Qu, and S. Hirche, “Distributed link removal
using local estimation of network topology,” IEEE Transactions on
Network Science and Engineering, vol. 6, no. 3, pp. 280–292, Jul. 2019.

[25] B. M. Nejad, S. A. Attia, and J. Raisch, “Max-consensus in a
max-plus algebraic setting: The case of fixed communication
topologies,” in 2009 XXII International Symposium on Information,
Communication and Automation Technologies, Oct. 2009, pp. 1–7.

[26] ——, “Max-consensus in a max-plus algebraic setting: The case of
switching communication topologies,” IFAC Proceedings Volumes,
vol. 43, no. 12, pp. 173–180, Jan. 2010.

Made Widhi Surya Atman (S’18–M’20) re-
ceived the BEng and MSc degrees in electrical
engineering from the Institut Teknologi Bandung,
Indonesia, in 2011 and 2014, respectively. In
2017 and 2020, he received the MEng degree
in mechanical and control engineering and the
DEng degree in systems and control engineering
from the Tokyo Institute of Technology. Since
2020, he has been a postdoctoral research fel-
low with the Automation Technology and Me-
chanical Engineering, Tampere University. His

research interests include human–swarm interaction, passivity-based
control and distributed control of networked system. He is a member
of IEEE.

Azwirman Gusrialdi (S’08–M’12) received the
BEng and MEng degrees in mechanical & con-
trol engineering from the Tokyo Institute of Tech-
nology, Japan, in 2006 and 2008 respectively,
and the Dr.-Ing. degree in control engineering
from Technische Universität at München, Ger-
many, in 2012. He was a postdoctoral researcher
at the Department of Electrical and Computer
Engineering, University of Central Florida (UCF),
Orlando. Since 2019, he has been an assistant
professor with the Automation Technology and

Mechanical Engineering unit, Tampere University, Finland and leading
the Intelligent Networked Systems group. His research interests in-
clude design of resilient networked systems, cooperative control and
distributed optimization for networked cyber-physical systems. He is a
member of the IEEE.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3200466

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

