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a b s t r a c t 

In this paper, we adopt a complex-domain cube filter (CCF) developed for hyperspectral 3D complex domain 

images for noise suppression of 3D complex-valued data in optical diffraction tomography. CCF is based on 

two processing steps: singular value decomposition (SVD) and complex-domain sparsity-based filter (CDID). SVD 

provides data compression and CDID noise suppression in the compressed domain. We demonstrate that the 

CCF algorithm can be used to denoise captured projections (sinogram), which results in enhanced tomographic 

reconstruction. The accuracy and quantitative advantage of CCF application are shown in simulation tests and in 

the processing of the experimental data. We show that the algorithm effectively suppresses noise and retrieves 

objects’ details even for highly noisy data. 
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. Introduction 

Tomography is a method of 3D image reconstruction of an object

hrough the use of any kind of penetrating wave [1] . There are over

0 types of tomographic systems that rely on electromagnetic radia-

ion. They operate in various parts of the spectrum, starting from x-

ay [2] and gamma radiation [3] and up to terahertz wavelengths [4] .

he current paper is devoted to optical diffraction tomography (ODT)

5] , where radiation is in the visible part of the spectrum and 3D

maging is enabled by the projections acquired using digital hologra-

hy. ODT is successfully used in a wide range of applications but cur-

ently excels in biomedical imaging, as it is a high-resolution, nonin-

asive and quantitative technique. ODT reconstruction provides a 3D

atrix of the refractive index (RI) distribution of a sample that can

e related to the dry mass distribution within cells and tissues, which

s a powerful marker for biomedicine [6–8] . Generally, the 3D re-

onstruction requires solving an inverse problem using data acquired

rom multiple viewing directions, in this case by illuminating an ob-

ect from different angles. These multiple projections are collected in
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D data arrays called a sinogram. At present, a projection number gov-

rns the fidelity of the reconstruction [1] , as more projections can av-

rage out and suppress noise considerably [9] . However, practical re-

uirements such as temporal resolution, power levels, or cost can con-

train the experiment leading to increased noise. Additionally, recon-

tructions of cells in presence of cell debris or relatively thick spec-

mens (e.g. tissues) are challenging due to the multiple scattering of

ight [10,11] , which can also be considered as an additional source of

oise. 

To overcome this quality problem, noise suppression techniques are

idely utilized. For x-ray computed tomography [12] , the denoising ap-

lication reduced the reconstruction error in a scatter corrected image

rom 10 . 6% to 1 . 7% and increased the contrast-to-noise ratio by a factor

f 3.6. In the paper [13] , results of a comparison of 4 different denoising

echniques applied to computed tomography are presented, where the

parsity-based block-matching 3D (BM3D) [14] noise suppression pro-

ided the best results measured by SSIM metrics for the smallest number

f projections. Another application of BM3D and its descendant, BM4D

15] , developed for the volumetric data processing is demonstrated for
gust 2022 
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DT in [16] , where these BM filters perform better than the traditional

edian filter. 

The BM3D filter is one of the most popular and effective noise sup-

ression techniques for imaging. However, BM3D is developed for real-

alued images and is not as effective for complex-domain images. Re-

ently, complex-domain (CDID) and complex cube (CCF) filters were

eveloped [17,18] . In CDID, additionally to traditional block-matching,

he filter takes into account correlations of amplitude and phase pairs for

ore efficient noise suppression. CCF filter, developed for hyperspectral

HS) data processing, is based on singular value decomposition (SVD)

nd CDID. In addition to correlations of amplitude and phase (taken into

ccount by CDID) CCF also employs correlations between neighboring

pectral channels which provides an additional advantage for denoising.

or example, it is demonstrated in [19] that a sufficient improvement of

pectral object detection from HS data is obtained after CCF denoising. 

Similar to HS imaging, where data is collected in 3D cubes, ODT

lso employs a complex-valued 3D stack of projections prior to image

econstruction, and therefore CCF might be applied for denoising of ODT

inograms. However, ODT sinograms differ from HS data and CCF needs

o be adjusted for better performance. In the present paper, we tune CCF

or signal processing of ODT data, demonstrate the advantages of such

n approach, and compare its performance to traditional and state-of-

he-art denoising techniques. 

The paper organized as follows. Section 2 describes a problem formu-

ation and assumptions needed for its solution. In Section 3 the proposed

enoising algorithm and its framework are presented. In Section 4 we

resent simulations for algorithm tuning ( Subsection 4.1 ) applied to

DT sinograms in different noise conditions. In Section 5 we show re-

ults of ODT 3D refractive index imaging in simulations (Subsection 5.1 )

nd experiments ( Subsection 5.2 ), where images are reconstructed from

oisy and filtered data. Final conclusions are in Section 6 . 

. Problem formulation 

Optical diffraction tomography is an approach to an inverse problem

f reconstructing 3D scattering potential distribution 𝑓 ( 𝑥, 𝑦, 𝛼) from the

ultiple scattered field measurements [20] . Let 𝑈 ( 𝑥, 𝑦, 𝛼) ⊂ ℂ 

𝑁×𝑀 be

uch a measurement. Each scattered field is generated by illuminating

he object with the plane wave, with either object rotation or illumi-

ation tilt, varying the angle ( 𝛼) between consecutive measurements. 

( 𝑥, 𝑦, 𝛼) = 𝑈 0 ( 𝑥, 𝑦, 𝛼) + 𝑈 𝑠 ( 𝑥, 𝑦, 𝛼) (1)

here 𝑈 0 - plane wave illumination and 𝑈 𝑠 - scattered component. Under

he Rytov approximation, we can express the scattered component 𝑈 𝑠 
n the form of the so-called complex phase [21] : 

𝑠 = ln 
( 

𝑈 

𝑈 0 
+ 1 

) 

(2)

esulting in 

 𝑠 = 𝑈 0 ln 
( 

𝑈 

𝑈 0 
+ 1 

) 

(3)

n practice, complex field 𝑈 is retrieved using 2 holograms - one cap-

ured with the measured object present in the system and the second

ithout any objects in the field of view, which allows to compensate

or systematic errors, such as systems’ optical aberrations. Complex am-

litudes are often retrieved from the off-axis holograms using Fourier

ransform method [22] . The scattering potential 𝑓 ( 𝑥, 𝑦, 𝛼) is related to

he RI distribution, 𝑛 ( 𝑥, 𝑦, 𝛼) , by 

( 𝑥, 𝑦, 𝛼) = 𝑘 2 
𝑚 

[ ( 

𝑛 ( 𝑥, 𝑦, 𝛼) 
𝑛 𝑚 

) 2 
− 1 

] 

(4)

here 𝑘 𝑚 = 

2 𝜋𝑛 𝑚 
𝜆

and 𝑛 𝑚 is RI of a surrounding medium. We reconstruct

he Fourier spectrum of the scattering potential 𝑓 ( 𝑥, 𝑦, 𝛼) by mapping 2D

pectra of the complex phases 𝐹 𝑇 [Φ ] onto spherical surfaces (called
𝑠 

2 
wald’s spheres) in 𝐹 𝑇 [ 𝑓 ( 𝑥, 𝑦, 𝛼)] . The radius of the spheres is deter-

ined by the illumination wavelength 𝜆 and their positions in the 3D

pectrum are determined by illumination vectors. 

Stack of complex fields 𝑈 ( 𝑥, 𝑦, 𝛼) for different illumination angles are

ollected in a sinogram 𝑄 𝛼( 𝑥, 𝑦 ) = { 𝑈 ( 𝑥, 𝑦, 𝛼) , 𝛼 ⊂ 𝐴 } , 𝑄 𝛼 ⊂ ℂ 

𝑁 ×𝑀 ×𝐿 𝐴 .

he whole sinogram is composed of a set of the slices 𝐴 with the number

f individual angles 𝐿 𝐴 . Thus, the total size of the sinogram is 𝑁 ×𝑀 ×
 𝐴 pixels. Then, the observations of the sinogram denoising problem

nder the additive noise assumption may be written as: 

 𝛼( 𝑥, 𝑦 ) = 𝑄 𝛼( 𝑥, 𝑦 ) + 𝜀 𝛼( 𝑥, 𝑦 ) , (5)

here 𝑍 𝛼, 𝑄 𝛼 , 𝜀 𝛼 ⊂ ℂ 

𝑁 ×𝑀 ×𝐿 𝐴 represent the recorded noisy sinogram,

lean sinogram and additive noise, respectively. Spatial coordinates

 𝑥, 𝑦 ) are integer numbers belonging to ranges [1 ∶ 𝑁] and [1 ∶ 𝑀] ,
espectively. Accordingly to the notation for the clean sinogram, the

oisy sinogram can be represented as 𝑍 𝛼( 𝑥, 𝑦 ) = { 𝑍( 𝑥, 𝑦, 𝛼) , 𝛼 ∈ 𝐴 } , 𝑍 𝛼 ⊂

 

𝑁 ×𝑀 ×𝐿 𝐴 with the slices 𝑍( 𝑥, 𝑦, 𝛼) . The denoising problem is formulated

s a reconstruction of unknown 𝑄 𝛼( 𝑥, 𝑦 ) from the given 𝑍 𝛼( 𝑥, 𝑦 ) . The

roperties of the clean sinogram 𝑄 𝛼( 𝑥, 𝑦 ) and the noise 𝜀 𝛼( 𝑥, 𝑦 ) are es-

ential for the algorithm development. For the noise filtering, we exploit

he following three natural properties of the model [18] . 

1. The sinogram slices 𝑈 ( 𝑥, 𝑦, 𝛼) for nearby angles 𝛼 are similar. The

similarity follows from the fact that slices 𝑈 ( 𝑥, 𝑦, 𝛼) are slowly vary-

ing functions of 𝛼. Therefore, there is a linear transform 𝐸 reducing

the size of the sinogram 𝑄 𝛼( 𝑥, 𝑦 ) to the sinogram of the smaller size

in the third dimension. A smaller size of this subspace automatically

means a potential to improve the denoising being produced in this

smaller subspace. 

2. The sinogram slices 𝑈 ( 𝑥, 𝑦, 𝛼) as functions of ( 𝑥, 𝑦 ) are sparse. The

sparsity is one of the natural and fundamental assumptions for the

design of modern image processing algorithms. For complex-valued

images, it is different from the real-valued signals, since complex-

valued variables can be defined by any of the two pairs: ampli-

tude/phase and real/ imaginary values and elements of these pairs

are usually correlated [23] . 

3. The noise 𝜀 𝛼( 𝑥, 𝑦 ) is zero mean circular complex-valued Gaussian

with real and imaginary parts uncorrelated. 

We use the first property for providing principle component anal-

sis via singular value decomposition (SVD) which provides compres-

ion of the initial noisy sinogram 𝑍 𝛼( 𝑥, 𝑦 ) ⊂ ℂ 

𝑁 ×𝑀 ×𝐿 𝐴 to so-called eigen-

inogram 𝑍 𝛽 ( 𝑥, 𝑦 ) ⊂ ℂ 

𝑁 ×𝑀 ×𝐿 𝐵 with 𝐿 𝐵 < 𝐿 𝐴 . The similarity governs the

 𝐵 value: the higher the similarity the smaller the 𝐿 𝐵 . The last two

odel properties advocate for application of CDID filter [17] , which is

ased on the sparsity theory and developed for additive noise. In the

resent paper we use CDID for noise suppression in complex-valued

lices of the eigen-sinogram 𝑍 𝛽 ( 𝑥, 𝑦 ) . Taking into account that the first

roperty depends on the angle steps and the object structure, it might

e relaxed just by taking a smaller set of neighboring slices. 

. CCF denoising 

In the publication [18] CCF is described in details, here we would

ike to summarize its main advantages and adaptation for tomographic

ata processing. CCF was developed for filtering complex-valued 3D

ata cubes by joint processing of its slices. In ODT neighboring projec-

ions (slices) are expected to be similar, with the similarity decreasing

or the distant projections. Therefore, to process only groups of similar

lices, we propose the use of CCF in a sliding window regime, which is

efined by the following notation: 

̂
 ( 𝑥, 𝑦, �̄� ) =    { 𝑍( 𝑥, 𝑦, �̄� ) , �̄� ⊂ 𝐴 } . (6)

ere, �̂� is a filtered estimate of 𝑄 , �̄� is a set of slices to be denoised. For

liding filtering regime, �̄� is a symmetric interval of angles centered at

= 𝛼0 of the width 𝐿 �̄� ∶ 

�̄� = { 𝛼 ∶ 𝛼0 − 𝐿 �̄� ∕2 ≤ 𝛼 ≤ 𝛼0 + 𝐿 �̄� ∕2} . (7)



I. Shevkunov, M. Ziemczonok, M. Kujawi ń ska et al. Optics and Lasers in Engineering 159 (2022) 107228 

Fig. 1. CCF algorithm. Data arrays reshaping from 2D to 3D and 

vice versa are depicted by arrows 2D ⇆3D. 
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c  
omplex domain Cube Filter (CCF) processes the data of the cube

( 𝑥, 𝑦, �̄� ) jointly and provide the estimates �̂� ( 𝑥, 𝑦, �̄� ) for all 𝛼 ∈ �̄� . 

Previous investigation [18] for HS data processing shows that the

CF filtered slices �̂� ( 𝑥, 𝑦, 𝛼) have the accuracy varying with 𝛼 and the

est results are achieved for 𝛼 close to the middle point of the interval �̄� .

dditionally, the degree of similarity for tomographic data is less than

n HS data due to the rotation of an object during acquisition. Therefore,

e utilize CCF in a sliding regime, in which a set of step-wise estimations

or 𝛼 = 𝛼0 in Eq. 7 are obtained, where 𝛼0 takes values from 𝐴 . The width

f the sliding window 𝐿 �̄� can be varying with 𝛼0 . 

As an advantage over the HS 3D data sets, scanning in ODT is usually

erformed in a closed loop (e.g. annular pattern around the edges of the

umerical aperture), resulting in high similarity between the first and

he last projection. Taking it into account, we process sinograms with an

ssumption of circular symmetry in the third dimension, which results in

niform noise suppression for ODT, while in HS data the CCF denoising

n the neighborhood of bounding slices is worse. 

Figure 1 illustrates flow chart of the CCF algorithm. It comprises of

he following steps. 

1. Calculation of the orthonormal transform matrix 𝐸 ⊂ ℂ 

𝐿 �̄� ×𝐿 𝐵 and

the 2D transform domain eigen-sinogram 𝑍 2 𝐷 ( 𝑥𝑦, 𝐵) as 

𝐸 = SVD 

(
𝑍 2 𝐷 ( 𝑥𝑦, �̄� ) 

)
, (8)

where SVD stays for singular value decomposition, 𝐵 is a

eigenspace, which length ( 𝐿 𝐵 ) depends on noise level and ob-

ject’s features. We identify 𝐿 𝐵 heuristically. When 𝐸 is calcu-

lated, the eigen-sinogram is calculated as 

�̂� 2 𝐷 ( 𝑥𝑦, 𝐵) = 𝐸 

𝐻 ⋅𝑍 2 𝐷 ( 𝑥𝑦, �̄� ) . (9)

2. Filtering of each of the 𝑁 ×𝑀 2D slices of �̂� 3 𝐷 ( 𝑥, 𝑦, 𝐵) by

Complex-Domain Image Denoising (CDID) algorithm [17] : 

�̂� 3 𝐷 ( 𝑥, 𝑦, 𝐵) = CDID 

(
�̂� 3 𝐷 ( 𝑥, 𝑦, 𝐵) 

)
, (10)

where 𝐵 is a subspace of eigen-sinograms and length of 𝐵 is

smaller than length of 𝐴 . 

3. Returning from the eigen-sinograms of the transform domain to

the 2D original image space as follows 

�̂� 2 𝐷 ( 𝑥𝑦, �̄� ) = 𝐸 ⋅ �̂� 2 𝐷 ( 𝑥𝑦, 𝐵) . (11)
c  

3 
Forward and backward passages in Fig. 1 2D ⇆3D signed between

he algorithm steps define the reshapes from 2D to 3D and vice versa

or corresponding processing of the sinogram, since SVD is developed

or 2D and CDID employs spatial distribution of slices in 3D. In 3D,

he coordinates are ( 𝑥, 𝑦, 𝛼) , and in 2D they are reshaped to ( 𝑥𝑦, 𝛼) . The

ubscript (2D or 3D) denotes the number of dimensions. 

These reshapes are needed to produce SVD transform since it works

nly on 2D data, but CDID filtering works in the 3D domain slice-by-

lice. However, to return these filtered data to the original image space

e need to use 2D transform ( Eq. 11 ) and reshape the data back to

D space. Optimization in step 1 results in reduced sinogram size and

sually the obtained subspace dimension is much smaller than the initial

ne 𝐿 𝐵 ≪ 𝐿 �̄� . This leads to a shorter processing time of the algorithm.

hus, the CDID filtering is produced only for 𝐿 𝐵 slices of the eigen-

inogram but the backward transform ( Eq. 11 ) gives the estimates for

ll 𝐿 �̄� slices of the original sinogram. 

Figure 2 illustrates the CCF processing at each step of the algorithm,

he left column shows amplitudes and the right one - phases. The in-

ut noisy sinogram 𝑍 3 𝐷 ( 𝑥, 𝑦, �̄� ) is in Fig. 2 (a); the noisy eigen-sinogram
̂
 3 𝐷 ( 𝑥, 𝑦, 𝐵) is in Fig. 2 (b), consisting only from 4 slices; the CDID fil-

ered eigen-sinogram �̂� 3 𝐷 ( 𝑥, 𝑦, 𝐵) is in Fig. 2 (c); and the resulting fil-

ered sinogram �̂� 3 𝐷 ( 𝑥, 𝑦, �̄� ) is in Fig. 2 (d). From the eigen-sinogram

n Fig. 2 (b) it appears that the noise is already suppressed in the first

lices of amplitude and phase ( 𝛽 = 1 ), however other slices are noisy,

nd only after CDID filtering (see Fig. 2 (c)) all eigen-sinogram slices are

enoised and show clear structure. It is an essential step for denoising,

therwise the remaining noise will be spread over the whole sinogram,

t is the case in the traditional principal component analysis approach

25] . 

. Simulations 

For the investigation of CCF tuned parameters, we perform simula-

ions of different noise conditions with the noise model in accordance

ith Eq. 5 . As an object under investigation, we used a numerical twin

f a biological cell phantom, see Fig. 3 [24] , that was later fabricated

nd measured using ODT system. It includes following test features: the

SAF-like resolution test chart of high refractive index contrast along

he X, Y, and Z axes (labeled regions 1 and 3 in Fig. 3 ), three spheri-

al nucleoli suspended in a region of lower RI (nucleus, label 2) and a

ylinder with radial gradient of the RI that represents slow, natural RI

hanges within cells (labeled region 4). These features were designed to
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Fig. 2. Illustration of CCF algorithm processing steps. Pannels correspond to the 

sinogram processing steps of the algorithm. The left column shows amplitudes 

and the right column shows phases. (a) Input noisy sinogram consisting of 30 

slices; (b) noisy eigen-sinogram after SVD consisting of 4 slices; (c) CDID filtered 

eigen-sinogram; (d) CCF filtered sinogram. 
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Fig. 3. Numerical model of the cell phantom. Within the truncated ellipsoid 

there are several test targets including resolution lines, gradient region and ellip- 

soid containing spheres representing 3 nucleoli suspended in nucleus. Size, mor- 

phology and ΔRI values mimic the real cell suspended in the culture medium. 

Maximum external dimensions in the XY plane equal 345 × 300 voxels and the 

height is 126 voxels. Labeled regions are: 1 - resolution lines in the X and Y 

directions (line widths: 3, 5 and 7 voxels, ΔRI = 0 . 03 ); 2 - spherical nucleoli (30 

voxels in diameter) suspended in the low-RI region, representing the nucleus 

( ΔRI = 0 . 015 ); 3 - resolution lines in the Z direction (line heights: 9, 12 and 15 

voxels, ΔRI = 0 . 03 ); 4 - cylinder with a radial RI gradient ( ΔRI = 0 . 015 ). Sampling 

is typical for ODT, isotropic, equal to 100 nm/voxel [24] . 

Table 1 

Mean RRMSE of filtered sinogram’s phase depending on the 

eigen subspace length, 𝐿 𝐵 , and on SNR of the noisy sinogram. 

𝐿 𝐵 /SNR 24.4 dB 18.4 dB 14.1 dB 3.0 dB 1.7 dB 

1 0.0381 0.0381 0.0381 0.0387 0.0392 

2 0.0125 0.0126 0.0127 0.0156 0.0176 

3 0.0066 0.0068 0.0072 0.0134 0.0173 

4 0.0042 0.0047 0.0054 0.0135 0.0174 

5 0.0031 0.0038 0.0048 0.0136 0.0174 

6 0.0026 0.0034 0.0047 0.0137 0.0176 
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R  
est the performance of the ODT and enable a comparison of numerical

nd experimental results. Thus, it is appropriate for benchmarking the

erformance of the CCF filtering under realistic conditions. A synthetic

inogram generation is based on the forward model of Fourier Diffrac-

ion Theorem. Polar illumination angle was 50 ◦ for 360 projections ar-

anged in annular scanning pattern with 1 ◦ azimuthal step. Projections

ave been band limited to match a numerical aperture of the imaging

bjective of NA = 1.3. The illumination wavelength was 𝜆 = 632 . 8 nm. 

We cover a wide range of sinogram signal-to-noise ratios (SNR) of

1 . 7 ∶ 24 . 4] dB controlled by the additive noise standard deviation, 𝜎: 

 ( 𝑥, 𝑦, 𝛼) = 

𝜎√
2 
⋅
(
𝜀 𝑅𝑒 ( 𝑥, 𝑦 ) + 𝑖 ⋅ 𝜀 𝐼𝑚 ( 𝑥, 𝑦 ) 

)
, 𝛼 ∈ 𝐴 (12)

here 𝜀 𝑅𝑒 ( 𝑥, 𝑦 ) and 𝜀 𝐼𝑚 ( 𝑥, 𝑦 ) are zero-mean independent Gaussian ran-

om variables with variance 𝜎
2 

2 for the noise real and imaginary parts,

espectively. SNR is defined as the averaged squared amplitude of a

inogram and divided by the variance of the system noise: 

NR = 10 log 10 

( ∑
𝑥,𝑦,𝛼 |𝑍( 𝑥, 𝑦, 𝛼) |2 
𝜎2 ⋅𝑁 ⋅𝑀 ⋅ 𝐿 𝐴 

) 

. (13)

The noise suppression quality is estimated as Relative Root-Mean

quare error (RRMSE) between the noiseless 𝜑 𝑜 and filtered 𝜑 𝑜 object’s

hases: 

RMSE = 

‖‖𝜑 𝑜 − 𝜑 𝑜 
‖‖𝐹 ‖𝜑 𝑜 ‖ , (14)
‖ ‖𝐹 

4 
here ‖⋅‖𝐹 means the Frobenius norm. The sinogram RRMSE is esti-

ated as averaged RRMSE of all sinogram’s slices. 

.1. CCF parameters 

For better performance of the CCF algorithm, we make a fine tunning

f its parameters (eigen subspace length ( 𝐿 𝐵 ), sliding window width

 𝐿 �̄� ), and sliding window step). Eigen subspace length ( 𝐿 𝐵 ) estimation

s a crucial first step of the CCF algorithm since it governs the number

f eigen-sinogram slices to be filtered. For this purpose, we investigated

ltering of noisy sinograms in SNR range of [1.7:24.4] dB by sliding CCF

ith different eigen subspace length, 𝐿 𝐵 . In Table 1 we provide filtered

inogram RRMSE values depending on the eigen subspace length, 𝐿 𝐵 ,

nd on SNR of the noisy sinogram. 

For small noise cases of SNR > 14 dB, the growing 𝐿 𝐵 provides better

ltering results, however for more noisy cases ( SNR < 14 dB) the grow-

ng 𝐿 𝐵 does not improve filtering and, having values bigger than 4, even

arms it. It happens because in high noise levels the needed similarity

roperty for sinogram slices is not fulfilled. Therefore, we take 𝐿 𝐵 = 4
s the optimal value for filtering, since it provides small RRMSE in the

ess noisy cases and does not harm more noisy ones. 

Next, to work in the sliding regime, the estimation of the sliding win-

ow width, 𝐿 �̄� , and sliding step is needed. For this purpose sinogram

RMSE depending on the width, 𝐿 �̄� , and on the step of the sliding win-
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Fig. 4. CCF sliding window length, 𝐿 �̄� , and step choice by mean RRMSE of 

filtered phase sinograms. (a) Filtered sinogram RRMSE curves for noisy sino- 

grams with SNR = 3 dB (orange circles curve), SNR = 5.7 dB (orange diamonds), 

and SNR = 14.1 dB (blue stars). (b) Filtered noisy sinogram RRMSE curve for 

different steps of sliding window �̄� with length 𝐿 �̄� = 30 , SNR = 14.1 dB. 

Fig. 5. (a,c) Slice-wise RRMSE for CCF filtered noisy sinogram (SNR = 14 dB): 

black diamonds are for CCF applied for the whole sinogram, red circles are for 

sliding window CCF, solid curves are for mean RRMSE values. (b,d) RRMSE 

plots for different denoising algorithms applied for filtering. RRMSE of noisy 

sinogram is in blue diamonds, and filtered sinograms by: 3D median filter (pur- 

ple left triangles), slicewise BM3D (green right triangles), slicewise CDID (black 

crosses), BM4D (brown sticks) and CCF (red circles).(a,b) is for phase, (c,d) is 

for amplitude. 
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a  
ow for CCF is shown in Fig. 4 (a) and (b), respectively. It is intuitively

xpected that for small values of 𝐿 �̄� the noise suppression will be less

ffective than for the big ones, however with the limited similarity of

he sinogram slices 𝑍( 𝑥, 𝑦, �̄� ) the big length of �̄� will also be harmful.

e show in Fig. 4 (a) three sinogram RRMSE curves with different noise

evels of 3 dB, 5.7 dB, and 14.1 dB for yellow circles, orange diamonds,

nd blue stars curves, respectively. All presented curves have local min-

mums, and with the growing noise level, the mimimum shifts to the

igger sliding window length, 𝐿 �̄� . To optimize performance across noise

evels we choose 𝐿 �̄� = 30 , which provides the best RRMSE value for the

oisiest case, and relatively good RRMSEs for cleaner data. Due to the

ower degree of similarity between distant projections (here more than

0 slices), they are not similar enough for the correct SVD processing

nd, therefore, for successful noise suppression. 

In Fig. 4 (b) the RRMSE curve for different step values for slid-

ng window is plotted, the step values were varying inside the range

2 ∶ length ( ̄𝐴 )] . The curve demonstrates that, contrary to the HS data

18] , the CCF filtering of the tomographic sinograms is irrelevant to

liding step and step might be taken the same as the length of the slid-

ng window, 𝐿 �̄� . 

After the parameters are chosen we provide a justification of CCF

ltering applied in the sliding regime against the single CCF appli-

ation for the whole sinogram. For the latter case we took 𝐿 𝐵 = 28 ,
hich equals to the number of steps in sliding regime multiplied on

he sliding 𝐿 𝐵 = 4 . In Fig. 5 (a,c) RRMSE filtering results for each slice

f the noisy sinogram with SNR = 14.1 dB are provided for phase and
5 
mplitude, respectively. The black diamond dots correspond to the sin-

le CCF application, red circles to the sliding CCF, and the solid lines

ith the corresponding colors indicate sinogram mean RRMSE. It is

hown that sliding mode CCF is performing better with lower values of

RMSE. 

For a comparison of CCF filtering performance with different filter-

ng techniques we show in Fig. 5 (b,d) slice-by-slice RRMSEs of filtered

inograms by: slice-wise BM3D (green right triangles curve), slice-wise

DID (black crosses curve), three-dimensional median filter with [3,3,3]

ernel (purple left triangles curve), BM4D (left triangles curve), and

y sliding window CCF (red circles curve). Blue diamonds curve corre-

pond to RRMSEs of the noisy sinogram prior to filtering, SNR = 14.1 dB.

ig. 5 (b) is for phase and (d) is for the amplitude. It is demonstrated

hat slice-wise filtering techniques are performing worse than BM4D

nd CCF, which use 3rd dimension for denoising. However, because

f consideration of phase-amplitude correlations CCF performs better

han BM4D and the lowest RRMSE values for CCF confirm its high noise

uppression performance. 

For simulations we used MATLAB R2020b environment on a com-

uter equipped with 32 GB of RAM and 3.40 GHz Intel®Core TM i7-3770

PU. The computation complexity of the algorithm is characterized

y the time required for processing. For the 280 × 280 × 360 complex-

omain sinogram, filtering by CCF takes 2780 seconds, among which

700 is spent by CDID. With some optimization and utilization of the

PU acceleration [26] , we expect that this time might be decreased at

east 100 fold. 

We make the MATLAB demo codes (see Supplementary code ) of the

eveloped CCF algorithm publicly available. These can be used to re-

roduce the experiments presented in this paper as well as for further

ests. 

. Results 

Original, noisy and denoised synthetic sinograms, followed by the

xperimental sinograms were reconstructed in order to ascertain the

mpact of the denoising on the 3D RI distribution. For this purpose we

sed a direct inversion algorithm (DI) [27] under the first-order Rytov

pproximation [28,29] . The algorithm is a straightforward implemen-

ation of the generalized projection theorem [20] and applies direct in-

erpolation of the object beam information into the 3D spectrum of the

ample. We chose this reconstruction method because of its current pop-

larity in ODT, robustness, and short computation time. 

.1. Simulation results 

For the demonstration of a CCF filtering performance and improve-

ents in ODT, in this section, we show images of noiseless sinogram

 Fig. 6 a,d), noisy sinogram (b,e) with SNR = 5.7 dB, and CCF filtered

oisy sinogram (c,f). The top row is for whole data cubes and the bot-

om row illustrates the typical sinogram appearance as 2D section of the

D data cube in ( 𝑥, 𝛼) plane for 𝑌 = 100 . As can be seen in Fig. 6 (c,f) that

oise is suppressed, CCF filtered sinogram corresponds to the noiseless

ne, and low RRMSE = 0.021 value indicates high quality filtering with

reservation of sinogram’s details, as demonstrated in the following re-

onstructions. 

ΔRI images presented in Fig. 7 are reconstructed from the given

oiseless sinogram Fig. 7 (a,b,c), from the noisy sinogram, SNR = 5.7 dB

ig. 7 (d,e,f), from the 3D median filtered noisy sinogram Fig. 7 (g,h,i),

rom BM4D filtered noisy sinogram Fig. 7 (j,k,l), and from CCF filtered

oisy sinogram Fig. 7 (m,n,o). Panels (p,q,r,s) in Fig. 7 provide cross-

ections for the corresponding planes marked in panels (a,b,c) as dash-

ot green lines. Scale bar in images equals to 5 𝜇m. Observing the empty

paces of reconstruction from filtered sinograms by all filters, it is clear

hat all filtering techniques provide noise suppression and filtered im-

ges are less noisy. However, the 3D median filtered images lose high

http://journal_link.html
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Fig. 6. Images of phase sinograms: noiseless (a,d), noisy with SNR = 5.7 dB (b,e), CCF filtered noisy sinogram (c,f). The top row shows the whole data cubes, while 

the bottom row shows the single slice at Y = 100. 

Fig. 7. Simultated ΔRI reconstructions from noiseless sinogram (a,b,c), from noisy sinogram with SNR = 5.7 dB (d,e,f), from 3D median filtered noisy sinogram (g,h,i), 

from BM4D filtered noisy sinogram (j,k,l), and from CCF filtered noisy sinogram (m,n,o). The top row shows XY plane, the second row - YZ plane, and the third 

row - XZ plane. Dash dot lines in (a,b,c) show cross-sections locations for the corresponding planes. Cross-sections from all reconstructions are presented in subplots 

(p,q,r,s) for XY horizontal line, XY 45 ◦ angled line, YZ, and XZ planes, respectively. Scale bar is 5 μm. Filtering results for the whole cell by CCF can be found in the 

supplementary Visualization 1 . 
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Fig. 8. RRMSE curves for reconstructions of cell phantom from: noiseless sino- 

gram (blue crosses curve), noisy sinogram with SNR = 5.7 dB (black left trian- 

gles), and noisy sinogram filtered by 3D median filter (purple diamonds), by 

BM4D (brown sticks), and by CCF (red circles). 
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Fig. 9. Experimental ΔRI reconstructions from noisy sinogram (a,b,c), from CCF 

filtered noisy sinogram (d,e,f), and 3D median filtered noisy sinogram (g,h,i). 

The left column is for XY plane, the middle column is for XZ plane, and the right 

column is for XZ plane. Cross-sections from all reconstructions are presented 

in subplots (j,k,l) for XY, XZ, and YZ planes, respectively. In cross-section plots 

black triangles curve is for reconstruction from noisy sinogram, red circles curve 

is for filtered by 3D median filter, and blue crosses curve is for CCF filtered. 

Scale bar is 5 μm. Filtering results for the whole cell by CCF can be found in the 

supplementary Visualization 2 . 
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requency details and provide blurry reconstructions. BM4D demon-

trates better quality in terms of resolution, but lacks noise suppres-

ion of surrounding media of the phantom. CCF filtered images demon-

trate, along with the suppressed noise of the surrounding media, high

esolution and contrast when compared to the reconstruction from the

oiseless sinogram. In cross-sections Fig. 7 (p,q,r,s) blue curves corre-

pond to noiseless reconstruction, black to noisy, purple to 3D median

ltered, brown to BM4D filtered, and red to CCF. In each plane CCF

ross-section curves are the closest to the cross-sections from the noise-

ess sinogram reconstruction. 

In terms of RRMSE, the reconstruction quality is demonstrated in

ig. 8 where slice-wise RRMSE is provided for each filtering technique.

-axis is for Z slice of the reconstruction, where the starting slice Z = 254

s for the top of the phantom and Z = 354 is for the bottom. RRMSE of

hantom reconstruction from the noiseless sinogram is plotted using the

lue crosses curve, from noisy sinogram with SNR = 5.7 dB - black left

riangles, from noisy sinogram filtered by 3D median filter - purple di-

monds, by BM4D - brown sticks, and by CCF - red circles. Again, CCF

emonstrates the closest RRMSE values to the noiseless reconstruction

hich indicates the highest quantitative quality among the considered

lters. It is interesting to note that BM4D performance in RRMSE values

or sinograms was better than for the 3D median filter (see Fig. 5 ), how-

ver in the final reconstruction BM4D performs worse, which is caused

y worse noise suppression in the surrounding media, see plane YZ in

ig. 7 (h,k,n). 

.2. Experimental results 

For experimental demonstration of CCF filtering we have captured

oisy sinogram of the 3D-printed cell phantom with the 3D RI distribu-

ion corresponding to the simulated one, shown in Fig. 3 . It has been

anufactured by 3D laser photolithography (direct laser writing) and

escribed in detail in [24] . External dimensions are 30 × 25 × 11 𝜇m, with

he smallest features (resolution test lines) being as small as 300 nm.

he ODT system is based on the Mach-Zehnder interferometer also de-

cribed in [24] . Briefly, the laser beam (633 nm wavelength) is split in

wo paths. The object beam is steered by the dual-axis galvanometer mir-

ors and illuminates the sample (coverslip with the phantom immersed

n Zeiss Immersol 518F immersion oil) from various directions as in the

imulations - annular pattern at 50 ◦ polar angle in the sample plane. The

iffraction pattern is captured by the x40, 1.3NA microscope objective

nd relayed onto the camera, where the object beam recombines with

he reference beam. The resulting off-axis holograms for each of the

80 illumination angles are demodulated using the Fourier transform

ethod providing amplitude and phase sinograms. In order to increase

he noise level in the system, we introduced additional coverslip covered

n dust and fingerprints to the object beam path, as well as lowered the

amera exposure to utilize only about 30% of its 8-bit dynamic range.
7 
his results in the SNR of 22.9 dB, estimated [30] in the object-free

egion of the sinogram. 

In Fig. 9 we show experimental ΔRI reconstructions of the cell phan-

om from original noisy sinogram (a,b,c), from CCF filtered noisy sino-

ram (d,e,f), from BM4D filtered noisy sinogram (g,h,i), and 3D me-

ian filtered sinogram (j,k,l). Cross-sections from original noisy sino-

ram (black), and filtered sinograms by CCF (red), BM4D (brown), and

D medial filtered (pink) are presented in Fig. 9 (m,n,o) for XY, YZ, and

Z planes, respectively. Similarly as in the simulations, all presented fil-

ers demonstrate reliable noise suppression. However, in reconstruction

sing 3D median filter resolution has significantly dropped and high

requency object details are lost. Comparing BM4D and CCF, especially

sing the zoomed insets and cross-sections, it is clear that CCF provides

etter resolved details and close values to the reconstruction from the

riginal sinogram. Additionally, CCF better suppresses structured noise

n the surrounding media of the cell-phantom, which is clearly seen in

lane XZ in Fig. 9 . 

http://journal_link.html
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. Conclusion 

We have demonstrated a successful application of the complex-

omain cube filter (CCF) for noise suppression in 3D complex-valued

ata of optical diffraction tomography (ODT). Because of the particu-

ar projection preprocessing in ODT, CCF is tuned accordingly for better

erformance. CCF is based on two processing steps, the first is singular

alue decomposition (SVD), and the second is complex-domain sparsity

lter (CDID). While SVD provides data compression and initial denois-

ng, CDID employs sparsity theory and phase-amplitude correlation to

ake a precise denoising in the compressed domain. ODT sinograms

ave a low order of similarity, and we found that CCF filter provides

etter results when running in a sliding regime, where the sinogram

dvantage for noise suppression is the similarity of the first and last

lices of the sinogram, therefore noise suppression is uniform along the

hole sinogram. We have shown in simulations and experiment that

CF improves the precision of the refractive index reconstruction and

etrieves object’s details even for highly noisy data. Enhanced resolution

nd quantitative ODT estimations are essential for precise medical diag-

ostic [31,32] . With the trends of automatization, demonstrated noise

uppression in surrounding media (outside the investigated object) will

rovide a better image segmentation which will result in simpler and ro-

ust object recognition [33,34] . Additionally, CCF enables tomographic

maging with lower exposure times, which will result in the shortening

f the recording process. Going outside the visible range of illumina-

ion, in X-ray tomography, radiation doses might be decreased with the

ame quality imaging, which is essential for patient’s health [35] . These

dvantages are vital for specific applications of ODT and for facilitating

heir transition from optical and imaging laboratories to biomedical and

iagnostic facilities. 
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